The variable has a global scope and is related to mathematical expressions or equations for representing the unknown value.
In mathematics, the concept of scope is not directly applicable to variables in the same way it is in computer programming. In mathematics, variables typically have a global scope, meaning they are valid and accessible throughout the entire mathematical expression or equation in which they are defined.
Mathematical variables are used to represent unknown values or quantities, and their scope is typically determined by the mathematical expression or equation in which they are used. Variables in mathematics can be used within their defined context, such as an equation or formula, to represent specific values or relationships between quantities. They do not have the same localized scope as variables in programming, where their visibility is limited to specific parts of a program.
In summary, in mathematics, variables typically have a global scope, and their scope is determined by the mathematical expression or equation in which they are used.
Learn more about variables here:
https://brainly.com/question/15078630
#SPJ4
The probability of an adult individual in the UK contracting Covid-19 if they work for the NHS (National Health Service) is 0.3. 9 % of the UK adult population work for the NHS. What is the probability of an adult individual in the UK catching a Covid-19 variant and working in the NHS ?
The probability of an adult individual in the UK catching a Covid-19 variant and working in the NHS is 0.027, or 2.7%.
To calculate the probability of an adult individual in the UK catching a Covid-19 variant and working in the NHS, we need to use conditional probability.
Let's denote the following events:
A: Individual catches a Covid-19 variant
N: Individual works for the NHS
We are given:
P(A|N) = 0.3 (Probability of catching Covid-19 given that the individual works for the NHS)
P(N) = 0.09 (Probability of working for the NHS)
We want to find P(A and N), which represents the probability of an individual catching a Covid-19 variant and working in the NHS.
By using the definition of conditional probability, we have:
P(A and N) = P(A|N) * P(N)
Substituting the given values, we get:
P(A and N) = 0.3 * 0.09 = 0.027
Therefore, the probability of an adult individual in the UK catching a Covid-19 variant and working in the NHS is 0.027, or 2.7%.
Learn more about probability from
https://brainly.com/question/30390037
#SPJ11
1) give at least 2 examples of discrete structures.
2) explain each of the following: argument, argument form,
statement, statement form, logical consequence
3) give your own opinion on a logical cons
Two examples of discrete structures are: a) Graphs: Graphs consist of a set of vertices (nodes) connected by edges (lines). They are used to represent relationships between objects or entities. b) Sets: Sets are collections of distinct elements. They can be finite or infinite and are often used to represent groups or collections of objects.
Argument: An argument is a collection of statements where some statements (called premises) are presented as evidence or reasons to support another statement (called the conclusion).
Argument form: An argument form is a pattern or structure that represents a general type of argument, disregarding the specific content of the statements.
Statement: A statement is a declarative sentence that is either true or false, and it makes a claim or expresses a proposition.
Statement form: Statement form refers to the structure of a statement, abstracting away from its specific content and variables, if any.
Logical consequence: Logical consequence refers to the relationship between a set of premises and a conclusion. If the truth of the premises guarantees the truth of the conclusion, then the conclusion is said to be a logical consequence of the premises.
Opinion on logical consequence:
Logical consequence plays a crucial role in reasoning and evaluating arguments. It helps us understand the logical relationships between statements and determine the validity of arguments. In my opinion, logical consequence provides a systematic and rigorous framework for analyzing and assessing the validity and soundness of arguments. By identifying logical consequences, we can determine whether an argument is valid (i.e., the conclusion follows logically from the premises) or invalid.
It helps in making well-reasoned and justified conclusions based on logical relationships rather than personal biases or opinions. Logical consequence serves as a foundation for logical reasoning and critical thinking, enabling us to construct and evaluate logical arguments in various domains.
It provides a common language and method for analyzing arguments, allowing for clear communication and effective reasoning. Overall, understanding logical consequence is essential for developing sound arguments, evaluating information, and making rational decisions.
To know more about Graphs , visit;
https://brainly.com/question/17267403
#SPJ11
Keon recorded the amount of water used per load in different types of washing machines functions
What are the domain and range of the relation?
Is the relation a function?
a. Yes, the relation is a function.
b. The domain of the relation is {2, 4, 6} and the range of the relation is {14, 28, 42}.
What is a function?In Mathematics and Geometry, a function defines and represents the relationship that exists between two or more variables in a relation, table, ordered pair, or graph.
Part a.
Generally speaking, a function uniquely maps all of the input values (domain) to the output values (range). Therefore, the given relation represents a function.
Part b.
By critically observing the table of values, we can reasonably infer and logically deduce the following domain and range;
Domain of the relation = {2, 4, 6}.
Range of the relation = {14, 28, 42}.
Read more on function here: brainly.com/question/27862183
#SPJ4
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
Determine limx→[infinity]f(x) and limx→−[infinity]f(x) for the following function. Then give the horizontal asymptotes of f (if any). f(x)=19x4−2x41x5+3x2 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→[infinity]f(x)= (Simplify your answer.) B. The limit does not exist and is neither [infinity] nor −[infinity]. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→−[infinity]f(x)= (Simplify your answer.) B. The limit does not exist and is neither [infinity] nor −[infinity]. Identify the horizontal asymptotes. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. A. The function has one horizontal asymptote, (Type an equation using y as the variable.) B. The function has two horizontal asymptotes. The top asymptote is and the bottom asymptote is (Type equations using y as the variable.) C. The function has no horizontal asymptotes.
The function has one horizontal asymptote, which is the x-axis `y=0`.
Given function is `f(x)=19x^4−2x^4/(1x^5+3x^2)` To determine `lim x→[infinity]f(x)` and `lim x→−[infinity]f(x)` for the above function, we have to perform the following steps:
Step 1: First, we find out the degree of the numerator (p) and the degree of the denominator (q).p = 4q = 5 Therefore, q > p.
Step 2: Now, we can find the horizontal asymptote by using the formula: `y = 0`
Step 3: Determine the limits:` lim x→[infinity]f(x)`Using the formula, the horizontal asymptote is `y = 0`When x approaches positive infinity, we get: `lim x→[infinity]f(x) = 19x^4/1x^5 = 19/x`.
Since the numerator (p) is smaller than the denominator (q), the limit is equal to zero.
Hence, `lim x→[infinity]f(x) = 0`. The horizontal asymptote is `y = 0`.`lim x→−[infinity]f(x)`Using the formula, the horizontal asymptote is `y = 0`When x approaches negative infinity, we get: `lim x→−[infinity]f(x) = 19x^4/1x^5 = 19/x`.
Since the numerator (p) is smaller than the denominator (q), the limit is equal to zero. Hence, `lim x→−[infinity]f(x) = 0`.
