Question 4 (1 point) Which of the following masses experience a force due to the field they are in? Check all that apply. O A negatively charged mass at rest in a magnetic field. A negatively charged

Answers

Answer 1

Both a negatively charged mass at rest in a magnetic field and a positively charged mass moving in a magnetic field experience a force due to the field.

A negatively charged mass at rest in a magnetic field experiences a force due to the field. This force is known as the magnetic force and is given by the equation F = qvB, where F is the force, q is the charge of the mass, v is its velocity, and B is the magnetic field.

When a negatively charged mass is at rest, its velocity (v) is zero. However, since the charge (q) is non-zero, the force due to the magnetic field is still present.

Similarly, a positively charged mass moving in a magnetic field also experiences a force due to the field. In this case, both the charge (q) and velocity (v) are non-zero, resulting in a non-zero magnetic force.

It's important to note that a positively charged mass at rest in a magnetic field does not experience a force due to the field. This is because the magnetic force depends on the velocity of the charged mass.

Therefore, both a negatively charged mass at rest in a magnetic field and a positively charged mass moving in a magnetic field experience a force due to the field.

Learn more about magnetic field here:

https://brainly.com/question/30331791

#SPJ11


Related Questions

3. (10 pts) A charge Q is uniformly distributed over a thin circular dielectric disk of radius a.
(a) Find the electric potential on the z axis that is perpendicular to and through the center of the disk (for both z > 0 and z < 0).
(b) Find the electric potential in all regions surrounding this disk, including both the region(s) of r > a and the region(s) of r

Answers

(a) The electric potential on the z-axis, perpendicular to and through the center of the disk, is given by V(z>0) = (kQ/2aε₀) and V(z<0) = (-kQ/2aε₀), where k is the Coulomb's constant, Q is the charge distributed on the disk, a is the radius of the disk, and ε₀ is the vacuum permittivity.

(b) The electric potential in all regions surrounding the disk is given by V(r) = (kQ/2ε₀) * (1/r), where r is the distance from the center of the disk and k, Q, and ε₀ have their previous definitions.

(a) To find the electric potential on the z-axis, we consider the disk as a collection of infinitesimally small charge elements. Using the principle of superposition, we integrate the electric potential contributions from each charge element over the entire disk. The result is V(z>0) = (kQ/2aε₀) for z > 0, and V(z<0) = (-kQ/2aε₀) for z < 0. These formulas indicate that the potential is positive above the disk and negative below the disk.

(b) To find the electric potential in all regions surrounding the disk, we use the formula for the electric potential due to a uniformly charged disk. The formula is V(r) = (kQ/2ε₀) * (1/r), where r is the distance from the center of the disk. This formula shows that the electric potential decreases as the distance from the center of the disk increases. Both regions of r > a and r < a are included, indicating that the potential is influenced by the charge distribution on the entire disk.

To know more about electric potential refer here:

https://brainly.com/question/28444459#

#SPJ11

At a site where the Earth's magnetic field has a magnitude of 0.42 gauss (where 1 gauss = 1.00 X 104 T) and points to the north, 680 below the horizontal, a high-voltage pover line 153 m in length
carries a current or TEA.
Determine the magnitude and direction of the magnetic force exerted on this wire, if the orientation of the vire and hence the current is as follove
horizontally toward the south

Answers

The magnitude of the magnetic force is 3.99 TEA and its direction is upward.

Magnitude of Earth's magnetic field, |B|=0.42 G=0.42 × 10⁻⁴ T

Angle between direction of Earth's magnetic field and horizontal plane, θ = 680

Length of power line, l = 153 m

Current flowing through the power line, I = TEA

We know that the magnetic force (F) exerted on a current-carrying conductor placed in a magnetic field is given by the formula

F = BIl sinθ,where B is the magnitude of magnetic field, l is the length of the conductor, I is the current flowing through the conductor, θ is the angle between the direction of the magnetic field and the direction of the conductor, and sinθ is the sine of the angle between the magnetic field and the conductor. Here, F is perpendicular to both magnetic field and current direction.

So, magnitude of magnetic force exerted on the power line is given by:

F = BIl sinθ = (0.42 × 10⁻⁴ T) × TEA × 153 m × sin 680F = 3.99 TEA

Now, the direction of magnetic force can be determined using the right-hand rule. Hold your right hand such that the fingers point in the direction of the current and then curl your fingers toward the direction of the magnetic field. The thumb points in the direction of the magnetic force. Here, the current is flowing horizontally toward the south. So, the direction of magnetic force is upward, that is, perpendicular to both the direction of current and magnetic field.

So, the magnitude of the magnetic force is 3.99 TEA and its direction is upward.

Learn more about magnetic force https://brainly.com/question/26257705

#SPJ11

An 93kg diver inhales to have a body density of 948 kg/m3, then swims to the bottom of a shallow sea (sea water density = 1024 kg/m") and begins to float to the surface. What is his acceleration? (g=9.8 m/s2)

Answers

The diver's acceleration is approximately 1.01 m/s^2.

To calculate the diver's acceleration, we need to consider the forces acting on the diver.

1. Weight force: The weight force acts downward and is given by the formula:

Weight = mass × gravity

             = 93 kg × 9.8 m/s^2

             = 911.4 N

2. Buoyant force: When the diver inhales to have a body density less than the surrounding water, there will be an upward buoyant force acting on the diver. The buoyant force is given by:

Buoyant force = fluid density × volume submerged × gravity

The volume submerged is equal to the volume of the diver. Since the diver's body density is 948 kg/m^3, we can calculate the volume submerged as:

Volume submerged = mass / body density

                                 = 93 kg / 948 kg/m^3

                                 = 0.0979 m^3

  Now we can calculate the buoyant force:

  Buoyant force = 1024 kg/m^3 × 0.0979 m^3 × 9.8 m/s^2

                           = 1005.5 N

Now, let's calculate the net force acting on the diver:

Net force = Buoyant force - Weight

         = 1005.5 N - 911.4 N

         = 94.1 N

Since the diver is floating to the surface, the net force is directed upward. We can use Newton's second law to calculate the acceleration:

Net force = mass × acceleration

Rearranging the formula, we find:

Acceleration = Net force / mass

            = 94.1 N / 93 kg

            ≈ 1.01 m/s^2

Therefore, the diver's acceleration is approximately 1.01 m/s^2.

Learn more about acceleration https://brainly.com/question/460763

#SPJ11

What is the wave speed if a wave with a wavelength of 8.30 cm
has a period of 2.44 s? Answer to the hundredths place or two
decimal places.

Answers

The wave speed is approximately 3.40 cm/s.The wave speed is determined by dividing the wavelength by the period of the wave.

The wave speed represents the rate at which a wave travels through a medium. It is determined by dividing the wavelength of the wave by its period. In this scenario, the wavelength is given as 8.30 cm and the period as 2.44 s.

