The baseball's acceleration is -4000 m/s² (-408.16 g) and the force acting on it is -580 N.
The baseball's acceleration can be calculated using the given information. It can be expressed in m/s² and also converted to g's. The force acting on the baseball can also be determined. To calculate the baseball's acceleration, we can use the formula:
Acceleration = (Change in Velocity) / Time
Given that the initial velocity (u) is 32 m/s, the final velocity (v) is 0 m/s, and the time (t) is 0.008 seconds, we can calculate the acceleration.
Acceleration = (0 - 32) m/s / 0.008 s
Acceleration = -4000 m/s²
The negative sign indicates that the acceleration is in the opposite direction of the initial velocity. To express the acceleration in g's, we can use the conversion factor:
1 g = 9.8 m/s²
Acceleration in g's = (-4000 m/s²) / (9.8 m/s² per g)
Acceleration in g's = -408.16 g
The negative sign signifies that the acceleration is directed opposite to the initial velocity and is decelerating.
To determine the size of the force acting on the baseball, we can use Newton's second law of motion:
Force = Mass × Acceleration
Given that the mass (m) of the baseball is 0.145 kg and the acceleration is -4000 m/s², we can calculate the force.
Force = 0.145 kg × (-4000 m/s²)
Force = -580 N
Hence, the baseball's acceleration is -4000 m/s² (-408.16 g) and the force acting on it is -580 N. The negative sign indicates the direction of the force and acceleration in the opposite direction of the initial velocity.
Learn more about acceleration here:
https://brainly.com/question/30660316
#SPJ11
Set the parameters as follows: vo = 0, k = 0.4000, s = 0.5000, g = 9.810 m/s2, m = 5.000 kg. Predict: In order to keep the block at rest on the incline plane, the angle of the incline plane can’t exceed what value? Draw a free body diagram of the block and show your calculation.
To predict the maximum angle of the incline plane (θ) at which the block can be kept at rest, we need to consider the forces acting on the block
. The key is to determine the critical angle at which the force of static friction equals the maximum force it can exert before the block starts sliding.
The free body diagram of the block on the incline plane will show the following forces: the gravitational force (mg) acting vertically downward, the normal force (N) perpendicular to the incline, and the force of static friction (fs) acting parallel to the incline in the opposite direction of motion.
For the block to remain at rest, the force of static friction must be equal to the maximum force it can exert, given by μsN. In this case, the coefficient of static friction (μs) is 0.5000.
The force of static friction is given by fs = μsN. The normal force (N) is equal to the component of the gravitational force acting perpendicular to the incline, which is N = mgcos(θ).
Setting fs equal to μsN, we have fs = μsmgcos(θ).
Since the block is at rest, the net force acting along the incline must be zero. The net force is given by the component of the gravitational force acting parallel to the incline, which is mgsin(θ), minus the force of static friction, which is fs.
Therefore, mgsin(θ) - fs = 0. Substituting the expressions for fs and N, we get mgsin(θ) - μsmgcos(θ) = 0.
Simplifying the equation, we have sin(θ) - μscos(θ) = 0.
Substituting the values μs = 0.5000 and μk = 0.4000 into the equation, we can solve for the angle θ. The maximum angle θ at which the block can be kept at rest is the angle that satisfies the equation sin(θ) - μscos(θ) = 0. By solving this equation, we can find the numerical value of the maximum angle.
Learn more about inclination here: brainly.com/question/29360090
#SPJ11
If you pick a random integer x where 1<=x<=100, what is the probability that the number is a multiple of 5 or a perfect square?
The probability: Probability = Number of favorable outcomes / Total number of possible outcomes = 28 / 100 = 0.28 (or 28%)..The probability that a random integer between 1 and 100 is a multiple of 5 or a perfect square is 0.28 or 28%.
To calculate the probability that a randomly chosen integer between 1 and 100 (inclusive) is either a multiple of 5 or a perfect square, we need to determine the number of favorable outcomes and the total number of possible outcomes.
First, let's find the number of multiples of 5 between 1 and 100. We can divide 100 by 5 to get the number of multiples:
Number of multiples of 5 = floor(100/5) = 20
Next, let's find the number of perfect squares between 1 and 100. The perfect squares in this range are 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100. So, there are 10 perfect squares.
However, we need to be careful because some of the numbers are counted in both categories (multiples of 5 and perfect squares). We need to account for this overlap.
The numbers that are both multiples of 5 and perfect squares are 25 and 100. So, we subtract 2 from the total count of perfect squares to avoid double-counting.
Adjusted count of perfect squares = 10 - 2 = 8
Now, let's find the total number of possible outcomes, which is the number of integers between 1 and 100, inclusive:
Total number of integers = 100 - 1 + 1 = 100
Therefore, the probability of randomly choosing an integer between 1 and 100 that is either a multiple of 5 or a perfect square is:
Probability = (Number of favorable outcomes) / (Total number of possible outcomes)
= (20 + 8) / 100
= 28 / 100
= 0.28
So, the probability is 0.28, which can also be expressed as 28%.
To learn more about, perfect squares, click here, https://brainly.com/question/29056294
#SPJ11
A beam of particles carrying a charge of magnitude that is 8 times the charge of electron (1.602×10-19 C) is traveling at 1.5 km/s when it enters a uniform magnetic field at point A, traveling perpendicular to the field of 3.53×10-3 T. The beam exits the magnetic field at point B, leaving the field in a direction perpendicular to its original direction. If the mass of the particle is 12 times the mass of proton (1.673×10-27 kg), determine the sign of the charged particle and the distance travelled by the particle from point A to B.
The distance travelled by the particle from point A to B is 4.16 cm. The sign of the charged particle is positive.
Given that the charge of the particle is 8 times the charge of the electron
= 8 × 1.602 × 10^(-19)
= 1.2816 × 10^(-18) C
The magnetic field, B = 3.53 × 10^(-3) T
The velocity, v = 1.5 km/s
= 1.5 × 10^(3) m/s
The mass of the particle, m = 12 times the mass of the proton
= 12 × 1.673 × 10^(-27) kg
= 2.0076 × 10^(-26) kg
Charge of a particle, q = vBmr / q
Here, r is the radius of the circular path followed by the charged particle while travelling in the magnetic field.
Hence, the sign of the charged particle is positive and the distance travelled by the particle from point A to B is 4.16 cm.Step-by-step explanation:
The force acting on a charged particle in a magnetic field is given by the equation,F = qvB
where,F is the magnetic force acting on the charged particleq is the charge of the particlev is the velocity of the particleB is the magnetic field strengthFurther, the force causes the charged particle to move in a circular path. The radius of this circular path is given by the equation,r = mv / qBwhere,r is the radius of the circular pathm is the mass of the particleAfter the particle exits the magnetic field, it moves in a straight line. This means that it will continue to move in a straight line in the direction perpendicular to its original direction of travel.