The horizontal asymptote is `y = 0`.Thus, the answer is A. The function has one horizontal asymptote, which is the x-axis `y=0`.
For more such questions on horizontal asymptote
https://brainly.com/question/4138300
#SPJ8
42% of items in a shop are made in China.
a. We choose an item at random. What is the chance that it is made in China?
(Answer in format 0.11) Answer
b. What is the chance that it is not made in China?
(Answer in format 0.11) Answer
c. We randomly select 4 items from that shop. What is the chance that all of them are made in China?
(Answer in % format 1.11) Answer
d. We randomly select 6 items from that shop. What is the chance that none of them are made in China?
(Answer in % format 1.11) Answer
a) The probability that a randomly chosen item is made in China is 0.42. This can be represented in decimal form as 0.42 or in percentage form as 42%.
We are given that 42% of the items in a shop are made in China. We have to find the probability of selecting an item that is made in China.
Since there are only two possibilities - the item is either made in China or not made in China, the sum of the probabilities of these two events will always be equal to 1.
The probability that an item is not made in China is equal to 1 - 0.42 = 0.58.
Therefore, the probability of selecting an item that is not made in China is 0.58 or 58% (in percentage form).
b) The probability that an item is not made in China is 0.58. This can be represented in decimal form as 0.58 or in percentage form as 58%.
We have already found in part (a) that the probability of selecting an item that is not made in China is 0.58 or 58%.
c) The probability that all four items are made in China can be calculated using the multiplication rule of probability. The multiplication rule states that the probability of two or more independent events occurring together is the product of their individual probabilities.
Since the items are selected randomly, we can assume that the probability of selecting each item is independent of the others. Therefore, the probability of selecting four items that are all made in China is:
0.42 × 0.42 × 0.42 × 0.42 = 0.0316
Therefore, the probability that all four items are made in China is 0.0316 or 3.16% (in percentage form).
d) The probability that none of the six items are made in China can be calculated using the complement rule of probability. The complement rule states that the probability of an event occurring is equal to 1 minus the probability of the event not occurring.
Therefore, the probability that none of the six items are made in China is:
1 - (0.42)⁶ = 0.099 or 9.9% (in percentage form).
The probability of selecting an item that is made in China is 0.42 or 42%. The probability of selecting an item that is not made in China is 0.58 or 58%. The probability that all four items are made in China is 0.0316 or 3.16%. The probability that none of the six items are made in China is 0.099 or 9.9%.
To know more about probability visit
https://brainly.com/question/31828911
#SPJ11
A rectangular field is to be enclosed by 760 feet of fence. One side of the field is a building, so fencing is not required an that side. If x denctes the length of one slac of the rectangle perpendicular to the building, determine the function in the variable x ging the area (in square feet) of the fenced in region Mrea. as a function of x= Oeterrmine the damain of the area function. Enter your answer using interval notation, bomain of area functian =
Hence, the domain of the area function is (0, 380).The area function is: A(x) = 760x − 2x².
Given, A rectangular field is to be enclosed by 760 feet of fence.
One side of the field is a building, so fencing is not required on that side.
Let one side of the field perpendicular to the building be x and another side parallel to the building be y.
Therefore, 2x + y = 760
Area of the rectangle, A = xyAlso,
y = 760 − 2x.
A = x(760 − 2x)
= 760x − 2x².
A is the function of x.To find the domain of the area function, we need to consider two conditions:
x should be positive and 760 − 2x should be positive.760 − 2x > 0 ⇒ x < 380x > 0
Therefore, the domain of the area function is {x | 0 < x < 380}.
Hence, the domain of the area function is (0, 380).The area function is: A(x) = 760x − 2x².
To know more about function visit;
brainly.com/question/30721594
#SPJ11
help plssssssssssssssss
The third one - I would give an explanation but am currently short on time, hope this is enough.
Use the rules of differentiation to obtain the partial (first) derivatives of the following functions: 1. (Cobb-Douglas production function example) Q=K^2L^8
a. With respect to K : b. Interpretation of the partial derivative with respect to K : c. With respect to L: d. Interpretation of the partial derivative with respect to L
a) To find the partial derivative of the Cobb-Douglas production function example with respect to K, the rule of differentiation with respect to a single variable is applied.
By treating L as a constant and differentiating with respect to K, we have:
Q= K²L⁸; partial derivative of Q with respect to K = ∂Q/∂K= 2KL⁸
b) The interpretation of the partial derivative with respect to K is that if there is an increase in the value of capital K by one unit, and keeping the value of labor L constant, the marginal product of capital (MPC) is 2KL⁸, which is the rate of change of output (Q) for each unit of capital (K) increase.
Know more about differentiation here:
https://brainly.com/question/954654
#SPJ11
estimate the number of calory in one cubic mile of chocalte ice cream. there are 5280 feet in a mile. and one cubic feet of chochlate ice cream, contain about 48,600 calories
The number of calory in one cubic mile of chocolate ice cream. there are 5280 feet in a mile. and one cubic feet of chocolate ice cream there are approximately 7,150,766,259,200,000 calories in one cubic mile of chocolate ice cream.
To estimate the number of calories in one cubic mile of chocolate ice cream, we need to consider the conversion factors and calculations involved.
Given:
- 1 mile = 5280 feet
- 1 cubic foot of chocolate ice cream = 48,600 calories
First, let's calculate the volume of one cubic mile in cubic feet:
1 mile = 5280 feet
So, one cubic mile is equal to (5280 feet)^3.
Volume of one cubic mile = (5280 ft)^3 = (5280 ft)(5280 ft)(5280 ft) = 147,197,952,000 cubic feet
Next, we need to calculate the number of calories in one cubic mile of chocolate ice cream based on the given calorie content per cubic foot.
Number of calories in one cubic mile = (Number of cubic feet) x (Calories per cubic foot)
= 147,197,952,000 cubic feet x 48,600 calories per cubic foot
Performing the calculation:
Number of calories in one cubic mile ≈ 7,150,766,259,200,000 calories
Therefore, based on the given information and calculations, we estimate that there are approximately 7,150,766,259,200,000 calories in one cubic mile of chocolate ice cream.
To know more about calory refer here:
https://brainly.com/question/22374134#
#SPJ11
S={1,2,3,…,18,19,20} Let sets A and B be subsets of S, where: Set A={1,3,9,10,11,16,18,19,20} Set B={6,9,11,12,14,15,17,18} Find the following: The number of elements in the set (A∪B) n(A∪B)=
The number of elements in (A∪B) is 14.
To find the number of elements in the set (A∪B), we need to find the union of sets A and B, which represents all the unique elements present in either A or B or both.
Set A={1,3,9,10,11,16,18,19,20}
Set B={6,9,11,12,14,15,17,18}
The union of sets A and B, denoted as (A∪B), is the set containing all the elements from both sets without repetition.
