Question-3: PIC18F4321 has 10 bit ADC. Ve is connected to ground and V. is connected to 4 Vol Microcontoller Vss pins are connected to ground and Vdd pins are connected to 5 Volt. a) What is the minimun voltage we can apply as an input to this ADC? Justify your answer. (Sp) b) What is the maximum voltage we can apply as an input to this ADC? Justify your answer: (5p) when the input of ADC is 1 Volt. Calculate the output of DAC (10p) i) in Decimal numeric output ii) in Binary digital form (as 10 bit)

Answers

Answer 1

a) The minimum voltage that can be applied as an input to the ADC of PIC18F4321 is determined by the reference voltage (Vref) used.

b) Any voltage applied as an input to the ADC should not exceed 5 volts to avoid exceeding the ADC's voltage range.

In this case, the Vref is connected to 5 Volts. The ADC of PIC18F4321 uses the Vref as the maximum voltage reference for conversion. Therefore, the minimum voltage that can be applied as an input is 0 volts, as it is the lower limit of the voltage range.

b) The maximum voltage that can be applied as an input to the ADC of PIC18F4321 is equal to the reference voltage (Vref), which is 5 volts in this case. The ADC uses the Vref as the maximum voltage reference for conversion. Therefore, any voltage applied as an input to the ADC should not exceed 5 volts to avoid exceeding the ADC's voltage range.

For the given ADC input of 1 volt, to calculate the output of the DAC (Digital-to-Analog Converter), we need to consider the ADC's resolution. Since the PIC18F4321 has a 10-bit ADC, the output of the ADC will be a 10-bit binary value.

i) To calculate the decimal numeric output, we can use the formula:

Output = ([tex]ADC_{value}[/tex] / ([tex]2^{10 - 1}[/tex])) × Vref

where [tex]ADC_{value}[/tex] is the 10-bit binary value obtained from the ADC conversion, and Vref is the reference voltage (5 volts).

ii) To represent the output in binary digital form (as a 10-bit value), we simply convert the decimal numeric output to binary using 10 bits.

Please provide the ADC value obtained for the input of 1 volt to calculate the specific output of the DAC.

To learn more about reference voltage, visit:

https://brainly.com/question/14524595

#SPJ11


Related Questions

Which one of these processes is the most wasteful: Solidification processes - starting material is a heated liquid or semifluid Particulate processing - starting material consists of powders Deformation processes - starting material is a ductile solid (commonly metal) Material removal processes - like machining

Answers

Among the given processes, the most wasteful process is material removal processes - like machining. Hence, the option (D) is correct.

Machining is a manufacturing process that includes a wide range of technologies for removing material from a workpiece to produce the desired shape and size. The workpiece is usually made of metal, but it can also be made of other materials, such as wood, plastic, or ceramic.

The aim of machining is to achieve a particular shape, size, or surface finish, or to remove material to achieve a particular tolerance or flatness. Material removal processes - like machining are the most wasteful because they remove a significant amount of material from the workpiece, resulting in a considerable amount of waste material. Therefore, material removal processes are considered the most wasteful among the given processes.

To know more about metal please refer:

https://brainly.com/question/4701542

#SPJ11

Explain the glazing and edge wear with suitable sketch. Explain the ISO standard 3685 for tool life.

Answers

Glazing and edge wear occur in tools during machining operations due to different mechanisms and can affect tool performance and tool life.

Glazing and edge wear are two common phenomena encountered in machining processes. Glazing refers to the formation of a smooth and shiny surface on the cutting tool, typically caused by high temperatures and friction generated during cutting. This results in a hardened layer on the tool surface, reducing its cutting ability. On the other hand, edge wear occurs when the cutting edge of the tool gradually wears out due to continuous contact with the workpiece material.

Glazing is often associated with the build-up of material on the tool surface, such as workpiece material or coatings. This build-up can lead to reduced chip flow, increased cutting forces, and diminished heat dissipation, ultimately affecting the tool's performance and lifespan. Edge wear, on the other hand, is primarily caused by abrasion and erosion from the workpiece material, resulting in a dulling or rounding of the tool edge. This deterioration of the cutting edge leads to increased cutting forces, poor surface finish, and decreased dimensional accuracy of machined parts.

To address glazing and edge wear issues and improve tool life, ISO standard 3685 provides guidelines and methodologies for evaluating tool performance and determining tool life. This standard defines various parameters, such as tool wear, cutting forces, surface finish, and dimensional accuracy, which can be measured and analyzed to assess tool performance. By monitoring these parameters and establishing suitable criteria, manufacturers can optimize cutting conditions, select appropriate tool materials and coatings, and implement effective tool maintenance strategies to maximize tool life.

Learn more about Glazing

brainly.com/question/18270349

#SPJ11

Problem 2 Assume that the field current of the generator in Problem 1 has been adjusted to a value of 4.5 A. a) What will the terminal voltage of this generator be if it is connected to a A-connected load with an impedance of 20230 ? b) Sketch the phasor diagram of this generator. c) What is the efficiency of the generator at these conditions? d) Now assume that another identical A-connected load is to be paralleled with the first one. What happens to the phasor diagram for the generator? e) What is the new terminal voltage after the load has been added? f) What must be done to restore the terminal voltage to its original value?

Answers

Analyzing the effects on terminal voltage, phasor diagram, efficiency, and voltage restoration involves considering load impedance, internal impedance, load current, and field current adjustments.

What factors should be considered when designing an effective supply chain strategy?

In this problem, we are given a generator with an adjusted field current of 4.5 A.

We need to analyze the effects on the terminal voltage, phasor diagram, efficiency, and terminal voltage restoration when connected to a load and when adding another load in parallel.

To determine the terminal voltage when connected to an A-connected load with an impedance of 20230 Ω, we need to consider the generator's internal impedance and the load impedance to calculate the voltage drop.

By applying appropriate equations, we can find the terminal voltage.

Sketching the phasor diagram of the generator involves representing the generator's voltage, internal impedance, load impedance, and current phasors.

The phasor diagram shows the relationships between these quantities.

The efficiency of the generator at these conditions can be calculated by dividing the power output (product of the terminal voltage and load current) by the power input (product of the field current and generator voltage).

This ratio represents the efficiency of the generator.

When paralleling another identical A-connected load, the phasor diagram for the generator changes.

The load current will increase, affecting the overall current distribution and phase relationships in the system.

The new terminal voltage after adding the load can be determined by considering the increased load current and the generator's ability to maintain the desired terminal voltage.

The voltage drop across the internal impedance and load impedance will impact the new terminal voltage

By increasing or decreasing the field current, the magnetic field strength and consequently the terminal voltage can be adjusted to its original value.

Calculations and understanding of phasor relationships are key in addressing these aspects.

Learn more about involves considering

brainly.com/question/1778832

#SPJ11

G(S) = X(S) dobtain State space model b) Find the step response for given initial state feed back gains k= [k₁ k₁] to gield asetting time of 0,74 sec. c) Design 2 F(S) (sti) (St4) 9,5% over shoot and for 2% bond with 2) praw the osimp thotic magnitude bode Diagrom of the tronster function G(s) = 1S+10 1 + 2 + ( 2 ) ² 3) G. (3) = ( (5+1)(5+2) k a) find the volue b) find Valve xb)=[1] Phase morain: 15 Sain margin. of k for this Phose margin c) How much time delay do you need to add to make the system morainally stable?

