Answer:
I think it's C
Explanation:
Molar mass (M) is equal to the mass of one mole of a particular element or compound; as such, molar masses are expressed in units of grams per mole (g mol–1) and are often referred to as molecular weights. The molar mass of a particular gas is therefore equal to the mass of a single particle of that gas multiplied by Avogadro’s number (6.02 x 1023 ). To find the molar mass of a mixture of gases, you need to take into account the molar mass of each gas in the mixture, as well as their relative proportion.
A heat pump has a coefficient of performance of 3.85 and operates with a power consumption of 7020 W. How much energy does it deliver into a home during 1 h of continuous operation?
Answer:
97.3 MJ
Explanation:
The formula for the coefficient of Perfomance is given as
COE = Q/W, where
COE is the coefficient of Perfomance
Q is the heat provided
W serves as the work input.
Dividing both sides of the equation by a factor of time t, we get the coefficient of Perfomance in terms of heating power and input power, so we say
COE = P / P(i),
making heating power, P the subject of formula, we have
P = COE * P(i)
P = 3.85 * 7020 * 1 * 3600
P = 97297200 J
P = 97.3 MJ
20 pts.
Which of the following statements is true?
O Electromagnets use electrlcity and magnets.
O Magnetic fields are strongest around the poles of a magnet.
O The south pole of a magnet will repel the south pole of another magnet.
O all of the above
Answer:
all are true so d is right
Explanation:
Electromagnets use electrlcity and magnets is true.
Magnetic fields are strongest around the poles of a magnet is true.
The south pole of a magnet will repel the south pole of another magnet is true
and since all of them is true the answer is d all of the above
A carousel at the local carnival rotates once every 45 seconds.
(a) What is the linear speed of an outer horse on the carousel, which is 2.75 m from the axis of rotation?
(b) What is the linear speed of an inner horse that is 1.75 m from the axis of rotation?
Answer:
We know that the carousel does a complete rotation in 45 seconds.
Then the frequency of this carousel will be f = 1/45 seconds.
And the angular frequency will be 2*pi times the frequency, then we have:
angular frequency = w = 2*3.14*(1/45s) = 0.1396 s^-1
Now, the linear speed of an object that rotates with a radius R, and an angular frequency W is:
S = R*W
then:
a) in this case the radius is 2.75m, then the linear speed is:
S = 2.75m*0.1396 s^-1 = 0.3839 m/s
b) in this case the radius is 1.75m, then the linear speed here is:
S = 1.75m*0.1396 s^-1 = 0.2443 m/s
(a) The linear speed of an outer horse on the carousel is 0.384 m/s.
(b) The linear speed of an inner horse on the carousel is 0.244 m/s.
Given data:
The time interval for the rotation of carousel is, t = 45 s.
The distance of the outer horse from the axis of rotation is, r = 2.75 m.
The distance of an inner horse from the axis of rotation is, r' = 1.75 m.
(a)
The linear speed in this problem can be obtained from the concept of rotational mechanic, in which the ratio of the circumference and the time gives required linear speed. So,
v = 2 π r/t
Solving as,
v = 2 π (2.75) / 45
v = 0.384 m/s
Thus, we can conclude that the linear speed of an outer horse on the carousel is 0.384 m/s.
(b)
Now similarly the linear speed of an inner horse is calculated as,
v' = 2 π r' / t
Solving as,
v' = 2 π (1.75) / 45
v' = 0.244 m/s
Thus, we can conclude that the linear speed of an outer horse on the carousel is 0.244 m/s.
Learn more about the rotational mechanics here:
https://brainly.com/question/18303026
explain an experiment of the phenomenon of rainfall
Unclear/incomplete question. However, I inferred you need an explanation of the phenomenon of rainfall.
Explanation:
Basically, the phenomenon of rainfall follows a natural cycle called the water cycle. What we call 'rainfall' occurs when water condensed (in liquid form) in the atmosphere is made to fall down on the ground as tiny droplets as a result of the forces of gravity.
The water cycle makes rainfall possible:
First, water on the earth's surface is evaporated (or is absorbed into) the atmosphere.Next, it then condensed into liquid form; which later falls to the surface to the ground again. And the process continues.If the social distancing length between two students is doubled from two metered to four meters, does the gravitational force between the two students increase or decrease?
Explain your reasoning!
Answer:
the gravitational force decreases
Through what angle in degrees does a 33 rpm record turn in 0.32 s?