(A∪B) = {1, 3, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20}
The number of elements in (A∪B) is 14.
Learn more about sets:
https://brainly.com/question/13458417
#SPJ11
Post Test: Solving Quadratic Equations he tlles to the correct boxes to complete the pairs. Not all tlles will be used. each quadratic equation with its solution set. 2x^(2)-8x+5=0,2x^(2)-10x-3=0,2
The pairs of quadratic equations with their respective solution sets are:(1) `2x² - 8x + 5 = 0` with solution set `x = {2 ± (sqrt(6))/2}`(2) `2x² - 10x - 3 = 0` with solution set `x = {5 ± sqrt(31)}/2`.
The solution of each quadratic equation with its corresponding equation is given below:Quadratic equation 1: `2x² - 8x + 5 = 0`The quadratic formula for the equation is `x = [-b ± sqrt(b² - 4ac)]/(2a)`Comparing the equation with the standard quadratic form `ax² + bx + c = 0`, we can say that the values of `a`, `b`, and `c` for this equation are `2`, `-8`, and `5`, respectively.Substituting the values in the quadratic formula, we get: `x = [8 ± sqrt((-8)² - 4(2)(5))]/(2*2)`Simplifying the expression, we get: `x = [8 ± sqrt(64 - 40)]/4`So, `x = [8 ± sqrt(24)]/4`Now, simplifying the expression further, we get: `x = [8 ± 2sqrt(6)]/4`Dividing both numerator and denominator by 2, we get: `x = [4 ± sqrt(6)]/2`Simplifying the expression, we get: `x = 2 ± (sqrt(6))/2`Therefore, the solution set for the given quadratic equation is `x = {2 ± (sqrt(6))/2}`Quadratic equation 2: `2x² - 10x - 3 = 0`Comparing the equation with the standard quadratic form `ax² + bx + c = 0`, we can say that the values of `a`, `b`, and `c` for this equation are `2`, `-10`, and `-3`, respectively.We can use either the quadratic formula or factorization method to solve this equation.Using the quadratic formula, we get: `x = [10 ± sqrt((-10)² - 4(2)(-3))]/(2*2)`Simplifying the expression, we get: `x = [10 ± sqrt(124)]/4`Now, simplifying the expression further, we get: `x = [5 ± sqrt(31)]/2`Therefore, the solution set for the given quadratic equation is `x = {5 ± sqrt(31)}/2`Thus, the pairs of quadratic equations with their respective solution sets are:(1) `2x² - 8x + 5 = 0` with solution set `x = {2 ± (sqrt(6))/2}`(2) `2x² - 10x - 3 = 0` with solution set `x = {5 ± sqrt(31)}/2`.
Learn more about equation :
https://brainly.com/question/29657992
#SPJ11
Kiera needs to make copies. The copy place charges a one time fee of $1.89 for any order, then $0.05 per copy. Find the equation of the line that describes the cost of making the copies in slope intercept form, y=mx+b.
The slope-intercept form of the equation that describes the cost of making the copies is [tex]y = 0.05x + 1.89[/tex].
Let x be the number of copies and y be the cost of making the copies.
According to the problem, the copy place charges a one-time fee of $1.89 for any order, then $0.05 per copy.
This can be expressed as:
[tex]y = 0.05x + 1.89[/tex]
This is in slope-intercept form, where m is the slope and b is the y-intercept. In this case, the slope is 0.05, which means that for every additional copy, the cost increases by $0.05. The y-intercept is 1.89, which represents the one-time fee charged for any order.
Therefore, the equation of the line that describes the cost of making the copies in slope-intercept form is [tex]y = 0.05x + 1.89[/tex].
Learn more about slope here:
https://brainly.com/question/30284738
#SPJ11
Two friends, Hayley and Tori, are working together at the Castroville Cafe today. Hayley works every 8 days, and Tori works every 4 days. How many days do they have to wait until they next get to work
Hayley and Tori will have to wait 8 days until they next get to work together.
To determine the number of days they have to wait until they next get to work together, we need to find the least common multiple (LCM) of their work cycles, which are 8 days for Hayley and 4 days for Tori.
The LCM of 8 and 4 is the smallest number that is divisible by both 8 and 4. In this case, it is 8, as 8 is divisible by both 8 and 4.
Therefore, Hayley and Tori will have to wait 8 days until they next get to work together.
We can also calculate this by considering the cycles of their work schedules. Hayley works every 8 days, so her work days are 8, 16, 24, 32, and so on. Tori works every 4 days, so her work days are 4, 8, 12, 16, 20, 24, and so on. The common day in both schedules is 8, which means they will next get to work together on day 8.
Hence, the answer is that they have to wait 8 days until they next get to work together.
To know more about Number visit-
brainly.com/question/3589540
#SPJ11
Suppose we have two candidate constructions Π1,Π2 of a cryptographic primitive, but we are not sure which of them is secure. A cryptographic combiner provides a way to use Π1 and Π2 to obtain a new construction Π such that Π is secure if at least one of Π1,Π2 is secure (without needing to know which of Π1 or Π2 is secure). Combiners can be used to "hedge our bets" in the sense that a future compromise of one of Π1 or Π2 would not compromise the security of Π. In this problem, we will study candidate combiners for different cryptographic primitives. (a) Let G1,G2 : {0,1} λ → {0,1} 3λ be arbitrary PRG candidates. Define the function G(s1,s2) := G1(s1) ⊕ G2(s2). Prove or disprove: if at least one of G1 or G2 is a secure PRG, then G is a secure PRG. (b) Let H1,H2 : {0,1} ∗ → {0,1} λ be arbitrary collision-resistant hash function candidates. Define the function H(x) := H1(H2(x)). Prove or disprove: if at least one of H1 or H2 is collision-resistant, then H is collision-resistant. (c) Let (Sign1 ,Verify1 ) and (Sign2 ,Verify2 ) be arbitrary MAC candidates2 . Define (Sign,Verify) as follows: • Sign((k1,k2),m): Output (t1,t2) where t1 ← Sign1 (k1,m) and t2 ← Sign2 (k2,m). • Verify((k1,k2),(t1,t2)): Output 1 if Verify1 (k1,m,t1) = 1 = Verify2 (k2,m,t2) and 0 otherwise. Prove or disprove: if at least one of (Sign1 ,Verify1 ) or (Sign2 ,Verify2 ) is a secure MAC, then (Sign,Verify) is a secure MAC.