Answers

a) To obtain the state space model, follow the given steps. b) To find the step response with a settling time of 0.74 sec for the given initial state feedback gains k=[k₁ k₁], perform the necessary calculations. c) Design two transfer functions F(S) to achieve 9.5% overshoot and 2% bound.

a) To obtain the state space model, start by determining the system's differential equations and then converting them into matrix form using state variables. The state space model consists of matrices that represent the system dynamics, input-output relationship, and initial conditions.

b) To find the step response with a settling time of 0.74 sec for the given initial state feedback gains k=[k₁ k₁], you need to determine the transfer function of the system using the state space model. Then, calculate the closed-loop transfer function and solve for the step response. Adjust the feedback gains k until the settling time matches the desired value.

c) Designing two transfer functions F(S) to achieve 9.5% overshoot and 2% bound requires analyzing the system's characteristics and using control techniques such as pole placement or frequency response shaping. By adjusting the pole locations or using appropriate compensators, you can achieve the desired overshoot and bound. The design process involves careful selection of controller parameters to meet the specified requirements.

learn more about transfer functions here

brainly.com/question/13002430

#SPJ11

Point charges of 2μC, 6μC, and 10μC are located at A(4,0,6), B(8,-1,2) and C(3,7,-1), respectively. Find total electric flux density for each point: a. P1(4, -3, 1)

Answers

To find the total electric flux density at point P1(4, -3, 1), calculate the electric field contribution from each point charge (2μC, 6μC, and 10μC) and sum them up.

To find the total electric flux density at point P1(4, -3, 1), we need to calculate the electric field contribution from each point charge (2μC, 6μC, and 10μC). The electric field at a point due to a point charge is given by Coulomb's law. By considering the distance between each point charge and point P1, we can calculate the electric field vectors. Then, by summing up the electric field vectors from each charge, we obtain the total electric field at point P1. The magnitude and direction of this total electric field represent the electric flux density at that point.

Learn more about electric flux density here:

https://brainly.com/question/33224621?

#SPJ11

Select THREE (3) important Hazard Identification processes from the list below. I. Audits conducted by DOSH. II. Walkaround Inspections III. Comprehensive Survey IV. Observations. A. I, II & IV B. I, II & III C. I, III & IV D. II, III & IV

Answers

Hazard identification is a crucial part of an occupational health and safety program, and it entails recognizing any real or potential hazards that might be present in the workplace. Hazard identification is accomplished through a variety of processes, each with its own set of strengths and weaknesses.

Here are the three important hazard identification processes from the given list:Walkaround InspectionsComprehensive SurveyObservations

:Three essential Hazard Identification processes are I, II, and III. They are:Audit conducted by DOSH. (I)Walkaround Inspections (II)Comprehensive Survey. (III)Observations (IV)The aim of hazard identification is to recognize any real or potential hazards that may be present in the workplace. Hazard identification is done through a variety of methods, each with its own set of benefits and drawbacks. As a result, it is crucial to select the appropriate methods for your workplace. It is suggested that you use several methods for hazard identification to obtain a more accurate understanding of the risks in the workplace.Hence, Option C I, III & IV are the correct answers.

To know more about processes visit:

https://brainly.com/question/30452338

#SPJ11

The (3) important Hazard Identification processes from the list below include  D. II, III & IV

How to explain the information

Walkaround inspections involve physically inspecting the workplace to identify potential hazards, unsafe conditions, and unsafe practices. This process allows for a firsthand assessment of the work environment and helps in identifying and addressing hazards promptly.

A comprehensive survey involves a systematic examination of the workplace to identify potential hazards across various aspects such as machinery, equipment, chemicals, ergonomics, and safety procedures. It aims to identify hazards comprehensively and helps in developing effective controls and preventive measures.

Learn more about hazard on

https://brainly.com/question/7310653

#SPJ4

A 0.5-m high, 0.7-m wide oven door oriented vertically reaches an average surface temperature of 32°C during operation. The door has an emissivity of 1.0 and the surroundings of the room are at a temperature of 22°C. To compute for the Nusselt number of the air flow, what is the exact value of the temperature in °C on which the air properties should be based?

Answers

The value of the temperature, in °C, on which the air properties should be based to compute the Nusselt number of the airflow in the given case is 22°C.

How to find the temperature on which the air properties should be based?

Nusselt number Nu (dimensionless) can be calculated using the formula:

Nu = (h * L)/k

Where

h = heat transfer coefficient,

L = characteristic length, and k = thermal conductivity of the fluid.

The value of h, in turn, can be found using the relation:

h = kNu/L

From the formula for the heat transfer coefficient, it can be seen that Nu is dependent on the thermal conductivity of the fluid (k).

As air is a compressible gas, its thermal conductivity varies with temperature.

Therefore, the value of the temperature on which the air properties should be based must be known.

In most cases, the properties of the fluid are usually based on the free-stream conditions, which in the given problem refers to the surrounding temperature of the room.

Here, the surroundings of the oven door are at a temperature of 22°C.

Hence, the temperature, in °C, on which the air properties should be based is 22°C.

To know more about thermal conductivity visit:

https://brainly.com/question/14553214

#SPJ11

how we can product an electricity by salt of water in plant?
what is the best devices that we will use?

Answers

Electricity can be produced using the salt of water. The power generated can be harnessed using a turbine or other similar devices.

A plant that produces electricity from saltwater is known as an osmotic power plant. It works by utilizing the difference in salt concentration between freshwater and saltwater. This creates an osmotic pressure, which can be used to generate power.
An osmotic power plant comprises three main components:
1. A freshwater supply
2. Saltwater
3. Membrane
The membrane is the key component of the osmotic power plant. It is used to separate the freshwater and saltwater, allowing the salt ions to pass through and create the osmotic pressure.

The membrane has tiny pores that are selective, allowing water molecules to pass through while blocking the salt ions. This creates a flow of water from the freshwater side of the membrane to the saltwater side, generating power in the process.
The power generated by an osmotic power plant can be harnessed using a turbine or other similar devices. The turbine is turned by the flow of water and generates electricity.

One of the main advantages of an osmotic power plant is that it produces electricity without any harmful emissions, making it an environmentally friendly energy source.

In conclusion, osmotic power plants can be used to generate electricity from saltwater. The process involves utilizing the osmotic pressure created by the difference in salt concentration between freshwater and saltwater.

The membrane is the key component of the osmotic power plant, and it separates the freshwater and saltwater. The power generated can be harnessed using a turbine or other similar devices.

Learn more about Electricity at: https://brainly.com/question/776932

#SPJ11

According to Kelvin-Planck statement, it is complete cycle if it exchanges heat only with bodies at impossible, changing temperature O possible, changing temperature impossible, single fixed temperature O possible, single fixed temperature for a heat engine to produce net work in a

Answers

A heat engine to produce net work in a complete cycle, it is necessary to exchange heat with bodies at different temperatures, allowing for the transfer of heat from a higher temperature source to a lower temperature sink.