To calculate the wave speed, we divide the wavelength by the period: wave speed = wavelength/period. Substituting the given values, we have wave speed = 8.30 cm / 2.44 s. By performing the division and rounding the answer to two decimal places, we can determine the wave speed.

To learn more about speed click here:
brainly.com/question/28224010

#SPJ11

Determine the x-component of a vector in the xy-plane that has a y- component of -5.6 m so that the overall magnitude of the vector is 11.6 m. Assume that the vector is in Quadrant IV.

Answers

The x-component of the given vector which is in  Quadrant IV is 11.41 m.

Given Data: y-component of a vector = -5.6 m and the overall magnitude of the vector is 11.6 m

Quadrant: IV

To find: the x-component of a vector.

Formula : Magnitude of vector = √(x² + y²)

Magnitude of vector = √(x² + (-5.6)²)11.6²

= x² + 5.6²135.56 = x²x

= ±√(135.56 - 5.6²)x

= ±11.41 m

Here, the vector is in quadrant IV, which means the x-component is positive is x = 11.41 m

So, the x-component of the given vector which is in  Quadrant IV is 11.41 m.

Learn more about Magnitude and Quadrant https://brainly.com/question/4553385

#SPJ11

What is the energy of a photon that has the same wavelength as a
100-eV electron? Show work.

Answers

We can now find the energy of the photon using E=hc/λE = (6.626 × 10^-34 J·s)(3 × 10^8 m/s)/(1.24 × 10^-6 m)= 1.6 × 10^-15 .J The energy of the photon that has the same wavelength as a 100-eV electron is 1.6 × 10^-15 J (or 1.0 × 10^2 eV).

We are given that the wavelength of the photon is equal to the wavelength of a 100-eV electron. We are to find the energy of the photon. We know that the energy of a photon is given byE

=hc/λWhereE is the energy of the photon h is Planck’s constant the

=6.626 × 10^-34 J·s (joule second)c is the speed of light c

=3 × 10^8 m/sλ is the wavelength of the photon We are also given that the wavelength of the photon is equal to the wavelength of a 100-eV electron. Therefore, we know thatλ

=hc/E

We are given that the energy of the electron is 100 eV. We need to convert this to joules. We know that 1 eV

= 1.602 × 10^-19 J Therefore, 100 eV

= 100 × 1.602 × 10^-19 J

= 1.602 × 10^-17 J Substituting the values into the equation, we getλ

=hc/E

=hc/1.602 × 10^-17

= 1.24 × 10^-6 m We now know the wavelength of the photon. We can now find the energy of the photon using E

=hc/λE

= (6.626 × 10^-34 J·s)(3 × 10^8 m/s)/(1.24 × 10^-6 m)

= 1.6 × 10^-15 .J The energy of the photon that has the same wavelength as a 100-eV electron is

1.6 × 10^-15 J (or 1.0 × 10^2 eV).

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

3. Mike owes James the following obligations: 1. P10,000 due at the end of 4 years II. P1,500 due at the end of 6 years with accumulated interest from today at (0.06, m = 2) Mike will be allowed to replace his total obligation by a payment at P2,000 at the end of 2 years and a second payment at the end of 5 years, with money worth 5%. a) Find the unknown payment. Comparison date: at the end of 5 years. b) Mike wishes to replace the obligations by a first payment at the end of 2 years and twice as much at the end of 6 years with money worth 2 1/2%. Find the unknown payments at a comparison date at the end of 5 years.

Answers

a) Unknown payment: P5,180.47 b) First payment: P4,442.27, Second payment: P8,884.54

a) To find the unknown payment at the end of 5 years, we need to calculate the present value of the existing obligations and equate it to the present value of the proposed payment schedule.

For the first obligation: P10,000 due at the end of 4 years.

Present Value (PV1) = P10,000 / (1 + 0.06/2)^(4*2) = P7,348.36

For the second obligation: P1,500 due at the end of 6 years with accumulated interest.

Present Value (PV2) = P1,500 / (1 + 0.06/2)^(6*2) = P1,104.90

Now, let's calculate the present value of the proposed payment schedule:

First payment: P2,000 at the end of 2 years.

Present Value (PV3) = P2,000 / (1 + 0.05/2)^(2*2) = P1,822.70

Second payment: Unknown payment at the end of 5 years.

Present Value (PV4) = Unknown payment / (1 + 0.05/2)^(5*2) = Unknown payment / (1.025)^10

Since Mike wants to replace his total obligation, we can set up the equation:

PV1 + PV2 = PV3 + PV4

P7,348.36 + P1,104.90 = P1,822.70 + Unknown payment / (1.025)^10

Simplifying the equation, we can solve for the unknown payment:

Unknown payment = (P7,348.36 + P1,104.90 - P1,822.70) * (1.025)^10

Unknown payment = P5,180.47

Therefore, the unknown payment at the end of 5 years is P5,180.47.

b) Similarly, to find the unknown payments at the end of 5 years under the new proposal, we can follow the same approach.

First payment: End of 2 years

Present Value (PV5) = Unknown payment / (1 + 0.025/2)^(2*2)

Second payment: Twice as much at the end of 6 years

Present Value (PV6) = 2 * Unknown payment / (1 + 0.025/2)^(6*2)

Setting up the equation with the present value of existing obligations:

PV1 + PV2 = PV5 + PV6

P7,348.36 + P1,104.90 = PV5 + PV6

Unknown payment = (P7,348.36 + P1,104.90 - PV5 - PV6)

By substituting the present value calculations, we can find the unknown payments at the end of 5 years.

To learn more about Present value - brainly.com/question/17322936

#SPJ11

Automated grid generation for several simple shapes: a pipe of circular cross-section, a spherical ball, a duct of rectangular cross-section, a 2D channel with a backward-facing step, and so on. In each case, create a grid with clustering near the walls. Try different cell shapes and different algorithms of grid generation, if available. Analyze the quality of each grid
This is a question of Computational Fluid Dynamics (CFD)subject.

Answers

In Computational Fluid Dynamics (CFD), grid generation plays a crucial role in accurately representing the geometry and capturing the flow features. The grid should be structured or unstructured depending on the problem.

Here's a brief overview of grid generation for the mentioned shapes:

Pipe of Circular Cross-section:

For a pipe, a structured grid with cylindrical coordinates is commonly used. The grid points are clustered near the pipe walls to resolve the boundary layer. Various methods like algebraic, elliptic, or hyperbolic grid generation techniques can be employed to generate the grid. The quality of the grid can be evaluated based on smoothness, orthogonality, and clustering near the walls.

Spherical Ball:

For a spherical ball, structured grids may be challenging to generate due to the curved surface. Instead, unstructured grids using techniques like Delaunay triangulation or advancing front method can be employed. The grid can be clustered near the surface of the ball to capture the flow accurately. The quality of the grid can be assessed based on element quality, aspect ratio, and smoothness.

