Question 1. Nitrogen gas at 42 atm and 130 K was kept in a 0.02 ml of container. Determine the mass of the nitrogen in the container.

Answers

Answer 1

Given: Pressure, P = 42 atm Temperature, T = 130 K Volume, V = 0.02 ml Let us find the mass of the nitrogen in the container. Nitrogen gas is a diatomic gas.

The formula of Nitrogen is N2.Adiabatic Equation for an ideal gas is: PVγ = constant, where γ is the ratio of the specific heats, cp/cv. For diatomic gases, γ = 1.4.For the adiabatic process.

[tex]P1V1^γ = P2V2^γWhere P1 = 42 atm, V1 = 0.02 ml, γ = 1.4 and T1 = 130 KLet V2[/tex]

We know the Ideal Gas Equation is PV = n RT ……..(1)

where n = number of moles R = gas constant T = temperature,

From equation (1),

we can write: n = PV/RT……..(2)

The molecular weight of Nitrogen (N2) = 2 x Atomic Weight of Nitrogen Atomic Weight of Nitrogen = 14.01 gm/mole Molecular Weight of Nitrogen ([tex]N2) = 2 x 14.01 = 28.02 gm/mole.[/tex]

Substituting equation (2) into m = n x Molecular Weight of Nitrogen, we

get m = PV x Molecular Weight of Nitrogen / [tex]R Tm = (42 atm x 0.0013 ml x 28.02 gm/mole)[/tex] / (0.0821 liter atm mole^-1 K^-1 x 130 K)m = 3.66 x 10^-8 gm

To know more about Equation visit:

https://brainly.com/question/29538993

#SPJ11


Related Questions

Engineering vibration
A periodic excitation force F(t) is acting on the vibration system given the frequency response function H(w) of the vibration displacement with respect to the excitation force. Find the oscillatory displacement of this system
H(ω)= 2 / 1 - ω²
F(t) = s∑n=1 1/n cos(2nt)

Answers

To find the oscillatory displacement of the vibration system given the frequency response function H(ω) and the excitation force F(t), we can use the concept of convolution in the time domain.

The convolution between the frequency response function H(ω) and the excitation force F(t) gives us the time domain response, which represents the oscillatory displacement of the system. The convolution is expressed as:

y(t) = ∫[H(ω) * F(t-τ)] dτ

In this case, we have the frequency response function H(ω) and the excitation force F(t) as follows:

H(ω) = 2 / (1 - ω²)

F(t) = s∑n=1 (1/n) cos(2nt)

To proceed with the convolution, we need to express the excitation force F(t) in terms of the time variable τ. Since F(t) is a periodic function, we can write it as a Fourier series:

F(t) = s∑n=1 (1/n) cos(2nt) = s∑n=1 (1/n) cos(2n(τ+t))

Now, substitute the expressions of H(ω) and F(t) into the convolution formula and evaluate the integral:

y(t) = ∫[2 / (1 - ω²)] * [s∑n=1 (1/n) cos(2n(τ+t))] dτ

Evaluating this integral will give us the time domain response y(t), which represents the oscillatory displacement of the vibration system under the given excitation force.

To know more about oscillatory displacement visit:

brainly.com/question/20714790

#SPJ11

The output of the system (tachometer sensor is used) is
y(t) = v(t)=[0 0.05154] [Ia]
[ω] Design the observer and implement the feedback controller with observer using SIMULINK.

Answers

Create a SIMULINK model of the system using the state-space matrices and the observer gain matrix L. Add a block for the feedback controller with an observer to the model. Set the initial conditions for the observer. Run the simulation and observe the response of the system to the input signal.

An observer is a closed-loop dynamic system designed to estimate the internal state of a plant using sensor measurements of its inputs and outputs, assuming that some of its states are not directly measurable. Design the observer and implement the feedback controller with an observer using SIMULINK.The tachometer sensor is used to obtain the system's output, which is given by y(t)

= v(t)

=[0 0.05154] [Ia] [ω].