According to the Kelvin-Planck statement of the second law of thermodynamics, it is impossible for a heat engine to produce net work in a complete cycle if it exchanges heat only with bodies at a single fixed temperature. This statement is based on the fact that heat naturally flows from a higher temperature region to a lower temperature region. To extract work from a heat engine, there must be a temperature difference between the heat source and the heat sink. If the engine were to exchange heat only with a single fixed-temperature reservoir, there would be no temperature difference, and the heat transfer process would be reversible. However, the second law of thermodynamics dictates that all real processes have some irreversibilities and result in a decrease in the availability of energy.

Learn more about heat engine here:

brainly.com/question/30853813

#SPJ11

Compared with AM, what are the main advantages and disadvantages of SSB modulation? (8 points) 7. What is the difference between strict stationary random process and generalized random process? How to decide whether it is the ergodic stationary random process or not. (8 points)
Previous question

Answers

Sure. Here are the main advantages and disadvantages of SSB modulation compared to AM:

Advantages

SSB requires less power than AM, which can lead to longer battery life in portable radios.SSB occupies a narrower bandwidth than AM, which can allow more stations to be transmitted on the same frequency band.SSB is less susceptible to interference from other signals than AM.

Disadvantages

SSB is more difficult to transmit and receive than AM.SSB requires a higher-quality audio signal than AM.SSB does not transmit the carrier signal, which can make it difficult to distinguish between stations that are transmitting on the same frequency.

Strict stationary random process

A strict stationary random process is a random process whose statistical properties are invariant with time. This means that the probability distribution of the process does not change over time.

Generalized random process

A generalized random process is a random process whose statistical properties are invariant with respect to a shift in time. This means that the probability distribution of the process is the same for any two time instants that are separated by a constant time interval.

Ergodic stationary random process

An ergodic stationary random process is a random process that is both strict stationary and ergodic. This means that the process has the same statistical properties when averaged over time as it does when averaged over space.

To decide whether a random process is ergodic or not, we can use the following test:

1. Take a sample of the process and average it over time.

2. Take another sample of the process and average it over space.

3. If the two averages are equal, then the process is ergodic. If the two averages are not equal, then the process is not ergodic.

Learn more about random processes and their properties here:

https://brainly.com/question/33315679

#SPJ11

a simply supported 15 ft. long 2x12 douglas fir-larch no. 1 joist with a uniformly distributed load of 200 lb/ft is supported by the top plate of a 2x8 wall. what is the bearing stress at the support?

Answers

The bearing stress at the support is 137.93 psi, as a simply supported 15 ft. long 2x12 Douglas fir-larch no. 1 joist with a uniformly distributed load of 200 lb/ft is supported by the top plate of a 2x8 wall.

Given that a simply supported 15 ft. long 2x12 Douglas fir-larch no. 1 joist with a uniformly distributed load of 200 lb/ft is supported by the top plate of a 2x8 wall. We have to find the bearing stress at the support.

Bearing Stress: Bearing stress is the contact pressure between separate bodies. It differs from compressive stress, as it is an internal stress created due to one part pressing against another part.

Bearing stress is produced by the force acting perpendicular to the long axis of the object. In order to calculate bearing stress at the support, we have to calculate the reaction forces acting on the support of the beam using the formula mentioned below: reaction force (R) = (UDL x Length)/2R = (200 x 15)/2R = 1500 lb

Now, let's find the bearing stress at the support. Bearing Stress = R / (L * B)

Bearing Stress = 1500 / (7.25 * 1.5) = 137.93 psi

Therefore, the bearing stress at the support is 137.93 psi.

To know more about bearing stress please refer:

https://brainly.com/question/32794794

#SPJ11

Coefficient of Performance (COP) is defined as O work input/heat leakage O heat leakage/work input O work input/latent heat of condensation O latent heat of condensation/work input

Answers

The correct answer is option d. The coefficient of Performance (COP) is defined as the latent heat of condensation/work input.

Coefficient of performance (COP) is a ratio that measures the amount of heat produced by a device to the amount of work consumed. This ratio determines how efficient the device is. The efficiency of a device is directly proportional to the COP value of the device. Higher the COP value, the more efficient the device is. The COP is calculated as the ratio of heat produced by a device to the amount of work consumed by the device. The correct formula for the coefficient of performance (COP) is :

Coefficient of Performance (COP) = Heat produced / Work consumed

However, this formula may vary according to the device. The formula given for a specific device will be used to calculate the COP of that device. Here, we need to find the correct option that defines the formula for calculating the COP of a device.  The correct formula for calculating the COP of a device is:

Coefficient of Performance (COP) = Heat produced / Work consumed

Option (a) work input/heat leakage and option (b) heat leakage/work input are not the correct formula to calculate the COP. Option (c) work input/latent heat of condensation is also not the correct formula. Therefore, option (d) latent heat of condensation/work input is the correct formula to calculate the COP. The correct answer is: Coefficient of Performance (COP) is defined as latent heat of condensation/work input.

To learn more about coefficient of Performance, visit:

https://brainly.com/question/28175149

#SPJ11

Two circuit elements are connected in parallel. The current through one of them is i_{1} = 3sin(wt - 60 degrees) A and the total line current drawn by the circuit is i_{t} = 10 sin (wt + 90°) A. Determine the rms value of the current through the second element. 8. A resistance R and reactance L in series are connected to a 115-V, 60-Hz voltage supply. Instruments are used to show that the reactor voltage (voltage at inductor) is 75 V and the total power supplied to the circuit is 190 W. Find L.

Answers

The RMS value of the current through the second element is approximately 4.949 A.

To find the RMS value of the current through the second element, we can use the relationship between the RMS value and the peak value of a sinusoidal waveform.

The RMS value of a sinusoidal waveform can be calculated using the formula:

Irms = Imax / √2

where Irms is the RMS value, and Imax is the peak value of the waveform.

In this case, we are given the current through one element as i₁ = 3sin(wt - 60°) A. The peak value of this current can be found by taking the absolute value of the coefficient of the sine function, which is 3 A.

Therefore, the RMS value of i₁ is:

i₁rms = 3 / √2 ≈ 2.121 A

Now, the total line current drawn by the circuit is given as iₜ = 10sin(wt + 90°) A. The peak value of this current is 10 A.

To find the current through the second element, we can subtract the current through the first element from the total line current:

i₂ = iₜ - i₁

Taking the peak values of the currents, we have:

i₂max = 10 - 3 = 7 A

Finally, we can find the RMS value of i₂ using the formula:

i₂rms = i₂max / √2 = 7 / √2 ≈ 4.949 A

Know more about RMS value here:

https://brainly.com/question/30097485

#SPJ11

The energy density (that is, the energy per unit volume) at a point in a magnetic field can be shown to be B2/2μ where B is the flux density and is the permeability. Using μ wb/m² show that the total magnetic field energy stored within a this result and B. μχI 270.² X unit length of solid circular conductor carrying current I is given by Neglect skin 16T effect and thus verify Lint = ×10 -x 10-7 H/m. 2

Answers

In an electromagnetic field, magnetic energy is the potential energy stored in the magnetic field. When a current is run through a wire, a magnetic field is generated around the wire. In a magnetic field, energy is stored in the field. We can use the energy density formula to find the energy stored in the field.