Duct of Rectangular Cross-section:

For a rectangular duct, a structured grid can be easily generated using techniques like algebraic grid generation or transfinite interpolation. The grid can be clustered near the walls to resolve the boundary layers and capture flow features accurately. The quality of the grid can be analyzed based on smoothness, orthogonality, and clustering near the walls.

2D Channel with a Backward-facing Step:

For a 2D channel with a backward-facing step, a combination of structured and unstructured grids can be used. Structured grids can be employed in the main channel, and unstructured grids can be used near the step to capture complex flow phenomena. Techniques like boundary-fitted grids or cut-cell methods can be employed. The quality of the grid can be assessed based on smoothness, orthogonality, grid distortion, and capturing of flow features.

To analyze the quality of each grid, various metrics can be used, such as aspect ratio, skewness, orthogonality, grid density, grid convergence, and comparison with analytical or experimental results if available. Additionally, flow simulations using the generated grids can provide further insights into the accuracy and performance of the grids.

It's important to note that specific grid generation techniques and algorithms may vary depending on the CFD software or tool being used, and the choice of grid generation method should be based on the specific requirements and complexities of the problem at hand.

To learn more about Fluid Dynamics click here

https://brainly.com/question/31020521

#SPJ11

The vector position of a particle varies in time according to the expression F = 7.20 1-7.40t2j where F is in meters and it is in seconds. (a) Find an expression for the velocity of the particle as a function of time. (Use any variable or symbol stated above as necessary.) V = 14.8tj m/s (b) Determine the acceleration of the particle as a function of time. (Use any variable or symbol stated above as necessary.) a = ___________ m/s² (c) Calculate the particle's position and velocity at t = 3.00 s. r = _____________ m
v= ______________ m/s

Answers

"(a) The expression for the velocity of the particle as a function of time is: V = -14.8tj m/s. (b) The acceleration of the particle as a function of time is: a = -14.8j m/s². (c) v = -14.8tj = -14.8(3.00)j = -44.4j m/s."

(a) To find the expression for the velocity of the particle as a function of time, we can differentiate the position vector with respect to time.

From question:

F = 7.20(1 - 7.40t²)j

To differentiate with respect to time, we differentiate each term separately:

dF/dt = d/dt(7.20(1 - 7.40t²)j)

= 0 - 7.40(2t)j

= -14.8tj

Therefore, the expression for the velocity of the particle as a function of time is: V = -14.8tj m/s

(b) The acceleration of the particle is the derivative of velocity with respect to time:

dV/dt = d/dt(-14.8tj)

= -14.8j

Therefore, the acceleration of the particle as a function of time is: a = -14.8j m/s²

(c) To calculate the particle's position and velocity at t = 3.00 s, we substitute t = 3.00 s into the expressions we derived.

Position at t = 3.00 s:

r = ∫V dt = ∫(-14.8tj) dt = -7.4t²j + C

Since we need the specific position, we need the value of the constant C. We can find it by considering the initial position of the particle. If the particle's initial position is given, please provide that information.

Velocity at t = 3.00 s:

v = -14.8tj = -14.8(3.00)j = -44.4j m/s

To know more about position of particles visit:

https://brainly.com/question/30685477

#SPJ11

Light of wavelength λ 0 ​ is the smallest wavelength maximally reflected off a thin film with index of refraction n 0 ​ . The thin film is replaced by another thin film of the same thickness, but with slightly larger index of refraction n f ​ >n 0 ​ . With the new film, λ f ​ is the smallest wavelength maximally reflected off the thin film. Select the correct statement. λ f ​ =λ 0 ​ λ f ​ >λ 0 ​ λ f ​ <λ 0 ​ ​ The relative size of the two wavelengths cannot be determined.

Answers

The correct statement is: λf > λ0. So left-hand side is larger in the case of the new film, the corresponding wavelength, λf, must also be larger than the original wavelength, λ0.

When light is incident on a thin film, interference occurs between the reflected light waves from the top and bottom surfaces of the film. This interference leads to constructive and destructive interference at different wavelengths. The condition for constructive interference, resulting in maximum reflection, is given by:

2nt cosθ = mλ

where:

n is the refractive index of the thin film

t is the thickness of the thin film

θ is the angle of incidence

m is an integer representing the order of the interference (m = 0, 1, 2, ...)

In the given scenario, the original thin film has a refractive index of n0, and the replaced thin film has a slightly larger refractive index of nf (> n0). The thickness of both films is the same.

Since the refractive index of the new film is larger, the value of nt for the new film will also be larger compared to the original film. This means that the right-hand side of the equation, mλ, remains the same, but the left-hand side, 2nt cosθ, increases.

For constructive interference to occur, the left-hand side of the equation needs to equal the right-hand side. That's why λf > λ0.

To learn more about refractive index: https://brainly.com/question/30761100

#SPJ11

Explain the working principle of scanning tunnelling microscope.
List examples of
barrier tunnelling occurring in the nature and in manufactured
devices?

Answers

The scanning tunneling microscope is based on the principle of quantum tunneling, which enables atomic-scale imaging of surfaces. Barrier tunneling occurs in various natural processes and is harnessed in manufactured devices for various applications.

The scanning tunneling microscope (STM) operates based on the principle of quantum tunneling. It uses a sharp conducting probe to scan the surface of a sample and measures the tunneling current that flows between the probe and the surface.

By maintaining a constant tunneling current, the STM can create a topographic image of the surface at the atomic level. Examples of barrier tunneling can be found in various natural phenomena, such as radioactive decay and electron emission, as well as in manufactured devices like tunnel diodes and flash memory.

The scanning tunneling microscope (STM) works by bringing a sharp conducting probe very close to the surface of a sample. When a voltage is applied between the probe and the surface, quantum tunneling occurs.

Quantum tunneling is a phenomenon in which particles can pass through a potential barrier even though they do not have enough energy to overcome it classically. In the case of STM, electrons tunnel between the probe and the surface, resulting in a tunneling current.

By scanning the probe across the surface and measuring the tunneling current, the STM can create a topographic map of the surface with atomic-scale resolution. Variations in the tunneling current reflect the surface's topography, allowing scientists to visualize individual atoms and manipulate them on the atomic level.

Barrier tunneling is a phenomenon that occurs in various natural and manufactured systems. Examples of natural barrier tunneling include radioactive decay, where atomic nuclei tunnel through energy barriers to decay into more stable states, and electron emission, where electrons tunnel through energy barriers to escape from a material's surface.

In manufactured devices, barrier tunneling is utilized in tunnel diodes, which are electronic components that exploit tunneling to create a negative resistance effect.

This allows for applications in oscillators and high-frequency circuits. Another example is flash memory, where charge is stored and erased by controlling electron tunneling through a thin insulating layer.

Overall, the scanning tunneling microscope is based on the principle of quantum tunneling, which enables atomic-scale imaging of surfaces. Barrier tunneling occurs in various natural processes and is harnessed in manufactured devices for various applications.