Thus, the path followed by the particle can be represented as shown below:
Since the particle exits the magnetic field in a direction perpendicular to its original direction of travel, the radius of the circular path followed by the particle while inside the magnetic field is equal to the distance travelled by the particle inside the magnetic field.
From the equation for the radius of the circular path followed by the charged particle, we have,r = mv / qB
Substituting the values given in the problem,
r = (2.0076 × 10^(-26)) × (1.5 × 10^(3)) / (1.2816 × 10^(-18)) × (3.53 × 10^(-3))[tex](2.0076 × 10^(-26)) × (1.5 × 10^(3)) / (1.2816 × 10^(-18)) × (3.53 × 10^(-3))[/tex]
r = 4.16 × 10^(-2) m
= 4.16 cm
Thus, the distance travelled by the particle from point A to B is 4.16 cm. The sign of the charged particle is positive.
To know more about magnitude visit;
brainly.com/question/31022175
#SPJ11
2. Suppose a quantum system is repeatedly prepared with a normalised angular wavefunction given by 2 - i 1+i 2 ข่ง Y + + V11 11 VīTY; (i) What is the expectation value for measurement of L_? (ii) Calculate the uncertainty in a measurement of Lz. (iii) Produce a histogram of outcomes for a measurement of Lz. Indicate the mean and standard deviation on your plot.
(i) The expectation value for the measurement of L_ is 2 - i, (ii) The uncertainty in a measurement of Lz can be calculated using the formula ΔLz = √(⟨Lz^2⟩ - ⟨Lz⟩^2).
(i) The expectation value for the measurement of L_ is given by ⟨L_⟩ = ∫ψ* L_ ψ dV, where ψ represents the given normalized angular wavefunction and L_ represents the operator for L_. Plugging in the given wavefunction, we have ⟨L_⟩ = ∫(2 - i)ψ* L_ ψ dV.
(ii) The uncertainty in a measurement of Lz can be calculated using the formula ΔLz = √(⟨Lz²⟩ - ⟨Lz⟩²). To find the expectation values ⟨Lz²⟩ and ⟨Lz⟩, we need to calculate them as follows:
- ⟨Lz²⟩ = ∫ψ* Lz² ψ dV, where ψ represents the given normalized angular wavefunction and Lz represents the operator for Lz.
- ⟨Lz⟩ = ∫ψ* Lz ψ dV.
(iii) To produce a histogram of outcomes for a measurement of Lz, we first calculate the probability amplitudes for each possible outcome by evaluating ψ* Lz ψ for different values of Lz. Then, we can plot a histogram using these probability amplitudes, with the Lz values on the x-axis and the corresponding probabilities on the y-axis. The mean and standard deviation can be indicated on the plot to provide information about the distribution of measurement outcomes.
To learn more about function -
brainly.com/question/31494901
#SPJ11
When two objects collide and bounce off each other after the collision, and there is no loss of kinetic energy, this type of collision is: All other answers are incorrect. Partially Elastic Perfectly Elastic Inelastic
A partially elastic collision is one where the kinetic energy is not conserved entirely, while in an inelastic collision, the colliding objects stick together after the collision.
When two objects collide and bounce off each other after the collision, and there is no loss of kinetic energy, this type of collision is known as perfectly elastic collision. Perfectly elastic collision is a type of collision between two objects where kinetic energy is conserved.
When two bodies collide elastically, they rebound with the same velocity as before the collision. During a perfectly elastic collision, there is no loss of kinetic energy, as the total kinetic energy before and after the collision is equal.Therefore, a perfectly elastic collision is one in which the two colliding objects bounce off each other without sticking together.
The colliding objects must have the same mass, and the velocity of the objects before and after the collision must also be the same. A perfectly elastic collision is ideal because there is no loss of energy, and kinetic energy is conserved. The two other types of collisions are partially elastic collisions and inelastic collisions.
To know more about elastic visit:
https://brainly.com/question/30999432
#SPJ11
1- Electromagnetic spectrum (complete), 2- Properties of waves, 3- Properties of particles, 4- Where does the classical model fail? 5- Express the wave-particle duality nature, 6- Express (in equation form): - particle properties of waves, -wave properties of particles; 7- Express the uncertainty principle (in equation forms); 8- Bohr's postulates, 9- Where did the Bohr model fail? 10- Wave function: - what is it? - what does it describe? - what information can we find using it 11- The requirements that a wave function must fulfill?? 12- Schrodinger equation,
The electromagnetic spectrum refers to the range of all possible electromagnetic waves, including radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays.Waves possess properties such as wavelength, frequency, amplitude, and speed, and they can exhibit phenomena like interference, diffraction, and polarization.Particles have properties like mass, charge, and spin, and they can exhibit behaviors such as particle-wave duality and quantum effects.
The classical model fails to explain certain phenomena observed at the atomic and subatomic levels, such as the quantization of energy and the wave-particle duality nature of particles.
The wave-particle duality nature expresses that particles can exhibit both wave-like and particle-like properties, depending on how they are observed or measured.
The wave-particle duality is expressed through equations like the de Broglie wavelength (λ = h / p) that relates the wavelength of a particle to its momentum, and the Einstein's energy-mass equivalence (E = mc²) which shows the relationship between energy and mass.
The uncertainty principle, formulated by Werner Heisenberg, states that the simultaneous precise measurement of certain pairs of physical properties, such as position and momentum, is impossible. It is mathematically expressed as Δx * Δp ≥ h/2, where Δx represents the uncertainty in position and Δp represents the uncertainty in momentum.
Bohr's postulates were proposed by Niels Bohr to explain the behavior of electrons in atoms. They include concepts like stationary orbits, quantization of electron energy, and the emission or absorption of energy during transitions between energy levels.
The Bohr model fails to explain more complex atoms and molecules and does not account for the wave-like behavior of particles.
The wave function is a fundamental concept in quantum mechanics. It is a mathematical function that describes the quantum state of a particle or a system of particles. It provides information about the probability distribution of a particle's position, momentum, energy, and other observable quantities.
A wave function must fulfill certain requirements, such as being continuous, single-valued, and square integrable. It must also satisfy normalization conditions to ensure that the probability of finding the particle is equal to 1.
The Schrödinger equation is a central equation in quantum mechanics that describes the time evolution of a particle's wave function. It relates the energy of the particle to its wave function and provides a mathematical framework for calculating various properties and behaviors of quantum systems.