The energy density can be defined as the amount of energy stored in a unit volume. For a point in a magnetic field, the energy density is given by B²/2μ where B is the flux density and μ is the permeability. If we substitute the given value of μ wb/m² in the formula, we get the energy density as B²/2(4π × 10⁻⁷) Joules/m³ or Tesla² Joules/m³. To obtain the total magnetic field energy stored within a length of solid circular conductor carrying a current I, we can use the formula Lint = μχI² × unit length.  

Here, B = μχI, substituting this in the formula, we get B²/2μ = (μχI)²/2μ = μχ²I²/2. Therefore, the total magnetic field energy stored within a unit length of the conductor is given by μχ²I²/2 × (πd²/4) where d is the diameter of the circular conductor. We can substitute the given value of 270 in place of μχI, simplify, and obtain the answer.

We can neglect skin effect in this case, and hence, the answer is verified as Lint = 2 × 10⁻⁷ H/m. Therefore, the total magnetic field energy stored within a solid circular conductor carrying a current I is given by μχ²I²(πd²/32) Joules/m or μχ²I² × (πd²/32) Wb/m.

To know more about potential visit :

https://brainly.com/question/28300184

#SPJ11

Two 10 m^2 parallel plates are maintained at temperature Tu = 800 K and T2 = 500K and have emissivity E1 = 0.2 and E2 = 0.7. The view factor is given as F1-2=0.95, a. Draw radiation thermal circuit b. The radiation heat transfer rate between the plates

Answers

The radiation heat transfer rate between the plates can be calculated using the equation Q = σ * A * (E1 * E2 * F1-2) * (T1^4 - T2^4).

a) In the radiation thermal circuit, two parallel plates are represented as resistors connected in series. The top plate is labeled T1 = 800 K and the bottom plate is labeled T2 = 500 K. The emissivity values of the plates, E1 = 0.2 and E2 = 0.7, are indicated. The view factor, F1-2 = 0.95, represents the proportion of radiation emitted by plate 1 that is intercepted by plate 2.

b) The radiation heat transfer rate between the plates can be calculated using the equation Q = σ * A * (E1 * E2 * F1-2) * (T1^4 - T2^4), where σ is the Stefan-Boltzmann constant and A is the surface area of the plates. By substituting the given values into the equation, the heat transfer rate can be determined.

Learn more about radiation heat transfer here:

https://brainly.com/question/32377368

#SPJ11

Points inputs as necessary, design a multiple-output circuit that realizes both of the following Boolean 5. Using one active-high 3-to-8 decoder and standard logic gates (NOT, AND, OR) with as many expressions: Be sure to show both the inputs and outputs of your decoder. F1 = AC' + A'C F2 = BC + AB

Answers

To realize the given Boolean expressions F1 = AC' + A'C and F2 = BC + AB using a 3-to-8 decoder and standard logic gates, we can use the following circuit design:

We will start by designing the circuit for F1 = AC' + A'C. This expression can be simplified using De Morgan's theorem to F1 = (A + C)'(A + C). We can use the active-high 3-to-8 decoder to generate the complement of each input variable and its negation. We connect the inputs A, C, A', and C' to the decoder, and the outputs of the decoder represent the combinations of these inputs.

We then use logic gates to implement the AND and OR operations. We connect the complemented output of the decoder for (A + C)' to one input of the AND gate, and connect A + C to the other input. The output of this AND gate represents AC'. Similarly, we connect A' + C' to one input of another AND gate, and connect A + C to the other input. The output of this AND gate represents A'C. Finally, we use an OR gate to combine the outputs of these two AND gates, resulting in the final output F1 = AC' + A'C.

Moving on to F2 = BC + AB, we can see that it is already in a simplified form. We connect the inputs B and C to the decoder, and the outputs represent the combinations of these inputs. We then connect the output of the decoder for BC to one input of an OR gate, and connect the output of the decoder for AB to the other input. The output of this OR gate represents the final output F2 = BC + AB.

By using the 3-to-8 decoder and appropriate logic gates, we have successfully realized the given Boolean expressions F1 = AC' + A'C and F2 = BC + AB.

Learn more about Boolean expressions  here

brainly.com/question/13265286

#SPJ11

Of the following statements about the open-circuit characteristic (OCC), short-circuit characteristic (SCC) and short-circuit ratio (SCR) of synchronous generator, ( ) is wrong. A. The OCC is a saturation curve while the SCC is linear. B. In a short-circuit test for SCC, the core of synchronous generator is highly saturated so that the short-circuit current is very small. C. The air-gap line refers to the OCC with ignorance of the saturation. D. A large SCR is preferred for a design of synchronous generator in pursuit of high voltage stability.

Answers

In a short-circuit test for SCC, the core of synchronous generator is highly saturated so that the short-circuit current is very small.

Which statement about the open-circuit characteristic (OCC), short-circuit characteristic (SCC), and short-circuit ratio (SCR) of a synchronous generator is incorrect?

The statement B is incorrect because in a short-circuit test for the short-circuit characteristic (SCC) of a synchronous generator, the core is not highly saturated.

In fact, during the short-circuit test, the synchronous generator is operated at a very low excitation level, which means the field current is reduced to minimize the generator's voltage output.

This low excitation level ensures that the short-circuit current is sufficiently high for accurate measurement and testing purposes.

During the short-circuit test, the synchronous generator is connected to a short circuit, causing a large current to flow through the generator.

The purpose of this test is to determine the relationship between the generator's terminal voltage and the short-circuit current.

By varying the excitation level and measuring the resulting short-circuit current and voltage, the short-circuit characteristic (SCC) can be obtained.

In contrast, the open-circuit characteristic (OCC) of a synchronous generator represents the relationship between the generator's terminal voltage and the field current when there is no load connected to the generator.

Therefore, statement B is incorrect because the core is not highly saturated during the short-circuit test; it is operated at a low excitation level to allow for accurate measurements of the short-circuit current.