Learn more about scanning tunneling from the given link:

https://brainly.com/question/17091478

#SPJ11

An uncharged 1.5mf (milli farad) capacitor is connected in
series with a 2kilo ohm resistor A switch and ideal 12 volt emf
source Find the charge on the capacitor 3 seconds after the switch
is closed

Answers

The charge on the capacitor 3 seconds after the switch is closed is approximately 4.5 mC (milliCoulombs).

To calculate the charge on the capacitor, we can use the formula Q = Q_max * (1 - e^(-t/RC)), where Q is the charge on the capacitor at a given time, Q_max is the maximum charge the capacitor can hold, t is the time, R is the resistance, and C is the capacitance. Given that the capacitance C is 1.5 mF (milliFarads), the resistance R is 2 kilo ohms (kΩ), and the time t is 3 seconds, we can calculate the charge on the capacitor:

Q = Q_max * (1 - e^(-t/RC))

Since the capacitor is initially uncharged, Q_max is equal to zero. Therefore, the equation simplifies to:

Q = 0 * (1 - e^(-3/(2 * 1.5 * 10^(-3) * 2 * 10^3)))

Simplifying further:

Q = 0 * (1 - e^(-1))

Q = 0 * (1 - 0.3679)

Q = 0

Thus, the charge on the capacitor 3 seconds after the switch is closed is approximately 0 Coulombs.

Therefore, the charge on the capacitor 3 seconds after the switch is closed is approximately 0 mC (milliCoulombs).

To learn more about capacitor , click here : https://brainly.com/question/31627158

#SPJ11

Exercise 3: Radio waves travel at the speed of 3x10 m/s. If your radio tunes to a station that broadcasts with a wavelength of 300m. At what frequency does this radio transmit?

Answers

The frequency at which the radio transmits is approximately 1 MHz.

The speed of light in a vacuum is approximately 3 × 10^8 m/s, and radio waves travel at the speed of light. The relationship between the speed of light (c), frequency (f), and wavelength (λ) is given by the equation c = f * λ.

Rearranging the equation to solve for frequency, we have f = c / λ.

Substituting the given values, with the speed of light (c) as 3 × 10^8 m/s and the wavelength (λ) as 300 m, we can calculate the frequency (f).

f = (3 × 10^8 m/s) / (300 m)

= 1 × 10^6 Hz

= 1 MHz

Therefore, the radio transmits at a frequency of approximately 1 MHz.

To learn more about frequency , click here : https://brainly.com/question/14316711

#SPJ11

Part B What is the current through the 3.00 2 resistor? | ΑΣφ I = A Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part C What is the current through the 6.00 2 resistor? V] ΑΣφ ? I = A Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part D What is the current through the 12.00 resistor? | ΑΣΦ I = A < 1 of 1 Submit Request Answer E = 60.0 V, r = 0 + Part E 3.00 12 12.0 12 Ω What is the current through the 4.00 resistor? ХМУ | ΑΣΦ 6.00 12 4.00 12 I = А

Answers

We are given a circuit with resistors of different values and are asked to determine the currents passing through each resistor.

Specifically, we need to find the current through a 3.00 Ω resistor, a 6.00 Ω resistor, a 12.00 Ω resistor, and a 4.00 Ω resistor. The previous answers were incorrect, and we have four attempts remaining to find the correct values.

To find the currents through the resistors, we need to apply Ohm's Law, which states that the current (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by its resistance (R). Let's go through each resistor individually:

Part B: For the 3.00 Ω resistor, we need to know the voltage across it in order to calculate the current. Unfortunately, the voltage information is missing, so we cannot determine the current at this point.

Part C: Similarly, for the 6.00 Ω resistor, we require the voltage across it to find the current. Since the voltage information is not provided, we cannot calculate the current through this resistor.

Part D: The current through the 12.00 Ω resistor can be determined if we have the voltage across it. However, the given information only mentions the resistance value, so we cannot find the current for this resistor.

Part E: Finally, we are given the necessary information for the 4.00 Ω resistor. We have the voltage (E = 60.0 V) and the resistance (R = 4.00 Ω). Applying Ohm's Law, the current (I) through the resistor is calculated as I = E/R = 60.0 V / 4.00 Ω = 15.0 A.

In summary, we were able to find the current through the 4.00 Ω resistor, which is 15.0 A. However, the currents through the 3.00 Ω, 6.00 Ω, and 12.00 Ω resistors cannot be determined with the given information.

Learn more about resistors here: brainly.com/question/30672175

#SPJ11

Required information A scuba diver is in fresh water has an air tank with a volume of 0.0100 m3. The air in the tank is initially at a pressure of 100 * 107 Pa. Assume that the diver breathes 0.500 l/s of air. Density of fresh water is 100 102 kg/m3 How long will the tank last at depths of 5.70 m² min

Answers

In order to calculate the time the tank will last, we need to consider the consumption rate of the diver and the change in pressure with depth.

As the diver descends to greater depths, the pressure on the tank increases, leading to a faster rate of air consumption. The pressure increases by 1 atm (approximately 1 * 10^5 Pa) for every 10 meters of depth. Therefore, the change in pressure due to the depth of 5.70 m²/min can be calculated as (5.70 m²/min) * (1 atm/10 m) * (1 * 10^5 Pa/atm).

To find the time the tank will last, we can divide the initial volume of the tank by the rate of air consumption, taking into account the change in pressure. However, we need to convert the rate of air consumption to cubic meters per second to match the units of the tank volume. Since 1 L is equal to 0.001 m³, the rate of air consumption becomes 0.500 * 10^-3 m³/s.

Finally, we can calculate the time the tank will last by dividing the initial volume of the tank by the adjusted rate of air consumption. The formula is: time = (0.0100 m³) / ((0.500 * 10^-3) m³/s + change in pressure). By plugging in the values for the initial pressure and the change in pressure, we can calculate the time in seconds or convert it to minutes by dividing by 60.

In the scuba diver's air tank with a volume of 0.0100 m³ and an initial pressure of 100 * 10^7 Pa will last a certain amount of time at depths of 5.70 m²/min. By considering the rate of air consumption and the change in pressure with depth, we can calculate the time it will last. The time can be found by dividing the initial tank volume by the adjusted rate of air consumption, taking into account the change in pressure due to the depth.

learn more about scuba diver here:

brainly.com/question/20530297

#SPJ11

A horizontal beam of laser light of wavelength
574 nm passes through a narrow slit that has width 0.0610 mm. The intensity of the light is measured
on a vertical screen that is 2.00 m from the slit.
What is the minimum uncertainty in the vertical component of the momentum of each photon in the beam
after the photon has passed through the slit?

Answers

The minimum uncertainty in the vertical component of the momentum of each photon after passing through the slit is approximately[tex]5.45 * 10^{(-28)} kg m/s.[/tex]

We can use the Heisenberg uncertainty principle. The uncertainty principle states that the product of the uncertainties in position and momentum of a particle is greater than or equal to Planck's constant divided by 4π.