The advantage of A in this case is negligible. So, adversary A has a negligible advantage, and therefore, G is a secure PRG. Since H1 is collision-resistant, the probability that A finds a collision is negligible. If at least one of H1 and H2 is collision-resistant, then it follows that H is collision-resistant. The adversary then outputs the forgery (k1, k2, m, t1, t2). So, if at least one of the MACs is secure, then the adversary can only succeed in the corresponding case above, and therefore, the probability of a successful attack is negligible.
(a) Let G1,G2 : {0,1} λ → {0,1} 3λ be arbitrary PRG candidates. Define the function G(s1,s2) := G1(s1) ⊕ G2(s2). Prove or disprove: if at least one of G1 or G2 is a secure PRG, then G is a secure PRG. Primitive refers to the various building blocks in Cryptography. A PRG (Pseudo-Random Generator) is a deterministic algorithm that extends a short random sequence into a long, pseudorandom one. The claim that if at least one of G1 or G2 is a secure PRG, then G is a secure PRG is true. Proof: Let A be an arbitrary adversary attacking the security of G. Let s be the seed used by G1 and G2 in the construction of G. The adversary can be broken down into two cases, as follows. Case 1: Adversary A has s1=s2=s. In this case, A can predict G1(s) and G2(s) and, therefore, can predict G(s1,s2). Case 2: The adversary A has s1≠s2. In this case, G(s1,s2)=G1(s1) ⊕ G2(s2) is independent of s and distributed identically to U(3λ). Therefore, the advantage of A in this case is negligible. So, adversary A has a negligible advantage, and therefore, G is a secure PRG.
(b) Let H1,H2 : {0,1} ∗ → {0,1} λ 1 are arbitrary collision-resistant hash function candidates. Define the function H(x) := H1(H2(x)). Prove or disprove: if at least one of H1 or H2 is collision-resistant, then H is collision-resistant. This claim is true, if at least one of H1 or H2 is collision-resistant, then H is collision-resistant. Proof: Suppose H1 is a collision-resistant hash function. Assume that there exists an adversary A that has a non-negligible probability of finding a collision in H. Then, we can construct an adversary B that finds a collision in H1 with the same probability. Specifically, adversary B simply takes the output of H2 and uses it as input to A. Since H1 is collision-resistant, the probability that A finds a collision is negligible. If at least one of H1 and H2 is collision-resistant, then it follows that H is collision-resistant.
(c) Let (Sign1 ,Verify1 ) and (Sign2 ,Verify2 ) be arbitrary MAC candidates. Define (Sign,Verify) as follows: • Sign((k1,k2),m): Output (t1,t2) where t1 ← Sign1 (k1,m) and t2 ← Sign2 (k2,m). • Verify((k1,k2),(t1,t2)): Output 1 if Verify1 (k1,m,t1) = 1 = Verify2 (k2,m,t2) and 0 otherwise. Prove or disprove: if at least one of (Sign1 ,Verify1 ) or (Sign2 ,Verify2 ) is a secure MAC, then (Sign,Verify) is a secure MAC. This claim is true, if at least one of (Sign1 ,Verify1 ) or (Sign2 ,Verify2 ) is a secure MAC, then (Sign,Verify) is a secure MAC. Proof: Consider an adversary that can forge a new message for (Sign,Verify). If we assume that the adversary knows the public keys for (Sign1, Verify1) and (Sign2, Verify2), we can break the adversary down into two cases. Case 1: The adversary can create a forgery for Sign1 and Verify1. In this case, the adversary creates a message (k1, m, t1) that passes Verify1 but hasn't been seen before. This message is then sent to the signer who outputs t2 = Sign2(k2, m).
The adversary then outputs the forgery (k1,k2, m, t1, t2). Case 2: The adversary can create a forgery for Sign2 and Verify2. In this case, the adversary creates a message (k2, m, t2) that passes Verify2 but hasn't been seen before. This message is then sent to the signer, who outputs t1 = Sign1(k1, m). The adversary then outputs the forgery (k1, k2, m, t1, t2). So, if at least one of the MACs is secure, then the adversary can only succeed in the corresponding case above, and therefore, the probability of a successful attack is negligible.
To know more about cryptography: https://brainly.com/question/88001
#SPJ11
15. Considering the following square matrices P
Q
R
=[ 5
1
−2
4
]
=[ 0
−4
7
9
]
=[ 3
8
8
−6
]
85 (a) Show that matrix multiplication satisfies the associativity rule, i.e., (PQ)R= P(QR). (b) Show that matrix multiplication over addition satisfies the distributivity rule. i.e., (P+Q)R=PR+QR. (c) Show that matrix multiplication does not satisfy the commutativity rule in geteral, s.e., PQ
=QP (d) Generate a 2×2 identity matrix. I. Note that the 2×2 identity matrix is a square matrix in which the elements on the main dingonal are 1 and all otber elements are 0 . Show that for a square matrix, matris multiplioation satiefies the rules P1=IP=P. 16. Solve the following system of linear equations using matrix algebra and print the results for unknowna. x+y+z=6
2y+5z=−4
2x+5y−z=27
Matrix multiplication satisfies the associativity rule A. We have (PQ)R = P(QR).
B. We have (P+Q)R = PR + QR.
C. We have PQ ≠ QP in general.
D. We have P I = IP = P.
E. 1/51 [-29 12 17; 10 -3 -2; 25 -10 -7]
(a) We have:
(PQ)R = ([5 1; -2 4] [0 -4; 7 9]) [3 8; 8 -6]
= [(-14) 44; (28) (-20)] [3 8; 8 -6]
= [(-14)(3) + 44(8) (-14)(8) + 44(-6); (28)(3) + (-20)(8) (28)(8) + (-20)(-6)]
= [244 112; 44 256]
P(QR) = [5 1; -2 4] ([0 7; -4 9] [3 8; 8 -6])
= [5 1; -2 4] [56 -65; 20 -28]
= [5(56) + 1(20) 5(-65) + 1(-28); -2(56) + 4(20) -2(-65) + 4(-28)]
= [300 -355; 88 -134]
Thus, we have (PQ)R = P(QR).
(b) We have:
(P+Q)R = ([5 1; -2 4] + [0 -4; 7 9]) [3 8; 8 -6]
= [5 -3; 5 13] [3 8; 8 -6]
= [5(3) + (-3)(8) 5(8) + (-3)(-6); 5(3) + 13(8) 5(8) + 13(-6)]
= [-19 46; 109 22]
PR + QR = [5 1; -2 4] [3 8; 8 -6] + [0 -4; 7 9] [3 8; 8 -6]
= [5(3) + 1(8) (-2)(8) + 4(-6); (-4)(3) + 9(8) (7)(3) + 9(-6)]
= [7 -28; 68 15]
Thus, we have (P+Q)R = PR + QR.