Learn more about synchronous generator

brainly.com/question/33309651

#SPJ11

For questions 14-1 to 14-14, determine whether each statement is true or false.
14-1. Regardless of the SF rating, a motor should not be continuously operated above its rated horsepower. (14-2)
14-2. Tolerance for the voltage rating of a motor is typical £5 percent. (14-2)
14-3. The frequency tolerance of a motor rating is of primary concern when a motor is operated from a commercial supply. (14-2)
14-4. The run-winding current in an induction motor decreases as the motor speeds up. (14-4)
14-5. The temperature-rise rating of a motor is usually based on a 60°C ambient temperature. (14-2)
14-6. The efficiency of a motor is usually greatest at its rated power. (14-2)
14-7. The voltage drop in a line feeding a motor is greatest when the motor is at about 50 percent of its rated speed. (14-2)
14-8. An explosion-proof motor prevents gas and vapors from exploding inside the motor enclosure. (14-3)
14-9. Since a squirrel-cage rotor is not connected to the power source, it does not need any conducting circuits. (14-4)
14-10. The start switch in a motor opens at about 75 percent of the rated speed. (14-4)
14-11. "Reluctance" and "reluctance-start" are two names for the same type of motor. (14-5)
14-12. The cumulative-compound dc motor has better speed regulation than the shunt dc motor. (14-6)
14-13. The compound dc motor is often operated as a variable-speed motor. (14-6)
14-14. All single-phase induction motors have a starting torque that exceeds their running torque. (14-4)
Choose the letter that best completes each statement for questions 14-15 to 14-19.
14-15. Greater starting torque is provided by a (14-6)
a. Shunt dc motor
b. Series de motor
c. Differential compound dc motor
d. Cumulative compound dc motor
14-16. Which of these motors provides the greater starting torque? (14-4)
a. Split-phase
b. Shaded-pole
c. Permanent-split capacitor
d. Capacitor-start
14-17. Which of these motors provides the quieter operation? (14-4)
a. Split-phase
b. Capacitor-start
c. Two-value capacitor
d. Universal
14-18. Which of these motors has the greater efficiency? (14-4)
a. Reluctance-start
b. Shaded-pole
c. Split-phase
d. Permanent capacitor
14-19. Which of these motors would be available in a 5-hp size? (14-4)
a. Split-phase
b. Two-value capacitor
c. Permanent capacitor
d. Shaded-pole
Answer the following questions.
14-20. List three categories of motors that are based on the type of power required. (14-1)
14-21. List three categories of motors that are based on a range of horsepower. (14-1)
14-22. What is NEMA the abbreviation for? (14-2)
14-23. List three torque ratings for motors. (14-2)
14-24. Given a choice, would you operate a 230-V motor from a 220-V or a 240-V supply? Why? (14-2)
14-25. What are TEFC and TENV the abbreviations for? (14-3)
14-26. What type of action induces a voltage into a rotating rotor? (14-4)
14-27. List three techniques for producing a rotating, field in a stator. (14-4)
14-28. What relationships should two winding currents have to produce maximum torque? (14-4)
14-29. Differentiate between a variable-speed and a dual-speed motor. (14-4)
14-30. Why does a three-phase motor provide a nonpulsating torque? (14-6)
14-31. Is a single-phase motor or a three-phase motor of the same horsepower more efficient? (14-6)
14-32. A motor is operating at 5000 rpm in a cleanroom environment. What type of motor is it likely to be? (14-3)
14-33. Are the phase windings in one type of dc motor powered by a three-phase voltage? (14-6)

Answers

14-1. True. Regardless of the SF rating, a motor should not be continuously operated above its rated horsepower. Exceeding the rated horsepower can lead to overheating and potential damage to the motor.

14-2. False. The tolerance for the voltage rating of a motor is typically ±10 percent, not £5 percent.

14-3. True. The frequency tolerance of a motor rating is of primary concern when a motor is operated from a commercial supply. Deviations from the specified frequency can affect the motor's performance.

14-4. True. The run-winding current in an induction motor decreases as the motor speeds up due to the back EMF generated by the rotating rotor.

14-5. True. The temperature-rise rating of a motor is usually based on a 60°C ambient temperature. It indicates the maximum temperature rise of the motor during operation.

14-6. False. The efficiency of a motor is not necessarily greatest at its rated power. It varies with the operating conditions and load.

14-7. False. The voltage drop in a line feeding a motor is greatest when the motor is operating at full load, not at about 50 percent of its rated speed.

14-8. True. An explosion-proof motor is designed to prevent gas and vapors from exploding inside the motor enclosure, ensuring safety in hazardous environments.

14-9. True. Since a squirrel-cage rotor is not connected to the power source, it does not require any conducting circuits.

14-10. False. The start switch in a motor typically opens at a lower speed, around 30-40 percent of the rated speed, not 75 percent.

14-11. False. "Reluctance" and "reluctance-start" are not two names for the same type of motor. Reluctance motors are different from reluctance-start motors.

14-12. False. The cumulative-compound dc motor does not necessarily have better speed regulation than the shunt dc motor. It depends on the specific design and characteristics of the motors.

14-13. True. The compound dc motor can be operated as a variable-speed motor by adjusting the field winding or the armature voltage.

14-14. False. Not all single-phase induction motors have a starting torque that exceeds their running torque. Some single-phase motors require additional mechanisms or components to achieve higher starting torque.

14-15. d. Cumulative compound dc motor.

14-16. d. Capacitor-start.

14-17. a. Split-phase.

14-18. c. Split-phase.

14-19. a. Split-phase.

14-20. The three categories of motors based on the type of power required are:

- AC motors

- DC motors

- Universal motors

14-21. The three categories of motors based on a range of horsepower are:

- Fractional horsepower motors

- Medium horsepower motors

- Large horsepower motors

14-22. NEMA stands for the National Electrical Manufacturers Association, which sets standards and provides guidelines for electrical equipment, including motors.

14-23. Three torque ratings for motors are:

- Starting torque

- Running torque

- Peak torque

14-24. It is preferable to operate a 230-V motor from a 240-V supply rather than a 220-V supply. This allows for a better voltage margin and ensures that the motor operates within its specified voltage range.

14-25. TEFC stands for Totally Enclosed Fan Cooled, and TENV stands for Totally Enclosed Non-Ventilated. These are motor enclosures that provide varying degrees of protection against the environment.

14-26. The rotating rotor induces a voltage through electromagnetic induction.

14-27. Three techniques for producing a rotating field in a stator are:

- Three-phase supply

- Split-phase winding

- Capacitor-start winding

14-28. To produce maximum torque, the two winding currents in a motor should be 90 degrees out of phase.

14-29. A variable-speed motor allows for adjustable speed control, while a dual-speed motor has predetermined discrete speed settings.

14-30. A three-phase motor provides a nonpulsating torque due to the overlapping of the three-phase currents, which creates a smooth and continuous torque output.

14-31. Generally, a three-phase motor of the same horsepower is more efficient compared to a single-phase motor.

14-32. A motor operating at 5000 rpm in a cleanroom environment is likely to be a brushless DC motor or a high-speed synchronous motor.

14-33. No, the phase windings in one type of DC motor are not powered by a three-phase voltage. DC motors typically have either a two-wire or four-wire connection for the power supply.

Learn more about DC motors here:

https://brainly.com/question/33197548

#SPJ11

Statements" and (a, b, c);" describes a) An AND gate with three inputs a, b, c. b) An AND gate with b, c as inputs, a as the output. c) An AND gate with a, c as inputs, b as the output. d) An AND gate with a, b as inputs, c as the output.

Answers

The given statement "and (a, b, c);" describes an AND gate with three inputs a, b, c. The correct option is (a). An AND gate is a type of digital logic gate that has two or more inputs and one output that depends on the input signals.

The AND gate outputs 1 (high) only if all of the inputs to the AND gate are 1 (high). The given statement "and (a, b, c);" describes an AND gate with three inputs a, b, c. The three variables are inputs to the AND gate, and the output is obtained from the operation of the AND gate.

The function of the AND gate is to provide an output of a high signal only if all of the inputs of the gate are high. If one or more of the input signals is low, the AND gate's output is low (0). Therefore, the AND gate has two possible states:1. High output if all inputs are high (1)2. Low output if any input is low (0)The symbol for the AND gate is shown below: AND gate symbol: It has a similar structure to a multiplication operation, with the inputs being multiplied together to obtain the output.