In order to design the observer and implement the feedback controller with an observer using SIMULINK, the following steps must be taken:Step 1: Write the state-space model of the system,The state-space model is defined by the following equations:x'

= Ax + Bu + L(y - Cx)

where x is the state vector, u is the input vector, y is the output vector, and L is the observer gain matrix. Step 2: Design the observerThe observer is designed to estimate the internal state of the plant using the output measurements. The observer gain matrix L is determined by solving the following equation:AL + LC

= B

where A, B, and C are the state-space matrices defined by the system. Step 3: Implement the feedback controller with an observerThe feedback controller with an observer is implemented using SIMULINK. The observer estimates the state of the plant, and the feedback controller uses this estimate to generate the control signal. The implementation of the feedback controller with an observer involves the following steps.Create a SIMULINK model of the system using the state-space matrices and the observer gain matrix L. Add a block for the feedback controller with an observer to the model. Set the initial conditions for the observer. Run the simulation and observe the response of the system to the input signal.

To know more about SIMULINK visit:

https://brainly.com/question/32198727

#SPJ11

7. Given definitions of gm and ra as partial derivatives.

Answers

Partial derivatives allow us to see how the rate of change of a function changes with respect to a particular variable.

gm and ra are partial derivatives. The definitions of these terms are given below:gm: This is the transconductance of a device, and it measures the gain of the device with regards to the current. It can be expressed in units of amperes per volt or siemens. Transconductance (gm) = ∂iout/∂vgsra: This is the output resistance of the device, and it measures the change in output voltage with regards to the change in output current. It can be expressed in ohms.

Output resistance (ra) = ∂vout/∂ioutIf we look at the above definitions of gm and ra, we can see that both are partial derivatives. Partial derivatives are a type of derivative used in calculus. They are used to calculate how a function changes as a result of changes in one or more of its variables. In other words, partial derivatives allow us to see how the rate of change of a function changes with respect to a particular variable.

To know more about geometric mean visit :

https://brainly.com/question/15196370

#SPJ11

A heat engine operating on a Carnot Cycle rejects 519 kJ of heat to a low-temperature sink at 304 K per cycle. The high-temperature source is at 653°C. Determine the thermal efficiency of the Carnot engine in percent.

Answers

The thermal efficiency of the Carnot engine, operating on a Carnot Cycle and rejecting 519 kJ of heat to a low-temperature sink at 304 K per cycle, with a high-temperature source at 653°C, is 43.2%.

The thermal efficiency of a Carnot engine can be calculated using the formula:

Thermal Efficiency = 1 - (T_low / T_high)

where T_low is the temperature of the low-temperature sink and T_high is the temperature of the high-temperature source.

First, we need to convert the high-temperature source temperature from Celsius to Kelvin:

T_high = 653°C + 273.15 = 926.15 K

Next, we can calculate the thermal efficiency:

Thermal Efficiency = 1 - (T_low / T_high)

= 1 - (304 K / 926.15 K)

≈ 1 - 0.3286

≈ 0.6714

Finally, to express the thermal efficiency as a percentage, we multiply by 100:

Thermal Efficiency (in percent) ≈ 0.6714 * 100

≈ 67.14%

Therefore, the thermal efficiency of the Carnot engine in this case is approximately 67.14%.

Learn more about engine here: https://brainly.com/question/13147553

#SPJ11

Air flows from a converging nozzle attached to a reservoir with T 0 =10 ∘ C. The reservoir pressure, in kPa, necessary to just cause Ma exit =1.0 if the 6−cm nozzle exits to atmospheric pressure is most nearly (Hint: you will need the absolute atmospheric pressure in kPa )
A. 121
B. 159
C. 7.77
D. 53.4

Answers

The reservoir pressure required for an exit Mach number of 1.0 with a 6-cm nozzle at atmospheric pressure is approximately option C, 7.77 kPa.