63°
35°
46°
74°
Answer:
1 rev = 2(pi) rad pi(rad) = 180 degrees
so 33 rev/min * 1 min/60s * (2*pi)rad/1 rev *180 deg/ pi rad * .32 s = 63.36 degrees
Explanation:
63.36 estimated to 63 so 63
The angle in degrees where 33 rpm record turn in 0.32 s should be considered as the 63 degrees.
Calculation of the angle:Since we know that1 rev = 2(pi) rad
So here pi(rad) = 180 degrees
Now for 33 rpm it should be like
= 33 rev/min * 1 min/60s * (2*pi)rad/1 rev *180 deg/ pi rad * .32 s
= 63.36 degrees
= 63 degrees
hence, The angle in degrees where 33 rpm record turn in 0.32 s should be considered as the 63 degrees.
Learn more about an angle here: https://brainly.com/question/3394547
PLEASE HELP :(
I WILL GIVE EXTRA POINTS
1. When is the kinetic energy of an electron transformed into potential energy?
when it interacts with other electrons, decreasing its speed
when it interacts with neutrons without changing its speed
when it interacts with neutrons , increasing its speed
when it interacts with other electrons without changing its speed
2. Atoms bond to form molecules. Which structures or regions of the atoms interact in bonds ?
electric fields of particles with positive charge
electric fields of particles with no charge
electric fields of particles with negative charge
electric fields of particles with opposite charges
3. If two electrons that are apart get pushed toward each other, how does the repulsion between them change?
Initial repulsion is low and decreases as they approach .
Initial repulsion is high and decreases as they approach .
Initial repulsion is high and increases as they approach .
Initial repulsion is low and increases as they approach .
4. A positive charge of 5.0x10 ^ -5 C °is 0.040 m from a second positive charge of 2.0x10 ^ -6 C Calculate the force between the charges.
5.6x10^2 N
5.6x10^2 N
1.4X10^-2 N
2.3X10^1 N
(a) When the kinetic energy of an electron is transformed into potential energy is when it interacts with other electrons, decreasing its speed.
(b) The region of atoms that interact in bonds is electric fields of particles with negative charge.
(c) Initial repulsion is low and increases as they approach.
(d) The force between the charges is 562.5 N.
Kinetic theory of matter
This theory states that, the collision of particles (electrons) of matter is perfectly elastic. This implies that as the particles (electrons) collides with one another, kinetic energy is transferred from one electron to another.
ΔK.E = ΔP.E
Change in kinetic energy is equal to change in potential energy of the electrons.
Thus, when the kinetic energy of an electron is transformed into potential energy is when it interacts with other electrons, decreasing its speed. Decrease in speed implies decrease in kinetic energy and increase in potential energy.
Chemical bonds of moleculesChemical bond is formed from the transfer or sharing of electrons between atoms. (electrons between atoms implies negative charge to negative charge)
Thus, the region of atoms that interact in bonds is electric fields of particles with negative charge.
Coulomb's law
This law states that the force of attraction or repulsion between two charges is directly proportional to the product of the charges and inversely proportional to the distance between the charges.
[tex]F = \frac{kq_1q_2}{r^2}[/tex]
When the distance between the electrons are large, the repulsive force is low and the distance is small, the repulsive force is high.
Force between the chargesThe force between the charges is determined by applying Coulomb's law,
[tex]F = \frac{kq_1q_2}{r^2} \\\\F = \frac{9\times 10^9\times (5 \times 10^{-5}) \times (2\times 10^{-6})}{0.04^2} \\\\F = 562.5 \ N[/tex]
Learn more about Coulomb's law here: https://brainly.com/question/24743340
Two motorcycles are traveling due east with different velocities. However, 3.63 seconds later, they have the same velocity. During this 3.63-second interval, motorcycle A has an average acceleration of 4.55 m/s2 due east, while motorcycle B has an average acceleration of 18.9 m/s2 due east. (a) By how much did the speeds differ at the beginning of the 3.63-second interval, and (b) which motorcycle was moving faster
Answer:
52.095 m/s
Motorcycle a was moving faster
Explanation:
We start by using one of the equations of motion
V = u + at
If the first motorcycle starts with an initial speed of u(a) and accelerates at a value of a(a) = 4.55 m/s², then the final speed after a time of 3.63 seconds is V(a). We then represent it as
V(a) = u(a) + a(a).t
If the second motorcycle starts with an initial speed of u(b) and accelerates at a value of a(b) = 18.9 m/s², then the final speed after a time of 3.63 seconds is V(b). We then represent it as
V(b) = u(b) + a(b).t
Assuming that the final speeds v(a) = v(b), and then subtract the equation of the second motorcycle from that of the first, we have
0 = u(a) - u(b) + a(a).t - a(b).t
-u(a) + u(b) = a(a).t - a(b).t, on rearranging, we have
u(b) - u(a) = [a(a) - a(b)]t
Since we have the values for acceleration and the time, we substitute so that
u(b) - u(a) = (4.55 - 18.9)3.63
u(b) - u(a) = -14.35 * 3.63
u(b) - u(a) = -52.095, or we rearrange to get
u(a) - u(b) = 52.095 m/s
What would be the coefficient of performance if the refrigerator (operating between the same temperatures) was instead used as a heat pump?