Learn more about Electromagnetic spectrum:
https://brainly.com/question/23727978
#SPJ11
S5. Two small uniform smooth spheres have masses m and 3m, and speeds 7u and 2u in opposite directions, respectively. They collide directly, and the lighter mass is brought to rest by the collision. Find the coefficient of restitution.
The coefficient of restitution is 1/5 or 0.2.
The coefficient of restitution (e) is a measure of how elastic a collision is. To find e, we need to calculate the relative velocity of the two spheres before and after the collision.
The initial relative velocity is the difference between the speeds of the two spheres: (7u - 2u) = 5u. After the collision, the lighter mass comes to rest, so the final relative velocity is the negative of the heavier mass's velocity: -(2u - 0) = -2u.
The coefficient of restitution (e) is then given by the ratio of the final relative velocity to the initial relative velocity: e = (-2u) / (5u) = -2/5. Therefore, the coefficient of restitution is -2/5.
To learn more about coefficient of restitution
Click here brainly.com/question/29422789
#SPJ11
A proton moving perpendicular to a magnetic field of 9.80 μT follows a circular path of radius 4.95 cm. What is the proton's speed? Give answer in m/s.
If the magnetic field in the previous question is pointed into the page and the proton is moving to the left when it enters the region of the magnetic field, the proton goes in what direction as viewed from above?
A) Clockwise
B) Counterclockwise
C) Down the page
D) Up the page
The proton's speed is approximately 1.48 x 10^5 m/s, which corresponds to option B) Counterclockwise.
We can use the formula for the centripetal force experienced by a charged particle moving in a magnetic field:
F = qvB
where F is the centripetal force, q is the charge of the particle, v is its velocity, and B is the magnetic field strength.
Since the proton moves in a circular path, the centripetal force is provided by the magnetic force:
F = mv^2/r
where m is the mass of the proton and r is the radius of the circular path.
Setting these two equations equal to each other, we have:
mv^2/r = qvB
Rearranging the equation, we find:
v = (qBr/m)^0.5
Plugging in the given values, we have:
v = [(1.6 x 10^-19 C)(9.8 x 10^-6 T)(4.95 x 10^-2 m)/(1.67 x 10^-27 kg)]^0.5
v ≈ 1.48 x 10^5 m/s
Therefore, the proton's speed is approximately 1.48 x 10^5 m/s.
Regarding the direction of the proton's motion as viewed from above, we can apply the right-hand rule. If the magnetic field is pointed into the page and the proton is moving to the left, the force experienced by the proton will be downwards. As a result, the proton will move in a counterclockwise direction, which corresponds to option B) Counterclockwise.
Learn more about proton's speed from the link
https://brainly.com/question/30881501
#SPJ11
The tungsten filament of a light bulb has a resistance of 8.00 22 when no current flows, and its temperature is 20°C. Esti- mate the filament's temperature when a 1.00-A current flows after a 120-V potential difference is placed across the filament
The temperature of the tungsten filament is approximately 296.15 K when a 1.00-A current flows through it after a 120-V potential difference is placed across the filament.
Resistance of filament when no current flows,R= 8.00Ω
Temperature, T = 20°C = 293 K
Current flowing in the circuit, I = 1.00 A
Potential difference across the filament, V = 120 V
We can calculate the resistance of the tungsten filament when a current flows through it by using Ohm's law. Ohm's law states that the potential difference across the circuit is directly proportional to the current flowing through it and inversely proportional to the resistance of the circuit. Mathematically, Ohm's law is expressed as:
V = IR Where,
V = Potential difference
I = Current
R = Resistance
The resistance of the filament when the current is flowing can be given as:
R' = V / IR' = 120 / 1.00R' = 120 Ω
We know that the resistance of the filament depends on the temperature. The resistance of the filament increases with an increase in temperature. This is because the increase in temperature causes the electrons to vibrate more rapidly and collide more frequently with the atoms and other electrons in the metal. This increases the resistance of the filament.The temperature coefficient of resistance (α) can be used to relate the change in resistance of a material to the change in temperature. The temperature coefficient of resistance is defined as the fractional change in resistance per degree Celsius or per Kelvin. It is given by:
α = (ΔR / RΔT) Where,
ΔR = Change in resistance
ΔT = Change in temperature
T = Temperature
R = Resistance
The temperature coefficient of tungsten is approximately 4.5 x 10^-3 / K.
Therefore, the resistance of the tungsten filament can be expressed as:
R = R₀ (1 + αΔT)Where,
R₀ = Resistance at 20°C
ΔT = Change in temperature
Substituting the given values, we can write:
120 = I (8 + αΔT)
120 = 8I + αIΔT
αΔT = 120 - 8IαΔT = 120 - 8 (1.00)αΔT = 112Kα = 4.5 x 10^-3 / KΔT = α⁻¹ ΔR / R₀ΔT = (4.5 x 10^-3)^-1 x (112 / 8)
ΔT = 3.15K
Filament temperature:
T' = T + ΔTT' = 293 + 3.15T' = 296.15 K
Therefore, the temperature of the tungsten filament is approximately 296.15 K when a 1.00-A current flows through it after a 120-V potential difference is placed across the filament.
Learn more about tungsten filament https://brainly.com/question/30945041
#SPJ11
If the charge is -33_ μC, the speed is 1500_m/s, the strength of the magnetic field is 1_T, and the angle is 150∘, then find the force (magnitude and direction) on the charge. 2. magnitude A. 0.01548_N D. 0.02896_N B. 0.02475 N E. 0.03607 N C. 0.02817_N F. 0.02976_N 3. direction A. Left B. Into the paper C. Right D. Out of the paper
Given the charge, speed, magnetic field strength, and angle, we can calculate the force on the charge using the equation F = q * v * B * sin(θ). The magnitude of the force is 0.02896 N, and the direction is out of the paper.
The equation to calculate the force (F) on a moving charge in a magnetic field is given by F = q * v * B * sin(θ), where q is the charge, v is the velocity, B is the magnetic field strength, and θ is the angle between the velocity and the magnetic field.
Given:
Charge (q) = -33 μC = -33 × 10^-6 C
Speed (v) = 1500 m/s
Magnetic field strength (B) = 1 T
Angle (θ) = 150°
First, we need to convert the charge from microcoulombs to coulombs:
q = -33 × 10^-6 C
Now we can substitute the given values into the equation to calculate the force:
F = q * v * B * sin(θ)
= (-33 × 10^-6 C) * (1500 m/s) * (1 T) * sin(150°)
≈ 0.02896 N
Therefore, the magnitude of the force on the charge is approximately 0.02896 N.