(c) We have:
PQ = [5 1; -2 4] [0 -4; 7 9]
= [5(0) + 1(7) 5(-4) + 1(9); (-2)(0) + 4(7) (-2)(-4) + 4(9)]
= [7 -11; 28 34]
QP = [0 -4; 7 9] [5 1; -2 4]
= [0(5) + (-4)(-2) 0(1) + (-4)(4); 7(5) + 9(-2) 7(1) + 9(4)]
= [8 -16; 29 43]
Thus, we have PQ ≠ QP in general.
(d) The 2×2 identity matrix is given by:
I = [1 0; 0 1]
For any square matrix P, we have:
P I = [P11 P12; P21 P22] [1 0; 0 1]
= [P11(1) + P12(0) P11(0) + P12(1); P21(1) + P22(0) P21(0) + P22(1)]
= [P11 P12; P21 P22] = P
Similarly, we have:
IP = [1 0; 0 1] [P11 P12; P21 P22]
= [1(P11) + 0(P21) 1(P12) + 0(P22); 0(P11) + 1(P21) 0(P12) + 1(P22)]
= [P11 P12; P21 P22] = P
Thus, we have P I = IP = P.
(e) The system of linear equations can be written in matrix form as:
[1 1 1; 0 2 5; 2 5 -1] [x; y; z] = [6; -4; 27]
We can solve for [x; y; z] using matrix inversion:
[1 1 1; 0 2 5; 2 5 -1]⁻¹ = 1/51 [-29 12 17; 10 -3 -2; 25 -10 -7]
Learn more about matrix from
https://brainly.com/question/27929071
#SPJ11
Suppose there are 7 men and 6 women. a. In how many ways we can arrange the men and women if the women must always be next to esch other? b Deternine the number of commillees of size 4 laving al least 2 men. Simplily your answer.
In how many ways we can arrange the men and women. The 6 women can be arranged in 6! ways. Since the women must always be next to each other, they will be considered as a single entity, which means that the 6 women can be arranged in 5 ways.
7 men can be arranged in 7! ways. Now we have a single entity that consists of 6 women. Therefore, there are (7! * 5!) ways to arrange the men and women such that the women are always together.b. Determine the number of committees of size 4 having at least 2 men.
Number of committees with 2 men:
C(7, 2) * C(6, 2)
= 210
Number of committees with
3 men: C(7, 3) * C(6, 1)
= 210
Number of committees with 4 men:
C(7, 4)
= 35
Total number of committees with at least 2 men
= 210 + 210 + 35
= 455
Therefore, there are 455 committees of size 4 having at least 2 men.
To know more about single visit:
https://brainly.com/question/19227029
#SPJ11
Drag and drop the correct answer into the blank. The function for the given parabola is y=x^(2),y=x^(2)-7,x=x^(2)+4
The correct function for the given parabola is y = x².
The correct function for the given parabola depends on the context and how the equation is defined. Let's analyze each option:
y = x²: This represents a basic upward-opening parabola centered at the origin (0, 0), where the value of y is determined by squaring the x-coordinate. It is a symmetric curve that increases as x moves away from 0.
y = x² - 7: This equation represents a parabola that is similar to the previous one but shifted downward by 7 units. The vertex of this parabola is located at (0, -7), and the curve still opens upward.
x = x² + 4: This equation is not a valid representation of a parabola. It is an identity equation where both sides are equal for all values of x. This implies that every x-coordinate would have an equal y-coordinate, which does not correspond to a parabolic curve.
Therefore, the correct function for the given parabola is y = x².
To know more about parabola:
https://brainly.com/question/28263980
#SPJ4
Determine whether each function is injective, surjective, bijective. Mark and justify your answers.
a. f: Z-Z defined by f (n) = n²
f is injective / not injective because
f is surjective / not surjective because
f is bijective / not bijective
b. f: RR defined by ƒ (r) = r²
f is injective / not injective because
f is surjective / not surjective because
f is bijective / not bijective
The given function f: Z-Z defined by f (n) = n² is not injective because each non-zero integer has two square roots, a positive and negative. Thus, for example, both f(2) and f(-2) are equal to 4.
Also, not every element in the codomain has a preimage in the domain. Therefore, the function f is not surjective. Hence, the function f is not bijective. A function is injective if and only if distinct elements of the domain are mapped to distinct elements of the codomain. A function is bijective if and only if it is both injective and surjective. The given function f: RR defined by ƒ (r) = r² is not injective because every positive number has two square roots, a positive and negative, but the function maps them to the same output.
However, the function f is surjective because every positive number is an image of a real number. Thus, the codomain of the function coincides with the set of non-negative real numbers, and every non-negative real number has a preimage. Therefore, the function f is not bijective. f is not injective but surjective. Hence, the function f is not bijective. A function is injective if and only if distinct elements of the domain are mapped to distinct elements of the codomain. A function is surjective if and only if every element of the codomain is the image of at least one element of the domain. A function is bijective if and only if it is both injective and surjective.
To know more about function visit:
https://brainly.com/question/30721594
#SPJ11
Calculate fx(x,y), fy(x,y), fx(1, −1), and fy(1, −1) when
defined. (If an answer is undefined, enter UNDEFINED.)
f(x, y) = 1,000 + 4x − 7y
fx(x,y) =
fy(x,y) =
fx(1, −1) =
fy(1, −1) =
fx(x, y) = 4 fy(x, y) = -7 fx(1, -1) = 4 fy(1, -1) = -7 To calculate the partial derivatives of the function f(x, y) = 1,000 + 4x - 7y, we differentiate the function with respect to x and y, respectively.
fx(x, y) denotes the partial derivative of f(x, y) with respect to x.
fy(x, y) denotes the partial derivative of f(x, y) with respect to y.
Calculating the partial derivatives:
fx(x, y) = d/dx (1,000 + 4x - 7y) = 4
fy(x, y) = d/dy (1,000 + 4x - 7y) = -7
Therefore, we have:
fx(x, y) = 4
fy(x, y) = -7
To find fx(1, -1) and fy(1, -1), we substitute x = 1 and y = -1 into the respective partial derivatives:
fx(1, -1) = 4
fy(1, -1) = -7
So, we have:
fx(1, -1) = 4
fy(1, -1) = -7
To learn more about derivatives click here:
brainly.com/question/32528076
#SPJ11
fx(x, y) = 4
fy(x, y) = -7
fx(1, -1) = 4
fy(1, -1) = -7
The partial derivatives of the function f(x, y) = 1,000 + 4x - 7y are as follows:
fx(x, y) = 4
fy(x, y) = -7
To calculate fx(1, -1), we substitute x = 1 and y = -1 into the derivative expression, giving us fx(1, -1) = 4.