COP =
Complete Question
A certain refrigerator, operating between temperatures of -8.00°C and +23.2°C, can be approximated as a Carnot refrigerator.
What is the refrigerator's coefficient of performance? COP
(b) What If? What would be the coefficient of performance if the refrigerator (operating between the same temperatures) was instead used as a heat pump? COP
Answer:
a
[tex]COP = 8.49[/tex]
b
[tex]COP_1 = 9.49[/tex]
Explanation:
From the question we are told that
The lower operation temperature of refrigerator is [tex]T_1 = -8.00^oC = 265 \ K[/tex]
The upper operation temperature of the refrigerator is [tex]T_2 = 23.2 ^oC = 296.2 \ K[/tex]
Generally the refrigerators coefficient of performance is mathematically represented as
[tex]COP = \frac{T_1}{T_2 - T_1 }[/tex]
=> [tex]COP = \frac{265}{296.2 - 265 }[/tex]
=> [tex]COP = 8.49[/tex]
Generally if a refrigerator (operating between the same temperatures) was instead used as a heat pump , the coefficient of performance is mathematically represented as
[tex]COP_1 = \frac{T_2}{ T_2 - T_1}[/tex]
=> [tex]COP_1 = \frac{296.2}{ 296.2 - 265 }[/tex]
=> [tex]COP_1 = 9.49[/tex]
The coefficient of performance if the refrigerator is used as a heat pump is 9.5.
The given parameters;
initial temperature, T₁ = -8 ⁰C = -8 + 273 = 265 Kfinal temperature, T₂ = 23.2°C = 23.2°C + 273 = 296.2 KThe coefficient of performance if the refrigerator is used as a heat pump is calculated as follows;
[tex]COP = \frac{T_2}{T_2 - T_1}\\\\COP = \frac{296.2}{296.2 - 265} \\\\COP =9.5[/tex]
Thus, the coefficient of performance if the refrigerator is used as a heat pump is 9.5.
"Your question is not complete, it seems to be missing the following information";
A certain refrigerator, operating between temperatures of -8.00°C and +23.2°C, can be approximated as a Carnot refrigerator.
What would be the coefficient of performance if the refrigerator (operating between the same temperatures) was instead used as a heat pump?
Learn more about coefficient of performance here: https://brainly.com/question/20713684
what is mean by combination reaction ?
[tex] \underline{\purple{\large \sf Combination \: reaction :-}} [/tex]
Those reaction in which two or more substances combine to form a one new substance are called Combination reaction
In this reaction, We can add :
Two or more elements can combine to form a compound.Two or more compounds can combine to from a one new compound.An element and a compound can combine to form a new compound.[tex] \underline{\green{\large \sf For\: example :}} [/tex]
[tex] \sf 2H_{2} + O_{2} \: \underrightarrow{Combination} \: 2H_{2}o[/tex]
In this, Hydrogen is an element and Oxygen is another element. Both are combined to form compound 'Hydrogen oxide'. Hydrogen oxide is commonly known as water.
What is the condition required of the phase difference (in radians) between two waves with the same wavelength if these waves interfere constructively?
a. (2m +1)π where m= 0, +1, +2, etc.
b. mπ where m = 0, +1, +2, etc.
c. 2mπ where m = 0, +1, +2, etc.
d. (m+1)π where m = 0, +1, +2, etc.
Answer:
c.
Explanation:
In order to two waves with the same wavelength can interfere constructively, their crests and valleys must coincide in space, so the phase difference must be equal to an integer number of wavelengths, i.e. m *(2 π rad), where m= 0, +1, +2, etc.This is equal to the stated by the answer c) , so c) it's the right answer.A plumber applies a torque of 408 to a bolt using a wrench. If he moves his hand twice as far
away on the wrench's handle from the bolt (doubling the radius), but applies the same force
as before, how much torque will he now apply?