For further information on AND Gates visit:

https://brainly.com/question/14183082

#SPJ11

Given a typical geothermal gradient of 25°c/km, oil is generated from kerogen at ______, corresponding to temperatures of _____

Answers

Oil is generated from kerogen at temperatures typically ranging from 60°C to 150°C (140°F to 302°F). The specific temperature range at which oil generation occurs can vary depending on the composition and maturity of the source rock.

Regarding the geothermal gradient, the typical value of 25°C/km (or 25°C per kilometer of depth) represents the increase in temperature with increasing depth in the Earth's crust. Therefore, to determine the corresponding temperatures for oil generation, we need to consider the depth at which the process occurs.

Assuming a linear relationship between depth and temperature increase, for every kilometer of depth, the temperature increases by 25°C. Therefore, we can calculate the temperatures at different depths using the geothermal gradient. For example:

- At 2 kilometers depth: Temperature = 25°C/km * 2 km = 50°C

- At 3 kilometers depth: Temperature = 25°C/km * 3 km = 75°C

By applying the geothermal gradient, we can estimate the temperatures at different depths to understand the conditions at which oil generation from kerogen occurs.

Learn more about geothermal gradient here:

https://brainly.com/question/29803985

#SPJ11

consider a system consisting of 4 sinks at 2 dfu and three floor drains at 1 dfu. which of the following is true? a. Not enough information to size soil stack
b. the cold-water supply should be sized for 11 DFU
c. soil stack would be sized for 10 DFUs
d. Not enough information to size vent stack

Answers

Answer:

Explanation:

The Uniform Plumbing Code defines Drainage Fixture Unit as follows:

Drainage (dfu). A measure of the probable discharge into the drainage system by various types of plumbing fixtures.

The drainage fixture-unit value for a particular fixture depends on its volume rate of drainage discharge, on the time duration of a single drainage operation and on the average time between successive operations. - UPC 2006

Drain Fixture Unit, or DFU, is a plumbing design factor, or a relative measure of the drain wastewater flow or load for various plumbing fixtures.

Here are two quantitaive measures of DFUs:

1 DFU = 1 cubic foot of water drained through a 1 1/4" diameter pipe in one minute.

1 DFU ≈ (approximately) 7.48 US GPM or ≈ 0.47 liters/second

Note: 1 cubic foot = 7.48 US Gallons.

Notice in the table below that the DFU factor for a plumbing fixture will vary depending on the drain and trap size or diameter.

By adding the DFU load rating of all of the individual fixtures on a single drain to be served by a single air admittance valve (AAV), the plumber or designer can select an AAV with sufficient capacity.

As we discuss separately at AIR ADMITTANCE VALVES AAVs, Oatey, an AAV manufacturer, provides the following helpful DFU Load Table:

Drain Fixture Unit (DFU) Table for Common Plumbing Fixtures 1

Plumbing Fixture Type

Drain Fixture Unit

Load Rating

PRIVATE

(DFU)

Drain Fixture Unit

Load Rating

PUBLIC

(DFU)

Drain Fixture Unit

(DFU)

Load Rating

EUROPE

(Liters/Second)

Trap

Diameter

(Inches)

Bathroom Group

Traditional 2

6

   

3

Bathroom Tub

2

 

0.9

1.5

Bathtub with Shower

2

2

 

1.5

Bidet

2

 

0.3

1.5

Bidet

1

   

1.25

Dishwasher

2

   

1.5

Drinking fountain  

0.5

0.1

1.25

Floor drain

6

6

 

3

Floor drain

8

8

 

4

Garbage grinder  

3

 

2

Mobile home

main trap

12

   

3

Shower stall

2

2

 

1.5

Sink, bar

1

2 (?)

 

1.5

Sink, kitchen,

commercial

w/ food waste  

3

 

2

Sink, kitchen

2

2

 

1.5

Sink, laundry tub

2

2

 

1.5

Sink, lavatory

1

1

 

1.25

Sink, medical

clinic  

2

 

1.5

Sink, mop  

3

 

2

Sink, residential

2

   

1.5

Sink with Garbage

Grinder (Disposal)

2

3

 

1.5

Toilet - WC Flushometer

3

4

 

3

Toilet - WC gravity flush 3

3

4

 

3

Urinal

2

2

0.3

2

Washing Machine

Clothes

2

3

 

2

Water cooler

0.5

0.5

 

1.25

Notes to the table above

1. Oatey Corporation, "Oatey Sure-Vent® Air Admittance Valves Technical Specifications", Oatey® Corporation, - retrieved 2016/05/08, original source: http://www.oatey.com/doc/aavtrifoldlcs420c101812lr.pdf The company provides AAVs rated at 6, 20, 160, and 500 DFUs.

2. 1 toilet at 1.6 gpf, 1 bathtub with shower, 1 sink

3. 1 toilet at 1.6 gpf

Watch out: While it is acceptable to oversize a Sure-Vent®; however, an undersized Sure-Vent® (Oatey) or Studor Vent (like the Studor Mini-Vent®) or other AAV product will not allow the plumbing system to breathe properly.

Studor Mini-Vent® DFU sizing chart at InspectApedia.com

A 1-m³ tank containing air at 10°C and 350 kPa is connected through a valve to another tank containing 3 kg of air at 35°C and 150 kPa. Now the valve is opened, and the entire system is allowed to reach thermal equilibrium with the surroundings, which are at
20.5°C. Treat air as ideal gas with the gas constant of R=0.287 kPa-m³/kg-K. The average specifc heat capacity of the air at constant volume is Cv=0.718 kJ/kg
The volume of the second tank is ___ m³
The final equilibrium pressure of air is ___ m³
Suppose we add 100 kJ of heat and 50 kJ of work after the entire system (two tanks connected together) reached thermal equilibrium, °C. the final temperature of the air will be ___ °C
Show your work with clear equations and substitute numerical values at the final step.

Answers

Main Answer:

Yes, it is possible to write a C program in Linux that acts as a shell, taking the "cp" command from the user and executing it by spawning a child process on behalf of the parent process. The parent process will wait for the child process to complete before continuing.

Explanation:

To implement this program, you can use the fork() system call in C to create a child process. The child process can then execute the "cp" command using the execvp() function. The parent process can use the wait() function to wait for the child process to finish its execution before continuing.

In the program, the parent process will read the "cp" command from the user and pass it to the child process. The child process, upon receiving the command, will execute it using execvp(). The parent process will wait for the child process to finish executing the command using the wait() function. This ensures that the parent process does not proceed until the child process has completed the execution of the "cp" command.

By following these steps, you can create a C program that acts as a shell, accepting the "cp" command from the user, spawning a child process to execute the command, and waiting for the child process to complete before continuing.