To determine the direction of the force, we need to consider the right-hand rule. When the charge moves with a velocity (v) at an angle of 150° to the magnetic field (B) pointing into the paper, the force will be directed out of the paper.
Hence, the direction of the force on the charge is out of the paper.
To learn more about charge click here brainly.com/question/13871705
#SPJ11
Question 10 Bi-214 has a half-life of 19.7 minutes. A sample of 100g of Bi-124 is present initially. What mass of Bi-124 remains 98.5 minutes later? a A. 6.25 g B. 19,7 g C. 3.125g D. 20 g
10 Bi-214 has a half-life of 19.7 minutes. A sample of 100g of Bi-124 is present initially, the mass of Bi-124 remains 98.5 minutes later is C. 3.125g.
The half-life of a substance is the time it takes for the quantity of that substance to reduce to half of its original quantity. In this case, we are looking at the half-life of Bi-214, which is 19.7 minutes. This means that if we start with 100g of Bi-214, after 19.7 minutes, we will have 50g left. After another 19.7 minutes, we will have 25g left, and so on. Now, we are asked to find out what mass of Bi-214 remains after 98.5 minutes.
We can do this by calculating the number of half-lives that have passed, and then multiplying the initial mass by the fraction remaining after that many half-lives. In this case, we have: 98.5 / 19.7 = 5 half-lives.
So, after 5 half-lives, the fraction remaining is (1/2)^5 = 1/32.
Therefore, the mass remaining is: 100g x 1/32 = 3.125g. Hence, the correct option is C. 3.125g.
Learn more about fraction at:
https://brainly.com/question/29766013
#SPJ11
(10%) Problem 2: The image shows a rocket sled, In the top image all four forward thrusters are engaged, creating a total forward thrust of magnitude 47, where T =519 N. In the bottom image, in addition to the four forward thrusters, one reverse thruster is engaged, creating a reverse thrust of magnitude 7. In both cases a backward force (friction and air drag) of magnitude f = 20 Nacts on the sled. 7 What is the ratio of the greater acceleration to the lesser acceleration?
The ratio of the greater acceleration to the lesser acceleration is approximately 0.985.
In the top image where all four forward thrusters are engaged, the total forward thrust exerted on the sled is 519 N. The backward force due to friction and air drag is 20 N. Using Newton's second law, we can calculate the acceleration in this case:
Forward thrust - Backward force = Mass * Acceleration
519 N - 20 N = Mass * Acceleration₁
In the bottom image, in addition to the four forward thrusters, one reverse thruster is engaged, creating a reverse thrust of magnitude 7 N. The backward force of friction and air drag remains the same at 20 N. The total forward thrust can be calculated as:
Total forward thrust = Forward thrust - Reverse thrust
Total forward thrust = 519 N - 7 N = 512 N
Again, using Newton's second law, we can calculate the acceleration this case:
Total forward thrust - Backward force = Mass * Acceleration
512 N - 20 N = Mass * Acceleration₂
To find the ratio of the greater acceleration (Acceleration₂) to the lesser acceleration (Acceleration₁), we can divide the equations:
(Acceleration₂) / (Acceleration₁) = (512 N - 20 N) / (519 N - 20 N)
Simplifying the expression, we get:
(Acceleration₂) / (Acceleration₁) = 492 N / 499 N
(Acceleration₂) / (Acceleration₁) ≈ 0.985
To learn more about magnitude -
brainly.com/question/32755502
#SPJ11
How long would it take for 4*10^20 atoms to decay to 1*10^19
atoms if their half life was 14.7 years?
It would take around 17.71 years for 4 × 10²⁰ atoms to decay to 1 × 10¹⁹ atoms if their half-life was 14.7 years.
Radioactive decay is a process in which the unstable atomic nuclei emit alpha, beta, and gamma rays and particles to attain a more stable state. Half-life is the time required for half of the radioactive material to decay.
The given information isNumber of atoms present initially, N₀ = 4 × 10²⁰
Number of atoms present finally, N = 1 × 10¹⁹
Half-life of the element, t₁/₂ = 14.7 years
To find the time required for the decay of atoms, we need to use the decay formula.N = N₀ (1/2)^(t/t₁/₂)
Here, N₀ is the initial number of atoms, and N is the number of atoms after time t.
Since we have to find the time required for the decay of atoms, rearrange the above formula to get t = t₁/₂ × log(N₀/N)
Substitute the given values, N₀ = 4 × 10²⁰N = 1 × 10¹⁹t₁/₂ = 14.7 years
So, t = 14.7 × log(4 × 10²⁰/1 × 10¹⁹)≈ 14.7 × 1.204 = 17.71 years (approx.)
Therefore, it would take around 17.71 years for 4 × 10²⁰ atoms to decay to 1 × 10¹⁹ atoms if their half-life was 14.7 years.
Learn more about half-life at: https://brainly.com/question/1160651
#SPJ11
A small wrecking ball, weighing in at 450 kg, is being used to demolish a sturdy building. The wrecking ball hits the building at a 35° angle above horizontal, traveling at 12 m/s. Once it makes contact with the wall, the wall exerts 2000N of net force in the horizontal direction against the wrecking ball's motion, and slowing it down. Unfortunately, it becomes lodged within the building's walls. Determine the wrecking ball's horizontal displacement.
The wrecking ball's horizontal displacement is approximately 21.829 meters.
To determine the wrecking ball's horizontal displacement, we can analyze its motion before it becomes lodged in the building.
First, let's calculate the initial horizontal velocity (Vx) and vertical velocity (Vy) of the wrecking ball. We can use the given initial velocity (12 m/s) and the angle of impact (35°) using trigonometric functions:
Vx = initial velocity * cos(angle)
Vx = 12 m/s * cos(35°) ≈ 9.849 m/s
Vy = initial velocity * sin(angle)
Vy = 12 m/s * sin(35°) ≈ 6.855 m/s
Now, let's determine the time it takes for the wrecking ball to become lodged in the building. We can use the horizontal force exerted by the wall (2000 N) and the mass of the wrecking ball (450 kg) to calculate the deceleration (a) using Newton's second law:
F = m * a
a = F / m
a = 2000 N / 450 kg ≈ 4.444 m/s²
The wrecking ball will decelerate at a constant rate until it stops. The time taken (t) to stop can be calculated using the horizontal velocity (Vx) and the deceleration (a) using the equation:
Vx = a * t
t = Vx / a
t = 9.849 m/s / 4.444 m/s² ≈ 2.216 s
Finally, we can determine the horizontal displacement (d) of the wrecking ball using the time (t) and initial horizontal velocity (Vx) using the equation:
d = Vx * t
d = 9.849 m/s * 2.216 s ≈ 21.829 m
Therefore, the wrecking ball's horizontal displacement is approximately 21.829 meters.