Answer:
816
Explanation:
We must remember that torque is defined as the product of a force by a distance.
This distance is measured from the pivot point of the Bolt to the point where the force is applied. in this way, we have the following equation to be able to determine the torque.
[tex]T=F*d[/tex]
Now if we double the turning distance we have the torque should also be double.
[tex]T =F*2*d[/tex]
Help me please,
A ball is thrown straight up in the air. What is the velocity and acceleration at the top of the path?
A) v 0m/s, = 0m/s/s
B) v = 0m/s, a 10m/s/s
C) v = 10m/s, a 10m/s/s
D) v = 10m/s, a = 0m/s/s
E) None of the above
Option B
Explanation:
no distance was given only the acceleration due to the fact that it went up (10m/s/s)
s0 it is
0 m/s and 10m/s/s (option B)
Two spheres, 1.00 kg each, whose centers are 2.00 m apart, would have what gravitational force between them? A. 3.14 X 10-17 N
B. 1.67 X 10-11 N
C. 8.17 X 10-6N
D. 5.78 X 10-6 N
Answer: B
Explanation: the teacher just told us the answer
The gravitational force between the two spheres is [tex]1.67 \times 10^{-11} \ N[/tex].
The given parameters;
mass of each sphere, m = 1.00 kgdistance between their center mass, r = 2 mThe gravitational force between the two spheres is determined by applying Newton's law of universal gravitation as shown below;
[tex]F = \frac{Gm_1 m_2 }{r^2} \\\\[/tex]
where;
G is universal gravitation constant = 6.67 x 10⁻¹¹ N/m[tex]F = \frac{(6.67\times 10^{-11})\times (1\times 1)}{2^2} \\\\F = 1.67 \times 10^{-11} \ N[/tex]
Thus, the gravitational force between the two spheres is [tex]1.67 \times 10^{-11} \ N[/tex].
Learn more here:https://brainly.com/question/13590473
How would the mass and weight of an object on the Moon compare to the mass and weight of the same object on Earth? * Mass and weight would both be less on the Moon. Mass would be the same but its weight would be less on the Moon. Mass would be less on the Moon and its weight would be the same. Mass and weight would both be the same on the Moon.
Answer:
B. Mass would be the same but its weight would be less on the Moon.
Explanation:
The mass of a body can be expressed as the quantity of matter it contains. While the weight of a body is the extent of the gravitational force impressed on the body by a massive body.
Thus, the mass of a body is constant either on the Earth or on the Moon. But the weight would be less on the Moon because the gravitational force on the Moon is far less than that on the Earth. Therefore the weight would be less on the Moon.
The appropriate option is B.
The mass will remain same on both moon and Earth, but weight will be lesser on Moon than Earth. Hence, option (B) is correct.
The prime focus to solve this problem is the mass and weight of an object. The mass of a body can be expressed as the quantity of matter it contains. While the weight of a body is the extent of the gravitational force impressed on the body by a massive body.
So, the mass of a body is constant either on the Earth or on the Moon. But the weight of an object will depend on the mass and the gravitational acceleration.
W = mg
Here, W is weight, m is mass and g is gravitational acceleration.
Weight would be less on the Moon because the gravitational force on the Moon is far less (due to lower value of g) than that on the Earth. Therefore the weight would be less on the Moon.
Thus, we can conclude that the mass will remain same on both moon and Earth, but weight will be lesser on Moon than Earth. Hence, option (B) is correct.
Learn more about the mass and weight here:
https://brainly.com/question/13040516
Suppose a uniform solid sphere of mass M and radius R rolls without slipping down an inclined plane starting from rest. The linear velocity of the sphere at the bottom of the incline depends on?
Answer:
None of the mass or the radius of the sphere
Explanation:
When a uniform solid sphere of any given mass, say M and any given radius, say R, rolls without slipping downwards an inclined plane that starts from rest. The linear velocity of the sphere at about the bottom of the inclined happens not to depend on either of its mass or that of the radius of its sphere.
A radioactive nuclide of atomic number Z emits an alpha particle and the daughter nucleus then emits a beta particle. What is the atomic number of resulting nuclide?