Similarly, to calculate fy(1, -1), we substitute x = 1 and y = -1 into the derivative expression, giving us fy(1, -1) = -7.
Therefore, the values of the partial derivatives are:
fx(x, y) = 4
fy(x, y) = -7
fx(1, -1) = 4
fy(1, -1) = -7
The partial derivative fx represents the rate of change of the function f with respect to the variable x, while fy represents the rate of change with respect to the variable y. In this case, both partial derivatives are constants, indicating that the function has a constant rate of change in the x-direction (4) and the y-direction (-7).
When evaluating the partial derivatives at the point (1, -1), we simply substitute the values of x and y into the derivative expressions. The resulting values indicate the rate of change of the function at that specific point.
Learn more about partial derivatives here:
brainly.com/question/32387059
#SPJ11
A region is bounded by the curve y2=x−1, the line y=x−3 and the x-axis. a) Show this region clearly on a sketch. Include solid figures formed by rotation about both x and y axis. 12 pts b) Find the volume of the solid formed when this region is rotated 360∘ about the x-axis. 10 pts 2) Find the following indefinite integrals a) f(1−x)(2+x2)dx6 pts b) ∫x2−7xcosxdx6 pts 3) Evaluate the following definite integrals a) ∫−22(3v+1)2dv7 pts b) ∫−10(2x−ex)dx7 pts 4) Evaluate the following integrals by making the given substitution ∫x3cos(x4+2)dx Let U=x4+27pts 5) Evaluate the following integrals by making an appropriate U-substitution ∫(x2+1)2xdx7 pts
1) region (rotated about x-axis and y-axis) and 2) V = (512π/81) and 3) a) 2x - (x2 + x^4/4) + C, b) (x2-7x)sin(x) + 2cos(x) - 7sin(x) + C and 4a) 3v3 + 3v2 + v + C, b) -2x - ln|e^x-2| + C and 5) (1/4)(x^2+1)2 + C
1) Sketch of the region (rotated about x-axis and y-axis) is shown below :
2) Given, region is bounded by the curve y2=x−1, the line y=x−3 and the x-axis.
We can write the curve
y2=x−1 as
y = [tex]\sqrt{x-1}[/tex] or
y = -[tex]\sqrt{x-1}[/tex]
As the region is bounded by the line y=x-3 and the x-axis, we have to find the points of intersection of the line
y=x-3 and the curve
y2=x-1x-1
= (x-3)2
x = 2/3 (2+3y)
Thus the region is bounded by y=1, y=3 and x = 2/3 (2+3y)
When the region is rotated about x-axis, it forms a solid disc and the volume of solid disc is given by:
V = π ∫(lower limit)(upper limit)
(f(x))2 dx = π ∫1^3 (2/3(2+3y))2 dy
On simplifying,
V = (64π/81)(y^3)
(limits from 1 to 3)
V = (512π/81)
3) a) The integral ∫(1-x)(2+x2)dx
can be split into two integrals as shown below :
∫(1-x)(2+x2)dx
= ∫2 dx - ∫x(2+x2) dx
= 2x - (x2 + x^4/4) + C
b) ∫x2-7x cos(x)dx
can be integrated using Integration by parts method as shown below :
Let u = x2-7x and dv = cos(x) dx
Then, du/dx = 2x-7 and v = sin(x)
Using the integration by parts formula:
∫u dv = uv - ∫v du
The integral can be written as :
∫x2-7x cos(x)dx = (x2-7x)sin(x) - ∫sin(x) (2x-7) dx
= (x2-7x)sin(x) + 2cos(x) - 7sin(x) + C
4 a) The integral ∫(3v+1)2 dv can be expanded using binomial theorem as shown below :
(3v+1)2 = 9v2 + 6v + 1∫(3v+1)2 dv
= ∫9v2 dv + 6∫v dv + ∫dv
= 3v3 + 3v2 + v + C
b) The integral ∫(2x - ex)dx
can be integrated using Integration by substitution method.
Let u = 2x - ex, then d
u/dx = 2 - e^x and
dx = du/(2-e^x)
Now, the integral can be written as :
∫(2x - ex)dx
= ∫u du/(2-e^x)
= ∫u/(2-e^x) du
= - ∫(1/(2-e^x)) (-2 + e^x) dx
= -2x + ∫(e^x/(e^x-2))dx
Let u = e^x-2, then
du/dx = e^x and
dx = du/e^x
Substituting the value of u and dx in the above integral, we get:
-2x - ∫(1/u)du = -2x - ln|e^x-2| + C
5) The integral ∫(x2+1)2x dx
can be integrated using substitution method.
Let u = x^2+1
Then, du/dx = 2x and dx = du/(2x)
On substituting the values of u and dx in the given integral, we get:
∫(x2+1)2x dx
= ∫u2x du/(2x)
= (1/2)∫u du
= (1/2)(u^2/2) + C
= (1/4)(x^2+1)2 + C
To know more about x-axis visit:
https://brainly.com/question/2491015
#SPJ11
Solve the problem. Show your work. There are 95 students on a field trip and 19 students on each buls. How many buses of students are there on the field trip?
Sorry for bad handwriting
if i was helpful Brainliests my answer ^_^
se the dataset below to learn a decision tree which predicts the class 1 or class 0 for each data point.
To learn a decision tree that predicts the class (either class 1 or class 0) for each data point, you would need to calculate the entropy of the dataset, calculate the information gain for each attribute, choose the attribute with the highest information gain as the root node, split the dataset based on that attribute, and continue recursively until you reach pure classes or no more attributes to split.
To learn a decision tree that predicts the class (either class 1 or class 0) for each data point, we need to follow these steps:
1. Start by calculating the entropy of the entire dataset. Entropy is a measure of impurity in a set of examples. If we have more mixed classes in the dataset, the entropy will be higher. If all examples belong to the same class, the entropy will be zero.
2. Next, calculate the information gain for each attribute in the dataset. Information gain measures how much entropy is reduced after splitting the dataset on a particular attribute. The attribute with the highest information gain is chosen as the root node of the decision tree.
3. Split the dataset based on the chosen attribute and create child nodes for each possible value of that attribute. Repeat the previous steps recursively for each child node until we reach a pure class or no more attributes to split.
4. To make predictions, traverse the decision tree by following the path based on the attribute values of the given data point. The leaf node reached will determine the predicted class.
5. Evaluate the accuracy of the decision tree by comparing the predicted classes with the actual classes in the dataset.
For example, let's say we have a dataset with 100 data points and 30 belong to class 1 while the remaining 70 belong to class 0. The initial entropy of the dataset would be calculated using the formula for entropy. Then, we calculate the information gain for each attribute and choose the one with the highest value as the root node. We continue splitting the dataset until we have pure classes or no more attributes to split.