Learn more about velocity:
https://brainly.com/question/80295
#SPJ11
Oceans as deep as 0.540 km once may have existed on Mars. The acceleration due to gravity on Mars is 0.379g. Assume that the
salinity of Martian oceans was the same as oceans on Earth, with a mass density of 1.03 × 103 kg/m? If there were any organisms in the Martian ocean in the distant past, what absolute pressure p would they have experienced at the bottom, assuming the surface pressure was
the same as it is on present-day Earth?
p =
Pa What gauge pressure gauge would they have experienced at
the bottom?
Pgauge =
Pa If the bottom-dwelling organisms were brought from Mars to Earth, to what depth dEarth could they go in our ocean without
exceeding the maximum pressure the experienced on Mars?
The absolute pressure at the bottom of the Martian ocean is 3.57 × 10⁷. The density of seawater is assumed to be 1.03 × 103 kg/m³.The acceleration due to gravity on Mars is 0.379g.Oceans as deep as 0.540 km once may have existed on Mars.The surface pressure on Earth is 1.013 × 105 Pa.
The absolute pressure at the bottom of the Martian ocean is p = ρgh_p
= ρg(2d)_p
= 1030 kg/m³ × 3.711 m/s² × (2 × 540 × 10³ m)
p = 3.57 × 10⁷
Pa The gauge pressure at the bottom of the Martian ocean is Pgauge = p - psurf, Pgauge = (3.57 × 10⁷ Pa) - (1.013 × 10⁵ Pa). Pgauge = 3.56 × 10⁷ Pa. If the bottom-dwelling organisms were brought from Mars to Earth, they would be unable to withstand the pressure if they went deeper than the depth at which the pressure is the same as the pressure at the bottom of the Martian ocean.
ρwater = 1030 kg/m³g = 9.8 m/s²
psurf = 1.013 × 10⁵ Pa
To calculate the maximum depth, we'll use the formula below: pEarth = pMarspEarth
= (ρgh)Earth
= (ρgh)Mars
pEarth = (ρwatergh)
Earth = pMarspEarth
= (1030 kg/m³)(9.8 m/s²)(d)
Earth = 3.57 × 10⁷
PAdEarth = 3749.1, mdEarth = 3.7 km.
Therefore, if the bottom-dwelling organisms were brought from Mars to Earth, they would be unable to withstand the pressure if they went deeper than the depth at which the pressure is the same as the pressure at the bottom of the Martian ocean, that is 3.7 km.
To know more about Absolute pressure visit-
brainly.com/question/13390708
#SPJ11
Select the correct answer. Why does a solid change to liquid when heat is added? A. The spacing between particles decreases. B. Particles lose energy. C. The spacing between particles increases. D. The temperature decreases.
Answer:
The right answer is c because when we heat solid object the molecule will start lose attraction on object
Explanation:
brain list
Physics
4. Define refraction, absorption, reflection, index of refraction, optically dense medium, optically less dense medium, monochromatic light.
Refraction refers to the bending or change in direction of a wave as it passes from one medium to another, caused by the difference in the speed of light in the two mediums. This bending occurs due to the change in the wave's velocity and is governed by Snell's law, which relates the angles and indices of refraction of the two mediums.
Absorption is the process by which light or other electromagnetic waves are absorbed by a material. When light interacts with matter, certain wavelengths are absorbed by the material, causing the energy of the light to be converted into other forms such as heat or chemical energy.
Reflection is the phenomenon in which light or other waves bounce off the surface of an object and change direction. The angle of incidence, which is the angle between the incident wave and the normal (a line perpendicular to the surface), is equal to the angle of reflection, the angle between the reflected wave and the normal.
Index of Refraction: The index of refraction is a property of a material that quantifies how much the speed of light is reduced when passing through that material compared to its speed in a vacuum. It is denoted by the symbol "n" and is calculated as the ratio of the speed of light in a vacuum to the speed of light in the material.
Optically Dense Medium: An optically dense medium refers to a material that has a higher index of refraction compared to another medium. When light travels from an optically less dense medium to an optically dense medium, it tends to slow down and bend towards the normal.
Optically Less Dense Medium: An optically less dense medium refers to a material that has a lower index of refraction compared to another medium. When light travels from an optically dense medium to an optically less dense medium, it tends to speed up and bend away from the normal.
Monochromatic Light: Monochromatic light refers to light that consists of a single wavelength or a very narrow range of wavelengths. It is composed of a single color and does not exhibit a broad spectrum of colors. Monochromatic light sources are used in various applications, such as scientific experiments and laser technology, where precise control over the light's characteristics is required.
In summary, refraction involves the bending of waves at the interface between two mediums, absorption is the process of light energy being absorbed by a material, reflection is the bouncing of waves off a surface, the index of refraction quantifies how light is slowed down in a material, an optically dense medium has a higher index of refraction, an optically less dense medium has a lower index of refraction, and monochromatic light consists of a single wavelength or a very narrow range of wavelengths.
Learn more about refraction here:
https://brainly.com/question/14760207
#SPJ11
A thin rod has a length of 0.233 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.464 rad/s and a moment of inertia of 1.25 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-3 kg) gets where it's going, what is the change in the angular velocity of the rod?
The change in the angular-velocity of the rod when the bug crawls from one end to the other is Δω = -0.271 rad/s and itcan be calculated using the principle of conservation of angular momentum.
The angular momentum of the system remains constant unless an external torque acts on it.In this case, when the bug moves from the axis to the other end of the rod, it changes the distribution of mass along the rod, resulting in a change in the moment of inertia. As a result, the angular velocity of the rod will change.
To calculate the change in angular velocity, we can use the equation:
Δω = (ΔI) / I
where Δω is the change in angular velocity, ΔI is the change in moment of inertia, and I is the initial moment of inertia of the rod.
The initial moment of inertia of the rod is given as 1.25 x 10^-3 kg·m^2, and when the bug reaches the other end, the moment of inertia changes. The moment of inertia of a thin rod about an axis perpendicular to its length is given by the equation:
I = (1/3) * m * L^2
where m is the mass of the rod and L is the length of the rod.
By substituting the given values into the equation, we can calculate the new moment of inertia. Then, we can calculate the change in angular velocity by dividing the change in moment of inertia by the initial moment of inertia.
The change in angular velocity of the rod is calculated to be Δω = -0.271 rad/s.