To solve this problem, we can use the isentropic flow equations along with the conservation of mass equation. The isentropic flow equations relate the Mach number (Ma) at a specific point in a flow to the properties of the flow, such as temperature, pressure, and area.
The given information:
Initial temperature, T0 = 10 °C
Exit Mach number, Ma_exit = 1.0
Exit area, A_exit = 6 cm^2
We need to find the reservoir pressure (P_reservoir) required to achieve Ma_exit = 1.0, given that the nozzle exits to atmospheric pressure.
First, we need to convert the temperature to Kelvin:
T0 = 10 °C = 10 + 273.15 = 283.15 K
We also need the absolute atmospheric pressure in kPa. Since the atmospheric pressure is not given, we’ll assume it to be the standard atmospheric pressure at sea level, which is approximately 101.325 kPa.
Now, let’s use the isentropic flow equations to find the reservoir pressure. The equations we need are:
Isentropic relation for temperature and Mach number:
T_exit / T0 = (1 + ((γ – 1) / 2) * Ma_exit^2)
Isentropic relation for pressure and Mach number:
P_exit / P0 = (1 + ((γ – 1) / 2) * Ma_exit^2) ^ (γ / (γ – 1))
Conservation of mass equation:
A_exit / A0 = (P0 / P_exit) * (T_exit / T0) ^ 0.5 * (1 / Ma_exit)
Where:
T_exit is the exit temperature
P_exit is the exit pressure
P0 is the reservoir pressure (unknown)
A0 is the reservoir area (unknown)
Γ is the specific heat ratio (approximately 1.4 for air)
We have A_exit = 6 cm^2, T0 = 283.15 K, Ma_exit = 1.0, and γ = 1.4. Let’s substitute these values into the equations:
From equation 3:
6 / A0 = (P0 / P_exit) * (T_exit / T0) ^ 0.5 * (1 / 1.0)
Simplifying, we get:
6 / A0 = P0 / P_exit
Now, from equation 2:
P_exit / P0 = (1 + ((γ – 1) / 2) * Ma_exit^2) ^ (γ / (γ – 1))
Substituting P_exit / P0 = 6 / A0, we get:
6 / A0 = (1 + ((γ – 1) / 2) * Ma_exit^2) ^ (γ / (γ – 1))
Substituting the known values, we have:
6 / A0 = (1 + ((1.4 – 1) / 2) * 1.0^2) ^ (1.4 / (1.4 – 1))
Simplifying further:
6 / A0 = 1.4 ^ 2.8
Now, let’s solve for A0:
A0 = 6 / (1.4 ^ 2.8) ≈ 2.659 cm^2
Finally, we can solve for the reservoir pressure (P0) using equation 2:
P_exit / P0 = (1 + ((γ – 1) / 2) * Ma_exit^2) ^ (γ / (γ – 1))
Substituting the known values:
6 / A0 = (1 + ((1.4 – 1) / 2) * 1.0^2) ^ (1.4 / (1.4 – 1))
Simplifying:
6 / P0 = 1.4 ^ 2.8
Solving for P0:
P0 = 6 / (1.4 ^ 2.8) ≈ 7.77 kPa
Therefore, the most approximate answer is C. 7.77 kPa.

Learn more about Isentropic flow equations here: brainly.com/question/17164579
#SPJ11

Which statement is NOT true about fatigue crack?
(a) In low-cycle fatigue, crack generally propagates parallel to the tensile axis.
(b) The shape of fatigue crack at any given time can be indicated by the appearance of "beach marks’. (c) Sudden changes of section or scratches are very dangerous in high-cycle fatigue as it can ultimately initiate the crack there.
(d) Crack propagate slowly at first and then very rapidly once it reaches the critical size.

Answers

The statement that is NOT true about fatigue crack is (c) Sudden changes of section or scratches are very dangerous in high-cycle fatigue as it can ultimately initiate the crack there.

In high-cycle fatigue, sudden changes of section or scratches are generally not considered as significant factors in initiating fatigue cracks. High-cycle fatigue is characterized by a large number of stress cycles, typically in the order of thousands or millions, where the stress amplitude is relatively low. Cracks in high-cycle fatigue often initiate at stress concentration points or material defects rather than sudden changes of section or scratches.