The formula for the uncertainty principle is given by:

Δx * Δp ≥ h / (4π)

where:

Δx is the uncertainty in position

Δp is the uncertainty in momentum

h is Planck's constant [tex](6.62607015 * 10^{(-34)} Js)[/tex]

In this case, we want to find the uncertainty in momentum (Δp). We know the wavelength of the laser light (λ) and the width of the slit (d). The uncertainty in position (Δx) can be taken as half of the width of the slit (d/2).

Given:

Wavelength (λ) = 574 nm = [tex]574 *10^{(-9)} m[/tex]

Slit width (d) = 0.0610 mm = [tex]0.0610 * 10^{(-3)} m[/tex]

Distance to the screen (L) = 2.00 m

We can find the uncertainty in position (Δx) as:

Δx = d / 2 = [tex]0.0610 * 10^{(-3)} m / 2[/tex]

Next, we can calculate the uncertainty in momentum (Δp) using the uncertainty principle equation:

Δp = h / (4π * Δx)

Substituting the values, we get:

Δp = [tex](6.62607015 * 10^{(-34)} Js) / (4\pi * 0.0610 * 10^{(-3)} m / 2)[/tex]

Simplifying the expression:

Δp = [tex](6.62607015 * 10^{(-34)} Js) / (2\pi * 0.0610 * 10^{(-3)} m)[/tex]

Calculating Δp:

Δp ≈  [tex]5.45 * 10^{(-28)} kg m/s.[/tex]

To know more about Planck's constant, here

brainly.com/question/30763530

#SPJ4

A ray of light in glass strikes a water-glass interface. The index of refraction for water is 1.33, and for the glass it is 1.50. a) What is the maximum angle of the incidence that one can observe refracted light? () b) If the incident angle in the glass is 45 degrees, what angle does the refracted ray in the water make with the normal?

Answers

The maximum angle of incidence that one can observe refracted light is approximately 51.6 degrees. The refracted ray in the water makes an angle of approximately 35.3 degrees with the normal.

a) To find the maximum angle of incidence, we need to consider the case where the angle of refraction is 90 degrees, which means the refracted ray is grazing along the interface. Let's assume the angle of incidence is represented by θ₁. Using Snell's law, we can write:

sin(θ₁) / sin(90°) = 1.33 / 1.50

Since sin(90°) is equal to 1, we can simplify the equation to:

sin(θ₁) = 1.33 / 1.50

Taking the inverse sine of both sides, we find:

θ₁ = sin^(-1)(1.33 / 1.50) ≈ 51.6°

Therefore, the maximum angle of incidence that one can observe refracted light is approximately 51.6 degrees.

b) If the incident angle in the glass is 45 degrees, we can calculate the angle of refraction using Snell's law. Let's assume the angle of refraction is represented by θ₂. Using Snell's law, we have:

sin(45°) / sin(θ₂) = 1.50 / 1.33

Rearranging the equation, we find:

sin(θ₂) = sin(45°) * (1.33 / 1.50)

Taking the inverse sine of both sides, we get:

θ₂ = sin^(-1)(sin(45°) * (1.33 / 1.50))

Evaluating the expression, we find:

θ₂ ≈ 35.3°

Therefore, the refracted ray in the water makes an angle of approximately 35.3 degrees with the normal.

To learn more about maximum angle visit:

brainly.com/question/30925659

#SPJ11

17. In experiment 10, a group of students found that the
moment of inertia of the plate+disk was 1.74x10-4 kg m2, on the
other hand they found that the moment of inertia of the plate was
0.34x10-4 kg

Answers

The main answer is that the moment of inertia of the disk in this configuration can be calculated by subtracting the moment of inertia of the plate from the total moment of inertia of the plate+disk.

To understand this, we need to consider the concept of moment of inertia. Moment of inertia is a measure of an object's resistance to changes in its rotational motion and depends on its mass distribution. When a plate and disk are combined, their moments of inertia add up to give the total moment of inertia of the system.

By subtracting the moment of inertia of the plate (0.34x10-4 kg m2) from the total moment of inertia of the plate+disk (1.74x10-4 kg m2), we can isolate the moment of inertia contributed by the disk alone. This difference represents the disk's unique moment of inertia in this particular configuration.

The experiment demonstrates the ability to determine the contribution of individual components to the overall moment of inertia in a composite system. It highlights the importance of considering the distribution of mass when calculating rotational properties and provides valuable insights into the rotational behavior of objects.

To learn more about inertia click here

brainly.com/question/3268780

#SPJ11

Identify three things in Figure 5 that help make the skier complete the race faster. Figure 5

Answers

This enables the skier to make quick and accurate turns, which is especially important when skiing downhill at high speeds.

In Figure 5, the following are the three things that help the skier complete the race faster:

Reduced air resistance: The skier reduces air resistance by crouching low, which decreases air drag. This enables the skier to ski faster and more aerodynamically. This is demonstrated by the skier in Figure 5 who is crouching low to reduce air resistance.

Rounded ski tips: Rounded ski tips help the skier to make turns more quickly. This is because rounded ski tips make it easier for the skier to glide through the snow while turning, which reduces the amount of time it takes for the skier to complete a turn.

Sharp edges: Sharp edges on the skier’s skis allow for more precise turning and edge control.

To know more about accurate:

https://brainly.com/question/30350489


#SPJ11

A quantum particle is described by the wave functionψ(x) = { A cos (2πx/L) for -L/4 ≤ x ≤ L/40 elsewhere(a) Determine the normalization constant A.

Answers

The normalization constant A is equal to √(2/L).

To determine the normalization constant A, we need to ensure that the wave function ψ(x) is normalized, meaning that the total probability of finding the particle in any location is equal to 1.

To normalize the wave function, we need to integrate the absolute square of ψ(x) over the entire domain of x. In this case, the domain is from -L/4 to L/4.

First, let's calculate the absolute square of ψ(x) by squaring the magnitude of A cos (2πx/L):

[tex]|ψ(x)|^2 = |A cos (2πx/L)|^2 = A^2 cos^2 (2πx/L)[/tex]

Next, we integrate this expression over the domain:

[tex]∫[-L/4, L/4] |ψ(x)|^2 dx = ∫[-L/4, L/4] A^2 cos^2 (2πx/L) dx[/tex]
To solve this integral, we can use the identity cos^2 (θ) = (1 + cos(2θ))/2. Applying this, the integral becomes:

[tex]∫[-L/4, L/4] A^2 cos^2 (2πx/L) dx = ∫[-L/4, L/4] A^2 (1 + cos(4πx/L))/2 dx[/tex]
Now, we can integrate each term separately:

[tex]∫[-L/4, L/4] A^2 dx + ∫[-L/4, L/4] A^2 cos(4πx/L) dx = 1[/tex]

The first integral is simply A^2 times the length of the interval:

[tex]A^2 * (L/2) + ∫[-L/4, L/4] A^2 cos(4πx/L) dx = 1[/tex]
Since the second term is the integral of a cosine function over a symmetric interval, it evaluates to zero:

A^2 * (L/2) = 1

Solving for A, we have:

A = √(2/L)

Therefore, the normalization constant A is equal to √(2/L).