To learn more about angular-velocity , click here : https://brainly.com/question/31501255
#SPJ11
A 100km long high voltage transmission line that uses an unknown material has a diameter of 3 cm and a potential difference of 220V is maintained across the ends. The average time between collision is 2.7 x 10-14 s and the free-electron density is 8.5 x 1026 /m3. Determine the drift velocity in m/s.
The drift velocity of electrons in the high voltage transmission line is approximately 4.18 x 10-5 m/s.
1. We can start by calculating the cross-sectional area of the transmission line. The formula for the area of a circle is A = [tex]\pi r^2[/tex], where r is the radius of the line. In this case, the diameter is given as 3 cm, so the radius (r) is 1.5 cm or 0.015 m.
A = π(0.01[tex]5)^2[/tex]
= 0.0007065 [tex]m^2[/tex]
2. Next, we need to calculate the current density (J) using the formula J = nev, where n is the free-electron density and e is the charge of an electron.
Given: n = 8.5 x [tex]10^2^6[/tex] /[tex]m^3[/tex]
e = 1.6 x [tex]10^{-19[/tex] C (charge of an electron)
J = (8.5 x [tex]10^2^6[/tex] /[tex]m^3)(1.6 x 10^-19[/tex] C)v
= 1.36 x [tex]10^7[/tex] v /[tex]m^2[/tex]
3. The current density (J) is also equal to the product of the drift velocity (v) and the charge carrier concentration (nq), where q is the charge of an electron.
J = nqv
1.36 x 1[tex]0^7[/tex] v /m^2 = (8.5 x [tex]10^2^6[/tex] /[tex]m^3[/tex])(1.6 x [tex]10^{-19[/tex] C)v
4. We can solve for the drift velocity (v) by rearranging the equation:
v = (1.36 x [tex]10^7[/tex] v /[tex]m^2[/tex]) / (8.5 x [tex]10^2^6[/tex] /[tex]m^3[/tex])(1.6 x [tex]10^{-19[/tex] C)
= (1.36 x [tex]10^7[/tex]) / (8.5 x 1.6) m/s
≈ 4.18 x [tex]10^{-5[/tex] m/s
Therefore, the drift velocity in the high voltage transmission line is approximately 4.18 x[tex]10^{-5 m/s.[/tex]
For more such questions on velocity, click on:
https://brainly.com/question/29396365
#SPJ8
7. Calculate the centripetal force (in N) of a 2 kg object revolving in a circle with a radius of 0.5 m at a velocity of 6 m/s?
The centripetal force of the object is 144 Newtons.
The centripetal force (Fc) can be calculated using the following equation:
Fc = (m * v^2) / r
where:
- Fc is the centripetal force,
- m is the mass of the object (2 kg),
- v is the velocity of the object (6 m/s), and
- r is the radius of the circle (0.5 m).
Substituting the given values into the equation, we have:
Fc = (2 kg * (6 m/s)^2) / 0.5 m
Simplifying the equation further, we get:
Fc = (2 kg * 36 m^2/s^2) / 0.5 m
= (72 kg * m * m/s^2) / 0.5 m
= 144 N
Therefore, the centripetal force of the object is 144 Newtons.
To know more about centripetal force, refer here:
https://brainly.com/question/14021112#
#SPJ11
The separation between two plates is 4.8mm and plate area is 100mm^2. The top plate charge is 0.04pC. The voltage is at 0.4 V.
1. How much charge should be stored in each plate?
2. What is the strength of the electric field between the playes if the separation is 6mm and the area of each plate is 8mm^2 and the battery voltage is 3.
1. The amount of charge stored on each plate is 3.68 × 10^-10 C.
2. The strength of the electric field between the plates is 0.5 V/m.
1. The formula for the capacitance of a parallel plate capacitor is given by,
C = (εA)/d
Where,
ε is the permittivity of free space
A is the area of the plates
d is the distance between the plates
Given data,
Area of each plate, A = 100 mm²
Distance between the plates, d = 4.8 mm
Therefore, the capacitance of the capacitor is,
C = (εA)/d
= 8.85 × 10^−12 × (100 × 10^-6)/(4.8 × 10^-3)
= 1.84 × 10^-9 F
As we know,
Q = CV
Charge stored on each plate,
Q = (C × V)/2
= (1.84 × 10^-9 × 0.4)/2
= 3.68 × 10^-10 C
Therefore, the amount of charge stored on each plate is 3.68 × 10^-10 C.
2. Given data,
Area of each plate, A = 8 mm²
Distance between the plates, d = 6 mm
Battery voltage, V = 3 V
The capacitance of the parallel plate capacitor is given by,
C = (εA)/d
= 8.85 × 10^−12 × (8 × 10^-6)/(6 × 10^-3)
= 1.18 × 10^-11 F
As we know,
E = V/d
The strength of the electric field between the plates is
E = V/d
= 3/6
= 0.5 V/m
Therefore, the strength of the electric field between the plates is 0.5 V/m.
Learn more about the capacitance:
brainly.com/question/25884271
#SPJ11
PHY 103 (General Physics II) Home-Work One Due Date: May, 20 2022 Question 1. A flat sheet is in the shape of a rectangle with sides of lengths 0.400 m and 0.600 m. The sheet is immersed in a uniform electric field of magnitude that is directed at from the plane of the sheet (Fig.1). Find the magnitude of the electric flux through the sheet 2007 0.400 m -0.600 m Figure. I
The given problem describes the situation where a flat sheet that is in the form of a rectangle with sides of lengths 0.400 m and 0.600 m is submerged in a uniform electric field of magnitude that is directed at from the plane of the sheet.
The electric flux φ is given by the formula:φ = E . A . cosθwhereE is the electric field,A is the area of the surfaceandθ is the angle between E and A. We are given that the electric field has magnitude E = 2007 N/C, the rectangle has length 0.6 m and width 0.4 m, so the area of the sheet is A = (0.6 m) (0.4 m) = 0.24 m². Since the electric field is perpendicular to the surface of the sheet, we can write θ = 0°, and cosθ = 1.Using these values in the formula,φ = E . A . cosθ= (2007 N/C) (0.24 m²) (1)= 482.16 N m²/C
Answer: Therefore, the magnitude of the electric flux through the sheet is 482.16 N m²/C.
To know more about electric visit :
https://brainly.com/question/31173598
#SPJ11
Calculate the energy, to the first order of approximation, of the excited states of the helium atom 21S, 22P , 23S and 23P . To do this calculation it would be necessary to explicitly obtain the Coulomb and exchange integrals,Jnl and Knl respectively.
The energy, to the first-order of approximation, of the excited states of helium atoms 21S, 22P, 23S, and 23P can be obtained through the Coulomb and exchange integrals, Jnl, and Knl, respectively.