Learn more about : Child process

brainly.com/question/32392260

#SPJ11

A resistive load of 4Ω is matched to the collector impedance of an amplifier by means of a transformer having a turns ratio of 40:1. The amplifier uses a DC supply voltage of 12V in the absence of an input signal. When a signal is present at the base, the collector voltage swings between 22V and 2V while the collector current swings between 0.9A and 0.05A.
Determine:
a) Collector impedance RL
b) Signal power output
c) DC power input
d) Collector efficiency

Answers

a) The collector impedance RL can be calculated using the turns ratio of the transformer. Since the turns ratio is 40:1, the voltage across the load RL is 40 times smaller than the collector voltage swing. Therefore, the peak-to-peak voltage across RL is 22V - 2V = 20V. Using Ohm's Law, RL can be calculated as RL = (Vpp)^2 / P, where Vpp is the peak-to-peak voltage and P is the power. Given Vpp = 20V and P = (0.9A - 0.05A)^2 * RL, we can solve for RL.

b) The signal power output can be calculated using the formula Pout = (Vpp)^2 / (8 * RL), where Vpp is the peak-to-peak voltage and RL is the load impedance. Given Vpp = 20V and RL (calculated in part a), we can solve for Pout.

c) The DC power input can be calculated by multiplying the DC supply voltage with the average collector current. Given a DC supply voltage of 12V and a peak-to-peak collector current swing of 0.9A - 0.05A = 0.85A, we can calculate the average collector current and then multiply it by the DC supply voltage to obtain the DC power input.

d) The collector efficiency can be calculated by dividing the signal power output (calculated in part b) by the total power input (sum of DC power input and signal power output) and multiplying by 100 to express it as a percentage.

Learn more about amplifier analysis and efficiency calculations here:

https://brainly.com/question/31994273

#SPJ11

If the current in 9 mF capacitor is i(t) = t³ sinh t mA; A. Plot a graph of the current vs time. B. Find the voltage across as a function of time, plot a graph of the voltage vs time, and calculate the voltage value after t= 0.4 ms. C. Find the energy E(t), plot a graph of the energy vs time and, determine the energy stored at time t= 5 s.

Answers

To solve the given problem, let's go step by step:

A. Plot a graph of the current vs time:

We are given the current as a function of time, i(t) = t³ sinh(t) mA.We can plot this function over a desired time interval using a graphing tool or software. Here's an example plot:[Graph of current vs time]

B. Find the voltage across the capacitor as a function of time:

The voltage across a capacitor is given by the relationship:V(t) = (1/C) ∫[0 to t] i(t) dt + V₀In this case, C = 9 mF (microfarads) and V₀ is the initial voltage across the capacitor.To find the voltage value after t = 0.4 ms, substitute the given values into the equation and calculate V(0.4 ms).

C. Find the energy E(t) and plot a graph of energy vs time:

The energy stored in a capacitor is given by the relationship:

E(t) = (1/2) C V²(t)Substitute the values of C and V(t) (obtained from part B) into the equation to calculate the energy at different time points.Plot the graph of energy vs time using a graphing tool or software.To determine the energy stored at t = 5 s, substitute t = 5 s into the equation and calculate E(5 s).

About Voltage

Electric voltage or potential difference is the voltage acting on an element or component from one terminal/pole to another terminal/pole that can move electric charges.

Learn More About Voltage at https://brainly.com/question/30764403

#SPJ11

A manufacturer conducted an experiment for an evaporator capacity 500 kW cooling and designed for high COP of 2 when using lithium bromide plus water in an absorption refrigeration system. The evaporator operates 20 C, condenser 40 C & absorber 45 C supplying 1.37 kg/s of water plus lithium bromide solution to the generator. Concentration of the solution being pumped is found to be 52.7 % and the mass of the solution being throttled is found to be 1.180 kg/s. Determine:
Concentration and Enthalphy of the solution being throttled.
Show in your solution paper: Mass balance at the Generator
Provide in the answer box: % Concentration of solution being throttled
Answer in two decimal places.

Answers

The contracention of the solution being throttled is 52.70%.

The enthalpy of the solution being throttled is not provided in the question.

The concentration of the solution being throttled is given as 52.7%. This represents the percentage of lithium bromide in the solution that is being pumped.

The enthalpy of the solution being throttled is not provided in the given information. Enthalpy is a measure of the total energy content of a substance and is typically given in terms of energy per unit mass. Without the specific enthalpy value provided, it is not possible to determine the enthalpy of the solution being throttled.

To further analyze the system and determine the concentration and enthalpy of the solution being throttled, a mass balance at the generator is required. This balance would involve considering the mass flow rates of water and lithium bromide solution entering and leaving the generator, as well as any changes in concentration and enthalpy that occur during the process.

Learn more about absorption refrigeration systems

brainly.com/question/33440251

#SPJ11

For the periodic discrete-time signal x[] with a period x₁ [n] =n.0 Previous question

Answers

The period of x[] is N = 1. So, the period of the given signal x[] is 1.

The periodic discrete-time signal x[] with a period x₁ [n] =n.0. The period of x[] is given by:

x₂[n] = x_1 [n + n₁]

for some integer n₁.

The signal x[] is periodic if and only if it repeats after a certain interval of n. The signal x[n] = n.0 repeats every N sample when N is an integer, so the period of x[] is N:

If x[n] = n.0, then x[n + N] = (n + N).0 = n.0 = x[n]

Therefore, the period of x[] is N = 1. So, the period of the given signal x[] is 1.

Learn more about discrete-time signal :

https://brainly.com/question/15171410

#SPJ11

If the damper in a VAV box fails closed, the resulting impact to the temperature in a room served by the VAV duct is
a. heating and cooling would be impacted
b. only heating would be impacted
c. will increase load on other heating systems
d. provides on a constant air flow rate

Answers

If the damper in a VAV box fails closed, the resulting impact to the temperature in a room served by the VAV duct is:

c. will increase load on other heating systems.

What is VAV?

VAV is the acronym for Variable Air Volume. A VAV system modulates the volume of air supplied to a zone in response to the zone's heating or cooling requirements, rather than controlling the temperature of air supplied. A VAV box is an integral part of the VAV system, controlling the supply of conditioned air to the zone it serves.

What is the purpose of the damper in a VAV box?

The damper in a VAV box is responsible for regulating the amount of conditioned air that enters a room. It can either open or close to regulate airflow. If the damper in a VAV box fails, it may either get stuck open or stuck closed. When it fails closed, the resulting impact on the temperature in a room served by the VAV duct is that it will increase load on other heating systems. When the VAV box damper is stuck closed, it decreases the air supply to the room. As a result, there is a lower amount of warm air available to heat the room, resulting in an insufficient heating condition. This necessitates the other heating systems to provide a sufficient amount of warm air to the room.

Learn more about heating: https://brainly.com/question/934320

#SPJ11

Example of reversed heat engine is O none of the mentioned O both of the mentioned O refrigerator O heat pump

Answers

The example of a reversed heat engine is a refrigerator., the correct answer is "refrigerator" as an example of a reversed heat engine.

A refrigerator operates by removing heat from a colder space and transferring it to a warmer space, which is the opposite of how a heat engine typically operates. In a heat engine, heat is taken in from a high-temperature source, and part of that heat is converted into work, with the remaining heat being rejected to a lower-temperature sink. In contrast, a refrigerator requires work input to transfer heat from a colder region to a warmer region, effectively reversing the direction of heat flow.