A) Z-1
B) Z+1
C) Z-2
D) Z-3
Answer:
A) Z-1
Explanation:
when a radioactive element of atomic number Z emits an alpha particle, the mass of the new nucleus decreases by 2, i.e the new atomic number of the element = ( Z- 2).
Also, when the daughter nucleus emits a beta particle, the new nucleus increases by 1, that is the new atomic number of the element = (Z + 1).
Thus, the atomic number of resulting nuclide = Z ( - 2) + ( + 1).
= Z - 2 + 1
= Z - 1
Therefore, the atomic number of resulting nuclide is Z - 1
A 1.2-kg object moving with a speed of 8.0 m/s collides perpendicularly with a wall and emerges with a speed of 6.0 m/s in the opposite direction. If the object is in contact with the wall for 2.0 ms, what is the magnitude of the average force on the object by the wall?
a. 9.8 kN.
b. 8.4 kN.
c. 7.7 kN.
d. 9.1 kN.
e. 1.2 kN.
Given that,
Mass of the object, m = 1.2 kg
Initial speed of the object, u = 8 m/s
Final speed of the object, v = -6 m/s (in opposite direction)
Time, t = 2 ms
To find,
The average force on the object by the wall.
Solution,
Let F be the force. Using Newton's second law of motion,
F = ma, a is acceleration
[tex]F=\dfrac{m(v-u)}{t}\\\\F=\dfrac{1.2\times ((-6)-8)}{2\times 10^{-3}}\\\\=8400\ N[/tex]
or
F = 8.4 N
So, the magnitude of average force in the object by the wall is 8.4 N.
A disk rotates at a constant angular velocity of 30 degrees per second. Consider a point on the edge of the disk. Through how many degrees has it rotated after 3 seconds?
Answer:
The disk covers a rotation of 90º after 3 seconds.
Explanation:
Since the disk rotates at constant angular speed, we can determine the change in angular position ([tex]\Delta \theta[/tex]), measured in sexagesimal degrees, by the following kinematic formula:
[tex]\Delta \theta = \omega\cdot \Delta t[/tex] (1)
Where:
[tex]\omega[/tex] - Angular velocity, measured in sexagesimal degrees per second.
[tex]\Delta t[/tex] - Time, measured in seconds.
If we know that [tex]\omega= 30\,\frac{\circ}{s}[/tex] and [tex]\Delta t = 3\,s[/tex], then the change in angular position is:
[tex]\Delta \theta = \left(30\,\frac{\circ}{s} \right)\cdot (3\,s)[/tex]
[tex]\Delta \theta = 90^{\circ}[/tex]
The disk covers a rotation of 90º after 3 seconds.
PLEASE HELP ME ASAP!! GUYSSS!! I AM IN CLASS AND DYING! LITERALLY
Billy and Ashley live in the same time zone. Billy lives in Brazil (blue smiley face on the image below). Ashley lives in Eastern Canada (yellow smiley face on the image below).
One day, Billy and Ashley are both outside at 1:32 pm. They are talking on the phone to each other. As they talk, Billy notices the sky in Brazil getting progressively darker. Eventually, it feels like it is nighttime, because it is so dark. Billy thinks the world is coming to an end. He asks Ashley if she is experiencing the same thing in Canada. Ashley has no idea what he is talking about. “It’s perfectly bright and sunny where I am,” she says.
Ashley and Billy conclude that the world is not coming to an end. They reach out to some 7th graders to figure out what is happening. The 7th graders tell Billy that he is experiencing a solar eclipse. To help Billy and Ashley understand, create a model to show why Billy is experiencing an eclipse in Brazil, but Ashley is not experiencing the eclipse in Canada.
Your model must include:
The sun, the earth, the moon, and solar energy (clearly labeled).
How accurate your scale is.
How solar energy interacts with both the moon and with Earth.
The tilt of the moon’s orbit relative to the Earth’s orbit
Why Billy is experiencing the solar eclipse and why Ashley is not.
Answer:
sounds like a you problem
Explanation:
yeah
A major league pitcher can throw a baseball an excess of
*
If a rock falls for 3 seconds off of a bridge, how far will the rock fall?
-30 m
-45m
-60m
-75m
A block of mass, m, sits on the ground. A student pulls up on
the block with a tension, T, but the block remains in contact
with the ground. What is the normal force on the block?
Answer a
Explanation: a
two spheres A and B are projected off the edge of a 1.0 m high table with the same horizontal velocity . sphere A has a mass of 20.g and sphere B has a mass of 10.g.