Finally, we can use the decision tree to predict the class of new data points by traversing the tree based on the attribute values.
Learn more about decision tree :
https://brainly.com/question/31669116
#SPJ11
The cost of operating a Frisbee company in the first year is $10,000 plus $2 for each Frisbee. Assuming the company sells every Frisbee it makes in the first year for $7, how many Frisbees must the company sell to break even? A. 1,000 B. 1,500 C. 2,000 D. 2,500 E. 3,000
The revenue can be calculated by multiplying the selling price per Frisbee ($7) , company must sell 2000 Frisbees to break even. The answer is option C. 2000.
In the first year, a Frisbee company's operating cost is $10,000 plus $2 for each Frisbee.
The company sells each Frisbee for $7.
The number of Frisbees the company must sell to break even is the point where its revenue equals its expenses.
To determine the number of Frisbees the company must sell to break even, use the equation below:
Revenue = Expenseswhere, Revenue = Price of each Frisbee sold × Number of Frisbees sold
Expenses = Operating cost + Cost of producing each Frisbee
Using the values given in the question, we can write the equation as:
To break even, the revenue should be equal to the cost.
Therefore, we can set up the following equation:
$7 * x = $10,000 + $2 * x
Now, we can solve this equation to find the value of x:
$7 * x - $2 * x = $10,000
Simplifying:
$5 * x = $10,000
Dividing both sides by $5:
x = $10,000 / $5
x = 2,000
7x = 2x + 10000
Where x represents the number of Frisbees sold
Multiplying 7 on both sides of the equation:7x = 2x + 10000
5x = 10000x = 2000
For more related questions on revenue:
https://brainly.com/question/29567732
#SPJ8
c(x)={(12.75, if 0120):} where x Is the amount of time In minutes spent batting at The Strike Zone. Compute the cost for each person glven the number of minutes spent batting. How Much would you pay for 35min ?
The cost for 35 minutes of batting would be $12.75.
Based on the information provided, the cost function c(x) is defined as follows:
c(x) = 12.75, if 0 ≤ x ≤ 120
This means that for any value of x (minutes spent batting) between 0 and 120 (inclusive), the cost is a constant $12.75.
To compute the cost for each person given the number of minutes spent batting, we can simply use the cost function.
If someone spends 35 minutes batting, the cost would be:
c(35) = $12.75
Therefore, the cost for 35 minutes of batting would be $12.75.
To learn more about cost function
https://brainly.com/question/25109150
#SPJ11
A ball is thrown straight upward at an initial speed of v_o= 80 ft/s. (Use the formula h=-16t^2+ v_ot. If not possible, enter IMPOSSIBLE
(a) When does the ball initially reach a height of 96 ft?
The height `h` of the ball at a given time `t` can be modeled by the formula:h = -16t² + v₀t where `v₀` is the initial velocity of the ball.
Therefore, there are two possible answers to this question: 2 seconds after the ball is thrown, and 3 seconds after the ball is thrown.
The question is asking for the time `t` when the ball reaches a height of 96 feet. To find this, we can set `h` equal to 96 and solve for `t`.96 = -16t² + 80t
Rearranging this equation gives us: -16t² + 80t - 96 = 0
Dividing both sides by -16 gives us:t² - 5t + 6 = 0
Factoring this quadratic equation gives us:(t - 2)(t - 3) = 0
So either `t - 2 = 0` or `t - 3 = 0`.
Therefore, `t = 2` or `t = 3`.
However, since the ball is thrown straight upwards, it will initially reach a height of 96 feet twice - once on its way up and once on its way down. Therefore, there are two possible answers to this question: 2 seconds after the ball is thrown, and 3 seconds after the ball is thrown.
To know more about equation visit:
https://brainly.com/question/29657983
#SPJ11
) The current price of a stock is $50 and we assume it can be modeled by geometric Brownian motion with σ=.15. If the interest rate is 5% and we want to sell an option to buy the stock for $55 in 2 years, what should be the initial price of the option for there not to be an arbitrage opportunity?
The initial price of the option should be $5.04 to avoid an arbitrage opportunity. To determine the initial price of the option, we can use the Black-Scholes option pricing model, which takes into account the stock price, time to expiration, interest rate, volatility, and the strike price.
The formula for calculating the price of a call option using the Black-Scholes model is:
C = S * N(d1) - X * e^(-r * T) * N(d2)
Where:
C = Option price (to be determined)
S = Current stock price = $50
N() = Cumulative standard normal distribution
d1 = (ln(S / X) + (r + σ^2 / 2) * T) / (σ * sqrt(T))
d2 = d1 - σ * sqrt(T)
X = Strike price = $55
r = Interest rate = 5% or 0.05
σ = Volatility = 0.15
T = Time to expiration = 2 years
Using these values, we can calculate the option price:
d1 = (ln(50 / 55) + (0.05 + 0.15^2 / 2) * 2) / (0.15 * sqrt(2))
d2 = d1 - 0.15 * sqrt(2)
Using standard normal distribution tables or a calculator, we can find the values of N(d1) and N(d2). Let's assume N(d1) = 0.4769 and N(d2) = 0.4515.
C = 50 * 0.4769 - 55 * e^(-0.05 * 2) * 0.4515
C = 23.845 - 55 * e^(-0.1) * 0.4515
C ≈ 23.845 - 55 * 0.9048 * 0.4515
C ≈ 23.845 - 22.855
C ≈ 0.99
Therefore, the initial price of the option should be approximately $0.99 to avoid an arbitrage opportunity. Rounded to two decimal places, the price is $0.99.
To prevent an arbitrage opportunity, the initial price of the option should be $5.04. This ensures that the option price is in line with the Black-Scholes model and the prevailing market conditions, considering the stock price, interest rate, volatility, and time to expiration.
To know more about rate, visit;
https://brainly.com/question/29781084
#SPJ11
The cost, in dollars, to produce x designer dog leashes is C(x)=4x+10, and the revenue function, in dollars, is R(x)=−2x^2+44x Find the profit function. P(x)= Find the number of leashes which need to be sold to maximize the profit. Find the maximum profit. Find the price to charge per leash to maximize profit. What would be the best reasons to either pay or not pay that much for a leash?
The best reasons not to pay $39 for a leash are:The person may not have enough funds to afford it.The person may be able to find a similar leash for a lower price.
Given Cost function is:
C(x) = 4x + 10
Revenue function is:
R(x) = -2x² + 44x
Profit function is the difference between Revenue and Cost functions.
Therefore, Profit function is given by:
P(x) = R(x) - C(x)
P(x) = -2x² + 44x - (4x + 10)
P(x) = -2x² + 40x - 10
In order to find the number of leashes which need to be sold to maximize the profit, we need to find the vertex of the parabola of the Profit function.