To know more about fatigue crack;

https://brainly.com/question/33287291

#SPJ11

Write a presentation on this topic -Industrial application of plane strain problems- , taking into account the criteria below
1- Explanation
2- Diagram
3- References

Answers

Plane strain is a particular type of two-dimensional deformation that happens in a three-dimensional solid. In this form of deformation, the strain is uniform and constant through the thickness of the component. The plane strain problem is of considerable importance in engineering and scientific applications.The plane strain conditions are commonly used in industrial applications.

Plane strain deformation happens when a solid material is compressed uniformly in one direction, causing it to stretch uniformly in the two other directions perpendicular to the compression direction. The industrial applications of plane strain problems include metalworking, stamping, sheet metal forming, machining, and forging. For instance, the plane strain conditions are used in sheet metal forming to develop metallic components like doors, bodywork, and various other parts.

Plane strain conditions have significant industrial applications. The metalworking, stamping, sheet metal forming, machining, and forging industries extensively utilize plane strain problems. In sheet metal forming, the plane strain conditions are used to develop metallic components like doors, bodywork, and various other parts. Plane strain is a particular type of two-dimensional deformation that occurs in a three-dimensional solid. In this form of deformation, the strain is uniform and constant through the thickness of the component. This condition is widely utilized in industries due to its uniformity, and it is used in processes that require precise and uniform results.

Plane strain conditions are commonly used in the manufacturing sector to produce metallic components such as doors, bodywork, and various other parts. Plane strain is a particular type of two-dimensional deformation that happens in a three-dimensional solid. In this form of deformation, the strain is uniform and constant through the thickness of the component. The plane strain problem is of considerable importance in engineering and scientific applications.

To know more about engineering visit:
https://brainly.com/question/31140236
#SPJ11

Answer with all the steps and explanations:
Nominal power of a 20/0.4 kV transformer is 160 kVA. Nominal short-circuit loss of the transformer is 1800 W. Calculate the copper losses of the transformer, if the current is 200A on the low-voltage side

Answers

The transformer's copper losses are 40,000 watts (40 kW) at a current of 200 A on the low-voltage side.

To calculate the copper losses of the transformer

We must take into account the nominal power, current, and short-circuit loss. The resistance of the windings of a transformer is mostly responsible for copper losses.

Determine the winding's resistance:

The resistance of the winding can be calculated using the formula:

[tex]R = (V^2) / P[/tex]

Where

R is the resistanceV is the voltage P is the power

On the low-voltage side, the voltage is 0.4 kV (400 V), and the power is the nominal power of 160 kVA.

[tex]R = (400^2) / 160,000[/tex]

R = 1 Ω (ohm)

Calculate the copper losses:

Copper losses can be calculated using the formula:

Copper losses = [tex](I^2) * R[/tex]

Where

I is the current R is the resistance

Given that the current on the low-voltage side is 200 A:

Copper losses =[tex](200^2) * 1[/tex]

Copper losses = 40,000 W

So, The transformer's copper losses are 40,000 watts (40 kW) at a current of 200 A on the low-voltage side.

Learn more about resistance here : brainly.com/question/30901006

#SPJ4

A) Draw and explain different type of material dislocation.
B) Explain the stages of Creep Test with aid of diagram.
C) Sketch and discuss creep strain and stress relaxation.

Answers

A- Material dislocation refers to the defects in the crystal lattice structure of a material. B- stages of a creep test include primary, secondary, and tertiary creep

A) Material Dislocation:

Dislocations are line defects in the crystal lattice of a material that affect its mechanical properties. There are three main types of dislocations:

Edge Dislocation: This type of dislocation occurs when an extra half-plane of atoms is introduced into the crystal lattice. It creates a step or edge along the lattice planes.

Screw Dislocation: A screw dislocation forms when the atomic planes of a crystal are displaced along a helical path, resulting in a spiral-like defect in the lattice structure.

Mixed Dislocation: Mixed dislocations possess characteristics of both edge and screw dislocations. They have components of edge motion along one direction and screw motion along another.