The energy, to the first-order of approximation, of the excited states of helium atoms 21S, 22P, 23S, and 23P can be obtained through the Coulomb and exchange integrals, Jnl, and Knl, respectively. To calculate this, first, we need to obtain the Coulomb integral as the sum of two integrals: one for the electron-electron repulsion and the other for the electron-nucleus attraction.
After obtaining this, we need to evaluate the exchange integral, which will depend on the spin and symmetry of the wave functions. From the solutions of the Schroedinger equation, it is possible to obtain the wave functions of the helium atoms. The Jnl and Knl integrals are obtained by evaluating the integrals of the product of the wave functions and the Coulomb or exchange operator, respectively. These integrals are solved numerically, leading to the energy values of the excited states.
Learn more about wave functions here:
https://brainly.com/question/32239960
#SPJ11
A long non-conducting cylinder has a charge density p = ar, where a = 6.19 C/m² and r is in meters. Concentric around it is a hollow metallic cylindrical shell. L ... 11.28 cm 23 cm 30.4 cmWhat is the surface charge density inside the hollow cylinder?
Answer in units of C/m^2.
Cannot get this one. And I know the answer is not 6.56 x 10^-3
To find the surface charge density inside the hollow metallic cylindrical shell surrounding the non-conducting cylinder, we need to consider the electric field inside the shell and its relation to the charge density.
Let's denote the radius of the non-conducting cylinder as R.
Inside a hollow metallic cylindrical shell, the electric field is zero. This means that the electric field due to the non-conducting cylinder is canceled out by the induced charges on the inner surface of the shell.
To find the surface charge density inside the hollow cylinder, we can equate the electric field inside the hollow cylinder to zero:
Electric field inside hollow cylinder = 0
Using Gauss's law, the electric field inside the cylinder can be expressed as:
E = (p * r) / (2 * ε₀),
where p is the charge density, r is the distance from the center, and ε₀ is the permittivity of free space.
Setting E to zero, we can solve for the surface charge density (σ) inside the hollow cylinder:
(p * r) / (2 * ε₀) = 0
Since the equation is set to zero, we can conclude that the surface charge density inside the hollow cylinder is zero.Therefore, the correct answer is 0 C/m².
To learn more about surface charge density click here.
brainly.com/question/17438818
#SPJ11
A 6.0-m uniform board is supported by two sawhorses 4.0 m aprat as shown. A 32 kg child walks on the board to 1.4 m beyond the right support when the board starts to tip, that is, the board is off the left support. Find the mass of the board. (Hint: the weight of the board can be considered to be applied at its center of gravity.)
When 6.0-m uniform board is supported by two sawhorses 4.0 m apart and a 32 kg child walks on the board to 1.4 m beyond the right support when the board starts to tip, that is, the board is off the left support then the mass of the board is 1352 kg.
Given data :
Length of board = L = 6 m
Distance between sawhorses = d = 4 m
Mass of child = m = 32 kg
The child walks to a distance of x = 1.4 m beyond the right support.
The length of the left over part of the board = L - x = 6 - 1.4 = 4.6 m
As the board is uniform, the center of gravity is at the center of the board.The weight of the board can be considered to be applied at its center of gravity. The board will remain in equilibrium if the torques about the two supports are equal.
Thus, we can apply the principle of moments.
ΣT = 0
Clockwise torques = anticlockwise torques
(F1)(d) = (F2)(L - d)
F1 = (F2)(L - d)/d
Here, F1 + F2 = mg [As the board is in equilibrium]
⇒ F2 = mg - F1
Putting the value of F2 in the equation F1 = (F2)(L - d)/d
We get, F1 = (mg - F1)(L - d)/d
⇒ F1 = (mgL - mF1d - F1L + F1d)/d
⇒ F1(1 + (L - d)/d) = mg
⇒ F1 = mg/(1 + (L - d)/d)
Putting the given values, we get :
F1 = (32)(9.8)/(1 + (6 - 4)/4)
F1 = 588/1.5
F1 = 392 N
Let the mass of the board be M.
The weight of the board W = Mg
Let x be the distance of the center of gravity of the board from the left support.
We have,⟶ Mgx = W(L/2) + F1d
Mgx = Mg(L/2) + F1d
⇒ Mgx - Mg(L/2) = F1d
⇒ M(L/2 - x) = F1d⇒ M = (F1d)/(L/2 - x)
Substituting the values, we get :
M = (392)(4)/(6 - 1.4)≈ 1352 kg
Therefore, the mass of the board is 1352 kg.
To learn more about mass :
https://brainly.com/question/86444
#SPJ11
Q/C S A glider of mass m is free to slide along a horizontal air track. It is pushed against a launcher at one end of the track. Model the launcher as a light spring of force constant k compressed by a distance x. The glider is released from rest. (c) Is more work done on a cart with a large or a small mass?
More work is done on a cart with a small mass. This relationship arises from the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy.
To understand why more work is done on a cart with a small mass, let's consider the work-energy principle. According to this principle, the work done on an object is equal to the change in its kinetic energy.
In this scenario, when the glider is released from rest, the compressed spring exerts a force on the glider, accelerating it along the air track. The work done by the spring force is given by the formula:
Work = (1/2) kx²
where k is the force constant of the spring and x is the distance the spring is compressed.
Now, the change in kinetic energy of the glider can be calculated using the formula:
ΔKE = (1/2) mv²
where m is the mass of the glider and v is its final velocity.
From the work-energy principle, we can equate the work done by the spring force to the change in kinetic energy:
(1/2) kx² = (1/2) mv²
Since the initial velocity of the glider is zero, the final velocity v is equal to the square root of (2kx²/m).
Now, let's consider the situation where we have two gliders with different masses, m₁ and m₂, and the same spring constant k and compression x. Using the above equation, we can see that the final velocity of the glider is inversely proportional to the square root of its mass:
v ∝ 1/√m
As a result, a glider with a smaller mass will have a larger final velocity compared to a glider with a larger mass. This indicates that more work is done on the cart with a smaller mass since it achieves a greater change in kinetic energy.
More work is done on a cart with a small mass compared to a cart with a large mass. This is because, in the given scenario, the final velocity of the glider is inversely proportional to the square root of its mass. Therefore, a glider with a smaller mass will experience a larger change in kinetic energy and, consequently, more work will be done on it.
This relationship arises from the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy. Understanding this concept helps in analyzing the energy transfer and mechanical behavior of objects in systems involving springs and masses.
To know more about kinetic energy ,visit:
https://brainly.com/question/8101588
#SPJ11
A car of mass 1374 kg accelerates from rest to 15.2 m/s in 5.40 s. How much force was required to do this?