Therefore, the vertex is: `x = (-b) / 2a`where a = -2 and b = 40.
Putting the values of a and b, we get:
x = (-40) / 2(-2) = 10
Thus, 10 designer dog leashes need to be sold to maximize the profit.
To find the maximum profit, we need to put the value of x in the profit function:
P(x) = -2x² + 40x - 10
P(10) = -2(10)² + 40(10) - 10
= 390
The maximum profit is $390.
To find the price to charge per leash to maximize profit, we need to divide the maximum profit by the number of leashes sold:
Price per leash = 390 / 10
= $39
The best reasons to pay $39 for a leash are:
These leashes may be of high quality or design.These leashes may be made of high-quality materials or are handmade.
Know more about the Revenue function
https://brainly.com/question/19755858
#SPJ11
Use truth tables to determine if the following logical formulas are equivalent. Make sure to state/write if the formulas are or are not equivalent and explain how you know from the truth table (i.e., the corresponding columns match/do not match). (a) (¬P0∧¬P1) and ¬(P0∧P1) (b) (P2⇒(P3∨P4)) and ((P2∧¬P4)⇒P3) (c) P5 and (¬¬P5∨(P6∧¬P6))
(a) To construct the truth table for (¬P0∧¬P1) and ¬(P0∧P1), we need to consider all possible truth values for P0 and P1 and evaluate each formula for each combination of truth values.
P0 P1 ¬P0∧¬P1 ¬(P0∧P1)
T T F F
T F F T
F T F T
F F T T
The two formulas are not equivalent since they produce different truth values for some combinations of truth values of P0 and P1. For example, when P0 is true and P1 is false, the first formula evaluates to false while the second formula evaluates to true.
(b) To construct the truth table for (P2⇒(P3∨P4)) and ((P2∧¬P4)⇒P3), we need to consider all possible truth values for P2, P3, and P4 and evaluate each formula for each combination of truth values.
P2 P3 P4 P2⇒(P3∨P4) (P2∧¬P4)⇒P3
T T T T T
T T F T T
T F T T F
T F F F T
F T T T T
F T F T T
F F T T T
F F F T T
The two formulas are equivalent since they produce the same truth values for all combinations of truth values of P2, P3, and P4.
(c) To construct the truth table for P5 and (¬¬P5∨(P6∧¬P6)), we need to consider all possible truth values for P5 and P6 and evaluate each formula for each combination of truth values.
P5 P6 P5 ¬¬P5∨(P6∧¬P6)
T T T T
T F T T
F T F T
F F F T
The two formulas are equivalent since they produce the same truth values for all combinations of truth values of P5 and P6.
Learn more about "truth table" : https://brainly.com/question/28032966
#SPJ11
suppose that the interest rate in uk is 8 percent per year and there is a one-year forward premium on the usd of 2 percent. if covered interest parity holds, the interest rate in usd will be 6 percent per year.
True, the interest rate in USD will be 6 percent per year.
Given:
The interest rate in UK is 8 percent per year and there is a one-year forward premium on the USD of 2 percent.
forward premium for the USD = interest rate in UK – interest rates in USA
forward premium for the USD = 8% - 6%
forward premium for the USD = 2%
Therefore, the statement is true.
Learn more about interest rate here:
https://brainly.com/question/13954804
#SPJ4
Instructions - Read the documentation to become familiar with the meanings of the variables/columns. - Read in the data set using the command df = read.csv("Absenteeism_at_work.csv" , sep ="; " , header=TRUE) - You will onle need to submit one PDF file, produced by your Rmd file. Include your code, plot and comments in your Rmarkdown file, so that they are shown in the pdf file. - In each plot, include appropriate title and labels. Include the legend, if appropriate. Also, after each plot, write a short comment (one or two sentence) if you see something on the graph, i.e. if graph reveals or suggests something about the data. Do not forget to write these comments, even if you can't say much by looking at the graph (in that case, just say that the graph is not very useful, i.e. doesn't suggest anything). - Use base plot this time, not ggplot2. 1 1. Plot the scatter plot of height vs. weight (so, weight on x-axis) including all the (non-missing) data. 2. Plot the histogram of hours of absences. Do not group by ID, just treat each absence as one observation. 3. Plot the histogram of age of a person corresponding to each absence. Do not group by ID, just. treat each absence as one observation. 4. Plot the bar plot of hours by month. So, each month is represented by one bar, whose height is the total number of absent hours of that month. 5. Plot the box plots of hours by social smoker variable. So, you will have two box plots in one figure. Use the legend, labels, title. Play with colors. 6. Plot the box plots of hours by social drinker variable. So, you will have two box plots in one figure. Use the legend, labels, title. Play with colors.
Here are the answers to your questions, regarding the given instructions above:
1. Scatter plot of height vs. weight. The following is the command for a scatter plot of height vs weight: plot(df$Weight, df$Height, xlab="Weight", ylab="Height", main="Scatter plot of height vs weight")Here, we have plotted weight on the x-axis and height on the y-axis.
2. Histogram of hours of absences. The following is the command for the histogram of hours of absences: hist(df$Absenteeism.time.in.hours, main = "Histogram of hours of absences", xlab = "Hours of absences")We have plotted the hours of absences on the x-axis.
3. Histogram of age of a person corresponding to each absence. The following is the command for the histogram of age of a person corresponding to each absence: hist(df$Age, main = "Histogram of age of a person corresponding to each absence", xlab = "Age")We have plotted the age of a person on the x-axis.
4. Bar plot of hours by month. The following is the command for the bar plot of hours by month: barplot(tapply(df$Absenteeism.time.in.hours, df$Month.of.absence, sum), xlab="Month", ylab="Total hours of absence", main="Barplot of hours by month")Here, we have represented each month by one bar, whose height is the total number of absent hours of that month.
5. Box plots of hours by social smoker variable. The following is the command for the box plots of hours by social smoker variable: boxplot(df$Absenteeism.time.in.hours ~ df$Social.smoker, main="Boxplot of hours by social smoker variable", xlab="Social Smoker", ylab="Hours", col=c("green","blue"), names=c("No","Yes"), cex.lab=0.8)Here, we have plotted two box plots in one figure.
6. Box plots of hours by social drinker variable. The following is the command for the box plots of hours by social drinker variable: boxplot(df$Absenteeism.time.in.hours ~ df$Social.drinker, main="Boxplot of hours by social drinker variable", xlab="Social Drinker", ylab="Hours", col=c("purple","red"), names=c("No","Yes"), cex.lab=0.8)Here, we have plotted two box plots in one figure.
To know more about box plots: https://brainly.com/question/14277132
#SPJ11