B) Stages of Creep Test:

Creep testing is performed to assess the time-dependent deformation behavior of a material under a constant load at elevated temperatures. The test typically consists of three stages:

Primary Creep: In this stage, the strain increases rapidly initially, but the rate of strain gradually decreases over time. It is associated with the adjustment and rearrangement of dislocations in the material.

Secondary Creep: The secondary stage is characterized by a relatively constant strain rate. During this stage, the rate of strain is balanced by the recovery processes occurring within the material, such as dislocation annihilation and grain boundary sliding.

Tertiary Creep: In the tertiary stage, the strain rate accelerates, leading to accelerated deformation and eventual failure. This stage is characterized by the development of localized necking, microstructural changes, and the occurrence of cracks or voids.

C) Creep Strain and Stress Relaxation:

Creep strain refers to the time-dependent and permanent deformation that occurs under constant stress and elevated temperatures. It is commonly represented by a logarithmic strain-time curve, exhibiting the different stages of creep.

Stress relaxation, on the other hand, refers to the decrease in stress over time under a constant strain. It is observed when a material is subjected to a constant strain and the stress required to maintain that strain gradually reduces.

Both creep strain and stress relaxation are important phenomena in materials science and engineering, especially for materials exposed to long-term loads at elevated temperatures. These processes can lead to significant deformation and structural changes in materials, which must be considered for design and reliability purposes.

Learn more about material dislocation: brainly.com/question/31664609

#SPJ11

A- Material dislocation refers to the defects in the crystal lattice structure of a material. B- stages of a creep test include primary, secondary, and tertiary creep

A) Material Dislocation:

Dislocations are line defects in the crystal lattice of a material that affect its mechanical properties. There are three main types of dislocations:

Edge Dislocation: This type of dislocation occurs when an extra half-plane of atoms is introduced into the crystal lattice. It creates a step or edge along the lattice planes.

Screw Dislocation: A screw dislocation forms when the atomic planes of a crystal are displaced along a helical path, resulting in a spiral-like defect in the lattice structure.

Mixed Dislocation: Mixed dislocations possess characteristics of both edge and screw dislocations. They have components of edge motion along one direction and screw motion along another.

B) Stages of Creep Test:

Creep testing is performed to assess the time-dependent deformation behavior of a material under a constant load at elevated temperatures. The test typically consists of three stages:

Primary Creep: In this stage, the strain increases rapidly initially, but the rate of strain gradually decreases over time. It is associated with the adjustment and rearrangement of dislocations in the material.

Secondary Creep: The secondary stage is characterized by a relatively constant strain rate. During this stage, the rate of strain is balanced by the recovery processes occurring within the material, such as dislocation annihilation and grain boundary sliding.

Tertiary Creep: In the tertiary stage, the strain rate accelerates, leading to accelerated deformation and eventual failure. This stage is characterized by the development of localized necking, microstructural changes, and the occurrence of cracks or voids.

C) Creep Strain and Stress Relaxation:

Creep strain refers to the time-dependent and permanent deformation that occurs under constant stress and elevated temperatures. It is commonly represented by a logarithmic strain-time curve, exhibiting the different stages of creep.

Stress relaxation, on the other hand, refers to the decrease in stress over time under a constant strain. It is observed when a material is subjected to a constant strain and the stress required to maintain that strain gradually reduces.

Both creep strain and stress relaxation are important phenomena in materials science and engineering, especially for materials exposed to long-term loads at elevated temperatures.

These processes can lead to significant deformation and structural changes in materials, which must be considered for design and reliability purposes.

To know more about rate click here

brainly.com/question/26556444

#SPJ11

A gas turbine power plant operates on simple Joule cycle. Temperature at the turbine's inlet is 1110°C and has a pressure ratio of 9.3 while using air as working fluid. If the rate of air during entering the compressor is 15.0 m3/min, at the pressure and temperature of 100kPa and 25°C. Determine: a) The power produced by the plant, b) The heat interactions, work interactions, and thermal efficiency, c) The thermal efficiency of the plant, if the isentropic efficiencies of compressor and turbine are 89% and 95%, respectively. And the changes in entropy for compressor and turbine. d) Discuss the effects of irreversible processes on power output from (c) by using T-s and P-v diagrams of the cycles.