If both spheres leave the edge of the table at the same instant, sphere A will land
a. at some time after sphere B.
b. at the same time as sphere B.
c. at some time before sphere B.
d. There is not enough information to decide.
A would land before since its heavier
A bicycle has a momentum of 36 kg* m/s and a very!I city of 4 m/s.What is the mass of the bicycle?
p = 36 kgm/s
v = 4m/s
we know that,
p = mv
so,
[tex]m = \frac{p}{v} [/tex]
[tex]m = \frac{36}{4} [/tex]
[tex]m = 9kg[/tex]
A popular ride at an amusment park lifts
customers up to a height of 50 m and then
drops them threw a displacement of 50 m
before slowing them to a stop. How fast
are the customers going at the 50 m
mark?
Answer:
[tex]31.32\ m/s[/tex]
Explanation:
[tex]We\ are\ given\ that:\\Height\ to\ which\ there're\ lifted=50m\\Displacement\ during\ the\ descent=50m\\Now,\\In\ order\ to\ find\ the\ velocity\ of\ the\ customers\ at\ 50\ m,\\We\ can\ use\ the\ Third\ Equation\ Of\ Motion,\ which is:\\2as=v^2-u^2\\As\ we\ know\ that,\\Acceleration\ due\ to\ gravity=9.81\ m/s^2\ or\ roughly\ 10\ m/s^2\\Displacement=50\ m\\Initial\ velocity=0\ m/s^2\\ [As\ they\ stop\ when\ they\ reach\ the\ maximum\ height\ of\ 50\ m\\ and\ begin\ their\ descent][/tex]
[tex]By\ reconstructing\ the\ Third\ Equation\ Of\ Motion,\ we\ have:\\2gs=v^2\\Hence,\\v^2=2*9.81*50 \\v^2=981\ m^2/s^2 \\v=\sqrt{981\ m^2/s^2} \\v=31.32\ m/s[/tex]
Define conductor and insulator, including how the resistance is different in the two, and give at least one example of each.
Answer:
Those substances which can conduct electricity are called conductors, while those substances which don't conduct electricity are called insulators.
Resistance is the obstruction provided by the material through which the current passes,so since conductors conduct electricity and insulators don't,so the obstruction i.e resistance provided by the conductor must be less,while insulators being unable to conduct electricity,has very high resistance.
Example of conductor is copper
Example of insulator is plastic
A 2150 kg car, moving east at 10.0 m/s, collides and joins with a 3250 kg car. The cars move east together at 5.22 m/s. What is the 3250 kg car’s initial velocity calculated to the nearest tenth? Record your answer in the boxes below. Be sure to use the correct place value.
Answer:
2.1 m/s
Explanation:
According to law of conservation of momentum;
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the common velocity
Given
m1 = 2150kg
m2 = 3250kg
u1 = 10.0m/s
u2 = ?
v = 5.22m/s
Substitute and get u2
2150(10) + 3250u2 = (2150+3250)5.22
21,500 + 3250u2 = 5400(5.22)
3250u2 = 28,188 - 21500
3250u2 = 6688
u2 = 6688/3250
u2 = 2.1 m/s
Hence the 3250 kg car’s initial velocity has an initial velocity of 2.1 m/s
A stretched string is observed to have four equal segments in a standing wave driven at a frequency of 480 Hz. What driving frequency will set up a standing wave with five equal segments?
a) 360 Hz.b) 240 Hz.c) 600 Hz.d) 120 Hz.
Answer:
C) 600 Hz
Explanation:
The fundamental frequency can be related to the driving frequency by the expression below;
f(n) = n * f(1)
Where f(1)= fundamental frequency
f(n) = driving frequency
There are four equal segments in the standing wave , then our n= 4 and our f(n)=4, then we can get the fundamental frequency here
f(4) = 4× f(1)
480 = 4× f(1)
f(1) = 480/4
f(1)=120Hz
Hence, fundamental frequency is 120Hz
To calculate the driving frequency that will set up a standing wave with five equal segments?
n=5
f(n) = n× 120Hz
f(5) = 5×120Hz
= 600Hz.
Hence, the driving frequency that will set up a standing wave with five equal segments is 600Hz
A rigid tank contains an ideal gas at 300 kPa and 600 K. Now half of the gas is withdrawn from the tank and the gas is found at 100 kPa at the end of the process. Determine (a) the final temperature of the gas and (b) the final pressure if no mass was withdrawn from the tank and the same final temperature was reached at the end of the process.