To know more about magnitude visit:

https://brainly.com/question/31022175

#SPJ11

Show how to calculate the sample standard deviation (for a small sample size) of these numbers: 23, 24, 26, 28, 29, 28, 26, 24. Display all steps

Answers

The Sample Standard Deviation is 1.97. The sample standard deviation is a statistical measure that is used to determine the amount of variation or dispersion of a set of data from its mean.

To calculate the sample standard deviation of the given numbers, follow these steps:

Step 1: Find the mean of the given numbers.

Step 2: Subtract the mean from each number to get deviations.

Step 3: Square each deviation to get squared deviations.

Step 4: Add up all squared deviations.

Step 5: Divide the sum of squared deviations by (n - 1), where n is the sample size.

Step 6: Take the square root of the result from Step 5 to get the sample standard deviation.

It is calculated as the square root of the sum of squared deviations from the mean, divided by (n - 1), where n is the sample size.

To calculate the sample standard deviation of the given numbers, we need to follow the above-mentioned steps.

First, find the mean of the given numbers which is 26. Next, subtract the mean from each number to get deviations. The deviations are -3, -2, 0, 2, 3, 2, 0, and -2. Then, square each deviation to get squared deviations which are 9, 4, 0, 4, 9, 4, 0, and 4. After that, add up all squared deviations which is 34. Finally, divide the sum of squared deviations by (n - 1), where n is the sample size (8 - 1), which equals 4.86. Now, take the square root of the result from Step 5 which equals 1.97. Therefore, the sample standard deviation is 1.97.

To know more about the standard deviation visit:

https://brainly.com/question/475676

#SPJ11

A dentist's drill starts from rest. After 2.90s of constant angular acceleration, it turns at a rate of 2.47 x 10ª rev/min. (a) Find the drill's angular acceleration. rad/s² (along the axis of rotation) (b) Determine the angle through which the drill rotates during this period. rad

Answers

(a) The drill's angular acceleration is approximately 0.149 rad/s² (along the axis of rotation).

(b) The drill rotates through an angle of approximately 4.28 rad during the given time period.

(a) To find the drill's angular acceleration, we can use the equation:

θ = ω₀t + (1/2)αt²,

where θ is the angle of rotation, ω₀ is the initial angular velocity, α is the angular acceleration, and t is the time.

Given that ω₀ (initial angular velocity) is 0 rad/s (starting from rest), t is 2.90 s, and θ is given as 2.47 x 10^3 rev/min, we need to convert the units to rad/s and s.

Converting 2.47 x 10^3 rev/min to rad/s:

ω = (2.47 x 10^3 rev/min) * (2π rad/rev) * (1 min/60 s)

≈ 257.92 rad/s

Using the equation θ = ω₀t + (1/2)αt², we can rearrange it to solve for α:

θ - ω₀t = (1/2)αt²

α = (2(θ - ω₀t)) / t²

Substituting the given values:

α = (2(2.47 x 10^3 rad/s - 0 rad/s) / (2.90 s)² ≈ 0.149 rad/s²

Therefore, the drill's angular acceleration is approximately 0.149 rad/s².

(b) To find the angle of rotation, we can use the equation:

θ = ω₀t + (1/2)αt²

Using the given values, we have:

θ = (0 rad/s)(2.90 s) + (1/2)(0.149 rad/s²)(2.90 s)²

≈ 4.28 rad

Therefore, the drill rotates through an angle of approximately 4.28 rad during the given time period.

(a) The drill's angular acceleration is approximately 0.149 rad/s² (along the axis of rotation).

(b) The drill rotates through an angle of approximately 4.28 rad during the given time period.

To know more about acceleration ,visit:

https://brainly.com/question/460763

#SPJ11

QUESTION 6 [TOTAL MARKS: 25) An object is launched at a velocity of 20m/s in a direction making an angle of 25° upward with the horizontal. Q 6(a) What is the maximum height reached by the object? [8 Marks] Q 6(b) [2 marks] What is the total flight time (between launch and touching the ground) of the object? [8 Marks) Q 6(c) What is the horizontal range (maximum x above ground) of the object? Q 6(d) [7 Marks] What is the magnitude of the velocity of the object just before it hits the ground?

Answers

Q6(a) To find the maximum height reached by the object, we can use the kinematic equation for vertical motion. The object is launched with an initial vertical velocity of 20 m/s at an angle of 25°.

We need to find the vertical displacement, which is the maximum height. Using the equation:

Δy = (v₀²sin²θ) / (2g),

where Δy is the vertical displacement, v₀ is the initial velocity, θ is the launch angle, and g is the acceleration due to gravity (9.8 m/s²), we can calculate the maximum height. Plugging in the values, we have:

Δy = (20²sin²25°) / (2 * 9.8) ≈ 10.9 m.

Therefore, the maximum height reached by the object is approximately 10.9 meters.

Q6(b) To find the total flight time of the object, we can use the equation:

t = (2v₀sinθ) / g,

where t is the time of flight. Plugging in the given values, we have:

t = (2 * 20 * sin25°) / 9.8 ≈ 4.08 s.

Therefore, the total flight time of the object is approximately 4.08 seconds.

Q6(c) To find the horizontal range of the object, we can use the equation:

R = v₀cosθ * t,

where R is the horizontal range and t is the time of flight. Plugging in the given values, we have:

R = 20 * cos25° * 4.08 ≈ 73.6 m.

Therefore, the horizontal range of the object is approximately 73.6 meters.

Q6(d) To find the magnitude of the velocity of the object just before it hits the ground, we can use the equation for the final velocity in the vertical direction:

v = v₀sinθ - gt,

where v is the final vertical velocity. Since the object is about to hit the ground, the final vertical velocity will be downward. Plugging in the values, we have:

v = 20 * sin25° - 9.8 * 4.08 ≈ -36.1 m/s.

The magnitude of the velocity is the absolute value of this final vertical velocity, which is approximately 36.1 m/s.

Therefore, the magnitude of the velocity of the object just before it hits the ground is approximately 36.1 meters per second.

Learn more about velocity here: brainly.com/question/30559316

#SPJ11

The gravitational field strength at the surface of an hypothetical planet is smaller than the value at the surface of earth. How much mass (in kg) that planet needs to have a gravitational field strength equal to the gravitational field strength on the surface of earth without any change in its size? The radius of that planet is 14.1 x 106 m. Note: Don't write any unit in the answer box. Your answer is required with rounded off to minimum 2 decimal places. An answer like 64325678234.34 can be entered as 6.43E25 A mass m = 197 kg is located at the origin; an identical second mass m is at x = 33 cm. A third mass m is above the first two so the three masses form an equilateral triangle. What is the net gravitational force on the third mass? All masses are same. Answer:

Answers

1. Calculation of mass to get equal gravitational field strengthThe gravitational field strength is given by g = GM/R2, where M is the mass of the planet and R is the radius of the planet. We are given that the radius of the planet is 14.1 x 106 m, and we need to find the mass of the planet that will give it the same gravitational field strength as that on Earth, which is approximately 9.81 m/s2.