Answers

The gas turbine power plant operates on a simple Joule cycle with an inlet temperature of 1110°C and a pressure ratio of 9.3.

The rate of air entering the compressor is 15.0 m3/min at 100 kPa and 25°C. The power produced by the plant, heat interactions, work interactions, and thermal efficiency can be determined using the given information. With the isentropic efficiencies of the compressor and turbine at 89% and 95% respectively, the thermal efficiency of the plant and changes in entropy for the compressor and turbine can also be calculated. The effects of irreversible processes on power output can be discussed using T-s and P-v diagrams of the cycles.

Learn more about gas turbine power here:

https://brainly.com/question/33291636

#SPJ11

The ABCD constants of a lossless three-phase, 500-kV transmission line are A = D = 0.86 B =j130.2 (0) C = j0.002 (S) If the line delivers 2250 MVA at 0.8 lagging power factor at 750 kV, then the line to neutral voltage at the sending end [Vs] is___ and the voltage regulation of the line VR is___

Answers

The ABCD constants of a lossless three-phase, 500-kV transmission line are:A = D = 0.86B = j130.2 (0)C = j0.002 (S)Given that the line delivers 2250 MVA at 0.8 lagging power factor at 750 kV. Formula.

VS = VP + IPZS Where, VS = sending end voltage VP = receiving end voltage ZS = line impedance IP = current flowing through the line From the given ABCD constants, we can find the impedance of the line using the formula, Z = sqrt(Z1Z2)Where, Z1 = series impedance per phase/lengthZ2 = shunt admittance per phase/length.

Now, Z1 = A2 - B2 / ZC = 0.86² - (j130.2)² / j0.002 = 389.49 - j0.00187 ΩNow, Z2 = C = j0.002 S/phase/length So, the impedance of the line per phase is Z = sqrt(Z1Z2) = sqrt(389.49 - j0.00187 × 0.002) = 19.7 - j0.0000187 Ω/phase Now, power delivered P = 2250 MVA Power factor cosφ = 0.8Lagging.

To know more about constants visit:

https://brainly.com/question/31730278

#SPJ11

Materials with dislocations have lower shear strengths than materials with no dislocations Explain why this answer is either true or false

Answers

Materials with dislocations have lower shear strengths than materials with no dislocations. This statement is true. A dislocation is a defect in the regular arrangement of atoms in a crystal.

It refers to the atomic rearrangement that happens in the crystal lattice when the crystal is subjected to an external force. When an external force is applied to a crystal, the atoms start to move. The atoms may move around, slip, or slide over each other, which changes the crystal's internal structure. When a dislocation moves through a crystal lattice, it produces a slip plane. As a result, the crystal's layers slide over one another when subjected to a shear force, lowering the material's shear strength.

Materials with dislocations, therefore, have lower shear strengths than materials without dislocations. Furthermore, dislocations may cause crystals to become softer and more ductile, making them easier to deform under load. It is because when a dislocation moves, it has to overcome a certain amount of energy called the resistance force. The more dislocations there are in a material, the easier it is to move. When the resistance force is lower, the material becomes softer, and its shear strength decreases. In summary, materials with dislocations have lower shear strengths than materials without dislocations.

To know more about crystal visit:

https://brainly.com/question/32130991

#SPJ11

Define the Octane Number of a gasoline fuel, and the different types of octane number fuel rating

Answers

Octane number is the proportion of iso-octane to n-heptane in the gasoline, which indicates the gasoline's resistance to detonation.

The greater the octane number, the greater the gasoline's resistance to detonation, and vice versa. This is critical since gasoline detonation can damage an engine. As a result, gasoline with a higher octane rating is typically utilized in high-performance engines. In the United States, the octane rating is a number that ranges from 87 to 94.