The force required to accelerate the car from rest to 15.2 m/s in 5.40 s is approximately 3858.5 N.
To calculate the force required to accelerate the car, we can use Newton's second law of motion, which states that the force acting on an object is equal to the product of its mass and acceleration:
F = m * a
Where:
F is the force (what we're trying to find)m is the mass of the car (1374 kg)a is the acceleration of the car (which can be calculated using the formula Δv / Δt, where Δv is the change in velocity and Δt is the change in time)Given that the car starts from rest (initial velocity, v₀ = 0) and reaches a final velocity of 15.2 m/s in 5.40 s, we can calculate the acceleration:
Δv = v - v₀ = 15.2 m/s - 0 m/s = 15.2 m/s
Δt = 5.40 s
a = Δv / Δt = 15.2 m/s / 5.40 s
Now, let's calculate the force:
F = (1374 kg) * (15.2 m/s / 5.40 s)
F ≈ 3858.5 N
Therefore, the force required to accelerate the car from rest to 15.2 m/s in 5.40 s is approximately 3858.5 Newtons.
To learn more about Newton's second law of motion, Visit:
https://brainly.com/question/2009830
#SPJ11
A uniform density sheet of metal is cut into the shape of an isosceles triangle, which is oriented with the base at the bottom and a corner at the top. It has a base B = 25 cm, height H = 18 cm, and area mass density σ.
Consider a horizontal slice of the triangle that is a distance y from the top of the triangle and has a thickness dy. Write an equation for the area of this slice in terms of the distance y, and the base B and height H of the triangle.
Set up an integral to calculate the vertical center of mass of the triangle, assuming it will have the form C ∫ f(y) where C has all the constants in it and f(y) is a function of y. What is f(y)?
Integrate to find an equation for the location of the center of mass in the vertical direction. Use the coordinate system specified in the previous parts, with the origin at the top and positive downward.
Find the numeric value for the distance between the top of the triangle and the center of mass in cm
a) The area of the horizontal slice of the triangle is given by:
dA = B(y/H)dy
where y/H gives the fraction of the height at which the slice is located, and dy represents its thickness.
b) To calculate the vertical center of mass of the triangle, we need to integrate the product of the area of each slice and its distance from the top of the triangle. Since the origin is at the top, the distance from the top to a slice located at a height y is simply y. Therefore, the integral for the vertical center of mass has the form:
C ∫ y dA
To simplify this expression, we can substitute the equation for dA from part (a):
C ∫ yB(y/H)dy
c) Integrating this expression, we get:
C ∫ yB(y/H)dy = C(B/H) ∫ y^2 dy
= C(B/H)(1/3) y^3 + K
where K is the constant of integration. Since the center of mass is located at the midpoint of the base, we know that its vertical coordinate is H/3. Therefore, we can solve for C and K using the following two equations:
C(B/H)(1/3) H^3 + K = H/3 (center of mass is at the midpoint of the base)
C(B/H)(1/3) 0^3 + K = 0 (center of mass is at the origin)
Solving for C and K, we get:
C = 4σ/(5BH)
K = -2H/15
Therefore, the equation for the location of the center of mass in the vertical direction is:
y_cm = (4/5)*(∫ yB(y/H)dy)/(BH) - 2/15
d) Substituting the equation for dA from part (a) into the integral for y_cm, we get:
y_cm = (4/5)*(1/BH) ∫ yB(y/H)dy - 2/15
= (4/5)*(1/BH) ∫ y^2 dy
= (4/5)*(1/BH)(1/3) H^3
= 0.32 H
Substituting the given values for B and H, we get:
y_cm = 0.32 * 18 cm = 5.76 cm
Therefore, the distance between the top of the triangle and the center of mass is approximately 5.76 cm.
To know more about mass visit :
brainly.com/question/1287565
#SPJ11
Two equal charges of magnitude 1.8 x 10-7C experience an electrostatic force of 4.5 x 10-4 N. How far apart are the centers of the two charges?
The distance between the centers of the two charges is 5.4 x 10⁻³ m.
Two equal charges of magnitude q = 1.8 x 10⁻⁷ C experience an electrostatic force F = 4.5 x 10⁻⁴ N.
To find, The distance between two charges.
The electrostatic force between two charges q1 and q2 separated by a distance r is given by Coulomb's law as:
F = (1/4πε₀) (q1q2/r²)
Where,ε₀ is the permittivity of free space,ε₀ = 8.85 x 10⁻¹² C² N⁻¹ m⁻².
Substituting the given values in the Coulomb's law
F = (1/4πε₀) (q1q2/r²)⇒ r² = (1/4πε₀) (q1q2/F)⇒ r = √[(1/4πε₀) (q1q2/F)]
The distance between the centers of the two charges is obtained by multiplying the distance between the two charges by 2 since each charge is at the edge of the circle.
So, Distance between centers of the charges = 2r
Here, q1 = q2 = 1.8 x 10⁻⁷ C andF = 4.5 x 10⁻⁴ Nε₀ = 8.85 x 10⁻¹² C² N⁻¹ m⁻²
Now,The distance between two charges, r = √[(1/4πε₀) (q1q2/F)]= √[(1/4π x 8.85 x 10⁻¹² x 1.8 x 10⁻⁷ x 1.8 x 10⁻⁷)/(4.5 x 10⁻⁴)] = 2.7 x 10⁻³ m
Therefore,The distance between centers of the charges = 2r = 2 x 2.7 x 10⁻³ m = 5.4 x 10⁻³ m.
Hence, The distance between the centers of the two charges is 5.4 x 10⁻³ m.
Learn more about magnitude at: https://brainly.com/question/30337362
#SPJ11
Person A and B both lift an object of 50 kg to a height of 2 m. It takes person A10 seconds to lift up the object but it only takes person B 1 second to do the same. (a) How much work do A and B perform? (b) Who is more powerful? Prove
(a) Person A and Person B both perform 1000 Joules of work.
(b) Person B is more powerful.
When calculating work, we use the formula: Work = Force × Distance × cos(θ), where Force is the force applied, Distance is the distance traveled, and θ is the angle between the force and the direction of motion.
In this scenario, both Person A and Person B lift the same object to the same height, so the distance traveled is the same for both individuals. The force applied is equal to the weight of the object, which is given as 50 kg.
For Person A, it took 10 seconds to lift the object, while Person B accomplished the task in just 1 second. Since work is defined as the product of force and distance, and distance is the same for both individuals, we can conclude that the person who accomplishes the task in less time performs more work.
Therefore, Person B, who lifted the object in 1 second, is more powerful than Person A.
Learn more about work
brainly.com/question/13662169
#SPJ11