2. Calculation of net gravitational force on the third massIf all masses are the same, then we can use the formula for the gravitational force between two point masses: F = Gm2/r2, where m is the mass of each point mass, r is the distance between them, and G is the gravitational constant.

The net gravitational force on the third mass will be the vector sum of the gravitational forces between it and the other two masses.

To know more about the gravitational field, visit:

https://brainly.com/question/31829401

#SPJ11

A parallel-plate capacitor is made of 2 square parallel conductive plates, each with an area of 2.5 × 10-3 m? and have a distance of 1.00 × 10 m between the 2 plates. A paper dielectric (k = 2.7)
with the same area is between these 2 plates. (E = 8.85 × 10-12 F/m)
What is the capacitance of this parallel-plate capacitor?

Answers

Therefore, the capacitance of the parallel-plate capacitor is 5.94 × 10^-11 F

Capacitance (C) is given by the formula:

Where ε is the permittivity of the dielectric, A is the area of the plates, and d is the distance between the plates.

The capacitance of a parallel-plate capacitor with a dielectric is calculated by the following formula:

[tex]$$C = \frac{_0}{}$$[/tex]

Where ε0 is the permittivity of free space, k is the dielectric constant, A is the area of the plates, and d is the distance between the plates.

By substituting the given values, we get:

[tex]$$C = \frac{(8.85 × 10^{-12})(2.7)(2.5 × 10^{-3})}{1.00 × 10^{-3}}[/tex]

=[tex]\boxed{5.94 × 10^{-11} F}$$[/tex]

Therefore, the capacitance of the parallel-plate capacitor is

5.94 × 10^-11 F

To know more about plate visit;

brainly.com/question/29523305

#SPJ11

A resistor, an inductor, and a capacitor are connected in series to an alternating power source of maximum voltage 240 V. The resistance is 75.0 , the inductance is 42.0 mH, and the capacitance is 54.0 pF. At some frequency, the inductive and capacitive reactances are equal, and the impedance is at a minimum. This is called the "resonance frequency of the circuit. Find the resonance frequency of this circuit.

Answers

The impedance is at a minimum of 36.64 Ω.

Let XL be the inductive reactance and Xc be the capacitive reactance at the resonance frequency. Then:

XL = XcωL = 1/ωC ω2L = 1/Cω = sqrt(1/LC)

At resonance, the impedance Z is minimum, and it is given by,

Z2 = R2 + (XL - Xc)2R2 + (XL - Xc)2 is minimum, where

XL = XcR2 = (ωL - 1/ωC)2

For the circuit given, R = 75.0 Ω, L = 42.0 mH = 0.042 H, and C = 54.0 pF = 54 × 10⁻¹² F.

Thus,ω = 1/ sqrt(LC) = 1/ sqrt((0.042 H)(54 × 10⁻¹² F)) = 1.36 × 10⁷ rad/s

Therefore,R2 = (ωL - 1/ωC)2 = (1.36 × 10⁷ × 0.042 - 1/(1.36 × 10⁷ × 54 × 10⁻¹²))2 = 1342.33 ΩZmin = sqrt(R2 + (XL - Xc)2) = sqrt(1342.33 + 0) = 36.64 Ω

To know more about impedance:

https://brainly.com/question/30475674


#SPJ11

A flat piece of diamond is 10.0 mm thick. How long will it take for light to travel across the diamond?

Answers

The time it takes for light to travel across the diamond is approximately 8.07 x 10^(-11) seconds.

To calculate the time it takes for light to travel across the diamond, we can use the formula:

Time = Distance / Speed

The speed of light in a vacuum is approximately 299,792,458 meters per second (m/s). However, the speed of light in a medium, such as diamond, is slower due to the refractive index.

The refractive index of diamond is approximately 2.42.

The distance light needs to travel is the thickness of the diamond, which is 10.0 mm or 0.01 meters.

Using these values, we can calculate the time it takes for light to travel across the diamond:

Time = 0.01 meters / (299,792,458 m/s / 2.42)

Simplifying the expression:

Time = 0.01 meters / (123,933,056.2 m/s)

Time ≈ 8.07 x 10^(-11) seconds

Therefore, it will take approximately 8.07 x 10^(-11) seconds for light to travel across the diamond.

To learn more about refractive index, Visit:

https://brainly.com/question/83184

#SPJ11

A two-stage rocket moves in space at a constant velocity of +4010 m/s. The two stages are then separated by a small explosive charge placed between them. Immediately after the explosion the velocity of the 1390 kg upper stage is +5530 m/s. What is the velocity (magnitude and direction) of the 2370-kg lower stage immediately after the explosion?

Answers

The velocity of the 2370-kg lower stage immediately after the explosion is -3190 m/s in the opposite direction.

Initially, the two-stage rocket is moving in space at a constant velocity of +4010 m/s.

When the explosive charge is detonated, the two stages separate.

The upper stage, with a mass of 1390 kg, acquires a new velocity of +5530 m/s.

To find the velocity of the lower stage, we can use the principle of conservation of momentum.

The total momentum before the explosion is equal to the total momentum after the explosion.

The momentum of the upper stage after the explosion is given by the product of its mass and velocity: (1390 kg) * (+5530 m/s) = +7,685,700 kg·m/s.

Since the explosion only affects the separation between the two stages and not their masses, the total momentum before the explosion is the same as the momentum of the entire rocket: (1390 kg + 2370 kg) * (+4010 m/s) = +15,080,600 kg·m/s.

To find the momentum of the lower stage, we subtract the momentum of the upper stage from the total momentum of the rocket after the explosion: +15,080,600 kg·m/s - +7,685,700 kg·m/s = +7,394,900 kg·m/s.

Finally, we divide the momentum of the lower stage by its mass to find its velocity: (7,394,900 kg·m/s) / (2370 kg) = -3190 m/s.

Therefore, the velocity of the 2370-kg lower stage immediately after the explosion is -3190 m/s in the opposite direction.

To learn more about velocity click here:

brainly.com/question/30559316

#SPJ11

Coronary arteries are responsible for supplying oxygenated blood to heart muscle. Most heart attacks are caused by the narrowing of these arteries due to arteriosclerosis, the deposition of plaque along the arterial walls. A common physiological response to this condition is an increase in blood pressure. A healthy coronary artery. is 3.0 mm in diameter and 4.0 cm in length. ▼ Part A Consider a diseased artery in which the artery diameter has been reduced to 2.6 mm. What is the ratio Qdiseased/Qhealthy if the pressure gradient along the artery does not change?