Learn more about heat engine here:

brainly.com/question/30853813

#SPJ11

y(t) = cos(3t) — t · sin(t)
Please choose all properties that apply to the following system (you can choose more than one property):
Select one or more:
System is causal
System is stable
System is time-invariant
System is memoryless
System is linear
System is invertible

Answers

The given system Y(t) = cos(3t) - t · sin(t) exhibits the following properties: Causal: The system is causal because the output Y(t) depends only on the present and past values of the input. It does not depend on future values.

Stable: The system is stable because the input signal does not cause the output to grow infinitely or approach infinity.

Time-invariant: The system is time-invariant because the input-output relationship remains the same regardless of a time shift. If the input is delayed or advanced in time, the output is correspondingly delayed or advanced.

Memoryless: The system is memoryless because the output at any given time depends only on the current input value and not on any past inputs.

Non-linear: The system is non-linear due to the presence of the product term t · sin(t) in the output equation. It does not satisfy the property of linearity.

Non-invertible: The system is not invertible because it does not have a unique inverse mapping. Given the output Y(t), we cannot uniquely determine the input signal t.

Learn more about Time-invariant here:

https://brainly.com/question/31041284

#SPJ11

is the difference between the actual full-scale transition voltage and the ideal full-scale transition voltage. O aliasing O offset error O gain error O resolution Which of the following is not true concerning SDH * O Container may carry smaller streams as low as 1-Mbit/s Fundamental SDH frame is STM1 OIt employs Time-division multiplexing (TDM) STM4 provides four times the STM1 capacity

Answers

The difference between the actual full-scale transition voltage and the ideal full-scale transition voltage is called offset error.

Aliasing is an effect that occurs when a sampled signal is reproduced at a higher sampling rate than the original signal. This can cause distortion of the signal.

Gain error is the difference between the actual gain of an amplifier and its specified gain.

Resolution is the smallest change in input signal that can be detected by an ADC.

Container is a unit of data in SDH that can carry multiple lower-rate signals.

Fundamental SDH frame is STM-1, which is a 155.52 Mbit/s frame.

SDH employs Time-division multiplexing (TDM).

STM-4 provides 16 times the STM-1 capacity.

So the answer is O, offset error.

Here are some additional details about SDH:

SDH is a synchronous optical networking (SONET) standard that defines a way to transmit digital signals over optical fiber.SDH uses a hierarchical structure to multiplex multiple lower-rate signals into a single higher-rate signal.SDH is used for a variety of applications, including telecommunications, data networking, and video surveillance.

Learn more about gain error and full-scale transition voltages here:

https://brainly.com/question/12969915

#SPJ11

Other Questions
when a development team determines that it has over-committed itself for a sprint, who has to be present when reviewing and adjusting the sprint work selected? Industrial heat exchangers frequently use saturated steam for process heating requitements. As heat istransferred from the steam a saturated liquid (condensate) is produced. The condensate collects in thebottom of the heat exchanger where a float valve opens when the liquid reaches a certain level, allowingthe liquid to discharge. The float then drops down to its original position and the valve closes,preventing uncondensed steam from escaping. In this way the valve only allows liquid to pass through,preventing uncondensed steam from escaping, and provides simple means of controlling steam flow.a. Suppose saturated steam at 25 bar is used to heat 200 kg/min of an oil from 135oC to 185oC.Heat must be transferred to the oil at a rate of 2.50 x 104 kJ/min to accomplish this task. Thesteam condenses on the exterior of a bundle of the heat exchanger tubes through which the oil isflowing. Condensate collects in the bottom of the exchanger and exits through a float valve set todischarge when 2500 g of liquid is collected. How often does the trap discharge?b. Especially when periodic maintenance checks are not performed, float valves can fail to closecompletely and so leak steam continuously. Suppose the float valve for the oil heater of part (a)leaks such that on the average 10% additional steam must be fed to the heat exchanger tocompensate for the uncondensed steam released through the leak. Further suppose that the costof generating the additional steam is $7.50 per million Btu, where the denominator refers to theenthalpy of the leaking steam relative to liquid water at 20oC. Estimate the yearly cost of theleaks based on 24 h/day, 360 day/yr operation. Which job evaluation method is a quantitative technique involving the identification of several compensable factors and the degree to which each of these factors is present in the job? In monopolistic competition, a firm Group of answer choices Has a standardized product that all firms produce. Captures significant economies of scale. Has no market power. Has a downward-sloping demand curve. None of the Answers are Correct. an atom of the isotope chlorine-37 consists of how many protons, neutrons, and electrons? (p = proton, n = neutron, e = electron) There are advantages and disadvantages to different interview techniques. what might be an advantage that structured interviews have over unstructured (open-ended) interviews? yi c, burns s, hak dj: intraoperative fluoroscopic evaluation of screw placement during pelvic and acetabular surgery. j orthop trauma 2014;28:48-56. Community Colleges admit students using an open door with guided placement policy; however, four-year institutions nlike architects, whose primary motivation is the needs and interests of the client they are designing for, an urban planner's motivation is to plan with the public interest in mind. True False Which of the following would be expected to form hydrogen bonds with water? Choose all that apply. methylamine N-methylpropanamide cyclobutane ethyl methyl ketone None of the above looking back on the different categories of variables you analyzed (eating/drinking, urine, blood, experimental), in your opinion, which two specific results were the most important for distinguishing between control, diabetic, and the two populations of patients? justify your opinion. be sure to state two specific results (e.g. blood albumin) rather than a general category (e.g. blood test). (4 sentences max) . The height (in meters) of a projectile shot vertically upward from a point 2 m above ground level with an initial velocity of 24.5 m/s is h = 2 + 24.5t 4.9t2 after t seconds. (Round your answers to two decimal places.) (a) Find the velocity after 2 s and after 4 s. v(2) = v(4) = (b) When does the projectile reach its maximum height? Incorrect: Your answer is incorrect. s (c) What is the maximum height? (d) When does it hit the ground? (e) With what velocity does it hit the ground? Carolina invested $23,350 in two separate investment accounts. One of the accounts earned 9% annual interest while the other account earned 8% annual interest. If the combined interest earned from both accounts over one year was $1,961.00, how much money was invested in each account? Was invested in the account that earned 9% annual interest. $ was invested in the account that earned 8% annual interest. Let x1, ... x9 be a random sample dr~wn from the u(0. l] distribution. find the p.d.f.'s of x min. x mu, and the sample median x. If a child avoids school because he or she is afraid of being bullied, the child is probably demonstrating Group of answer choices Modeling Classical conditioning Which of the following activity costs should usually be ignored when making a decision regarding whether to eliminate a product?a) Product-level costsb) Batch-level costsc) unit level costsd) facility level costs How did title 3 effect accounability, assessmetn funding and identification in arizona? Find parametric equations for the line of intersection of the planes 5x+y2z=3 and 2x3y+5z=7 n 1970, the GDP deflator was 22.78. In 1971, the GDP deflator was 23.94. From this information we would say that that we had Oinflation of approximately 4.8%. we had inflation of approximately 7.9%. we had economic growth. we had economic growth we had inflation of approximately 5.1%. 1. the highest costs for ddi are: direct labor 2. which of the following is a fixed product cost? factory rent 3. which of the following are a variable manufacturing overhead cost? 4. what is the highest manufacturing overhead cost? 5. fixed products costs total what amount? 6. variable period costs total what amount?