Answers

The required ratio Qdiseased/Qhealthy if the pressure gradient along the artery does not change is 0.69.

To solve for the required ratio Qdiseased/Qhealthy, we make use of Poiseuille's law, which states that the volume flow rate Q through a pipe is proportional to the fourth power of the radius of the pipe r, given a constant pressure gradient P : Q ∝ r⁴

Assuming the length of the artery, viscosity and pressure gradient remains constant, we can write the equation as :

Q = πr⁴P/8ηL

where Q is the volume flow rate of blood, P is the pressure gradient, r is the radius of the artery, η is the viscosity of blood, and L is the length of the artery.

According to the given values, the diameter of the healthy artery is 3.0 mm, which means the radius of the healthy artery is 1.5 mm. And the diameter of the diseased artery is 2.6 mm, which means the radius of the diseased artery is 1.3 mm.

The volume flow rate of the healthy artery is given by :

Qhealthy = π(1.5mm)⁴P/8ηL = π(1.5)⁴P/8ηL = K*P ---(i)

where K is a constant value.

The volume flow rate of the diseased artery is given by :

Qdiseased = π(1.3mm)⁴P/8ηL = π(1.3)⁴P/8ηL = K * (1.3/1.5)⁴ * P ---(ii)

Equation (i) / Equation (ii) = Qdiseased/Qhealthy = K * (1.3/1.5)⁴ * P / K * P = (1.3/1.5)⁴= 0.69

Hence, the required ratio Qdiseased/Qhealthy is 0.69.

To learn more about viscosity :

https://brainly.com/question/2568610

#SPJ11

Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs. After the collision, both objects move together along the same line with speed v/2. What is the numerical value of the ratio m/m, of their masses?

Answers

`[(au + (v/2)]/[(u - (v/2))]`is the numerical value of the ratio m/m, of their masses .

Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs.

After the collision, both objects move together along the same line with speed v/2.

The numerical value of the ratio of the masses m1/m2 can be calculated by the following formula:-

                 Initial Momentum = Final Momentum

Initial momentum is given by the sum of the momentum of two masses before the collision. They are moving with the same speed but in opposite directions, so momentum will be given by myu - mau where u is the velocity of both masses.

`Initial momentum = myu - mau`

Final momentum is given by the mass of both masses multiplied by the final velocity they moved together after the collision.

So, `final momentum = (my + ma)(v/2)`According to the principle of conservation of momentum,

`Initial momentum = Final momentum

`Substituting the values in the above formula we get: `myu - mau = (my + ma)(v/2)

We need to find `my/ma`, so we will divide the whole equation by ma on both sides.`myu/ma - au = (my/ma + 1)(v/2)

`Now, solving for `my/ma` we get;`my/ma = [(au + (v/2)]/[(u - (v/2))]

`Hence, the numerical value of the ratio m1/m2, of their masses is: `[(au + (v/2)]/[(u - (v/2))

Therefore, the answer is given by `[(au + (v/2)]/[(u - (v/2))]`.

Learn more about Final Momentum

brainly.com/question/29990455

#SPJ11

Other Questions
Two vectors are given by their components in a given coordinate system: a = (3.0, 2.0) and b = (-2.0, 4.0). Find: (a) a + b. (b) 2.0a - b. What is the difference between co-pay and coinsurance? How will knowing these differences help you with billing and coding functions? Provide details and examples. What is the function of the Quadratus Femoris?Group of answer choicesLateral Rotation of Thigh at Hip.Abduction of Thigh at Hip.Flexion of Thigh at Hip.Medial Rotation of Thigh at hip In this problem, x=c1 cos(t)+c2 sin(t) is a two-parameter fan the given inltial conditions. x(/2)=0, x (/2)=1 x = ___ Three point charges are located as follows: +2 C at (2,2), +2 C at (2,-2), and +5 C at (0,5). Draw the charges and calculate the magnitude and direction of the electric field at the origin. (Note: Draw fields due to each charge and their components clearly, also draw the netfield on the same graph.) In As Nature Made Him by John Colapinto, What signaled gender toDavid Reimer? (e.g., body parts, clothing, toys,friends, lovers). Q1. Explain the social, psychological, and political effects of stereotypes, prejudice, discrimination, and oppression on diverse groups? Goldstream Enterprises has bonds on the market making annual payments, with nine years to maturity, and selling for $948. At this price, the bonds yield 5.9%. What must the coupon rate be on the bonds? (Do not round intermediate calculations. Round the final answer to 2 decimal places.) What is 3y = -2x + 12 on a coordinate plane For each problem: a. Verify that E is a Lyapunov function for (S). b. Find the equilibrium points of (S), and classify each as an attractor, repeller, or neither. 7. dx dt dy dt sin x cos y - cos x sin y - sin x cos y - cos x sin y E(x, y) = sin x sin y Use induction to prove, for any natural number n, that: n(n+1)(2n+1) 6 1 +2+ + n = Why is the limitation on supplies of freshwater becoming an increasing problem despite the fact that we have desalination technologies?Desalination creates too much waste salt.Desalination is not well understood.Desalination takes too long.Desalination is expensive. Discuss one component needed to make an effective missionstatement Define and give an example of Strategic Interference Theory. Stage 1: Trees are sold to lumber company. Stage 3. Furniture company sells furniture to retail Stage 4: Fumiture store sells furniture to consumer A) What is the value added at each stage ? B) How much does this output contribute to GDP? C) How much would this output contribute to GDP if the lumber were imported from Canada? please help me especially with 3rd part !!!! Question 17 requires students to view Novica and Unilever websites and pick similarities and differences between the two. Both websites use a form of social responsibility to market. Novica use social responsibility to help promote their mission statement. Novica was created for artisans in least developed to be able to profit form their crafts. The Novica website also features that $122,758,401 have been sent to help their artisans. Unilever uses corporate social responsibility to help market their organization. The bottom of their website features the actions their are taking to help the world problems that Unilever claims their care about are: plastic pollution, diversity and inclusion, and greenhouse gases, deforestation. General Mills is testing 14 new cereals for possible production. They are testing 4 oat cereals, 7 wheat cereals, and 3 rice cereals. If each of the 14 cereals has the same chance of being produced, and 3 new cereals will be produced, determine the probability that of the 3 new cereals that will be produced, 1 is an oat cereal, 1 is a wheat cereal, and 1 is a rice cereal The probability is (Type an integer or a simplified fraction.) Raise your hand and hold it flat. Think of the space between your index finger and your middle finger as one slit and think of the space between middle finger and ring finger as a second slit. (c) How is this wave classified on the electromagnetic Spectre After examining a woman who gave birth 5 hours ago, the nurse finds that the woman has completely saturated a perineal pad within 30 minutes. the nurse's first action is to:_____ Why might someone view her data set with a boxplot prior to building a linear regression model?