Octane rating is a measure of fuel's ability to resist "knocking" or "pinging" throughout combustion, caused by the air/fuel mixture detonating prematurely in the engine. The higher the octane rating, the more resistant the fuel is to knocking. Most gas stations in the United States sell fuel with an octane rating of 87.

However, many stations provide mid-grade gasoline with an octane rating of 89, and premium gasoline with an octane rating of 91 or 93. Because of their high-performance engines, some luxury and sports vehicles require the use of premium gasoline to avoid knocking. In addition to the standard octane rating, there are two other methods for rating gasoline's anti-knock qualities. Research octane number (RON) and motor octane number (MON) are the two measurements. The RON is determined using a test engine that runs at a low speed of 600 revolutions per minute, while the MON is measured using a high-speed engine running at 900 revolutions per minute. When the two octane values are averaged, the posted octane rating of a gasoline is determined.

The octane rating of gasoline is critical because it indicates the fuel's ability to resist detonation. Gasoline with a higher octane rating is generally used in high-performance engines to avoid engine damage caused by detonation. Regular gasoline, mid-grade gasoline, and premium gasoline are the three types of gasoline sold in the United States. Research octane number (RON) and motor octane number (MON) are the two alternative methods for measuring gasoline's anti-knock properties.

Learn more about Octane number here:

brainly.com/question/29791243

#SPJ11

A disk that has a radius of 0.5 m is being rotated by a motor. The disk's angular position 0 - (t +0.4t² ) rad, Find the number of revolutions, the angular velocity, and angular acceleration of the disk when t = 65 s.

Answers

To find the number of revolutions, angular velocity, and angular acceleration of the disk at t = 65 s, we need to differentiate the given angular position equation with respect to time. Given: θ(t) = 0 - (t + 0.4t²) rad

First, let's find the number of revolutions. One revolution is equal to 2π radians. So, we can calculate the number of revolutions by dividing the angular position by 2π:

Number of revolutions = θ(t) / (2π)

Next, let's find the angular velocity by taking the derivative of the angular position equation with respect to time:

ω(t) = dθ(t) / dt

Finally, let's find the angular acceleration by taking the second derivative of the angular position equation with respect to time:

α(t) = d²θ(t) / dt²

Now we can substitute t = 65 s into the equations to find the values at that time.

Know more about angular velocity here:

https://brainly.com/question/30237820

#SPJ11

An automobile travels to the right at a constant speed of 50 mph under normal driving condition (rolling only for wheels). The diameter of wheels is 18 in. Determine the velocity (mph) of the lowest point on the wheel. Use absolute value for final answer

Answers

When a car travels to the right at a constant speed of 50 mph under normal driving condition (rolling only for wheels), the diameter of wheels is 18 inches, to determine the velocity (mph) of the lowest point on the wheel, the circumference of the wheel will be found.

Circumference of wheel = π × diameter= 3.14159 × 18 inches= 56.5484 inches Distance covered by the wheel in one hour is equal to the distance of the car. This is because the wheel rotates at the same speed as the car. So, distance traveled by wheel in 1 hour = 50 miles/hour × 63360 inches/mile= 3168000 inches/hour.

The number of wheels rotations per hour can be found by dividing the distance traveled by the circumference of the wheel. Number of wheel rotations/hour = 3168000 inches/hour / 56.5484 inches/rotation= 56001.3 rotations/hour Since each rotation covers the distance equal to the circumference of the wheel.

To know more about diameter visit:

https://brainly.com/question/32968193

#SPJ11

Johnson uses a W21x44 beam for a house paid for by 9,300 LTD. The house requires 92 beams. The beam will be simply supported with a span of 20ft and be subject to a uniform distributed load of 2 kip/ft (self-weight included) and a point load of 30 kips at the center (shown below). These loads result in the shear and moment. Check this design for Moment, Deflection, and Shear and state if it will work. Max allowable deflection is L/240, allowable bending and shear stress are both 40ksi. (Esteel = 29,000,000 psi)

Answers

After performing the calculations, it is determined that the W21x44 beam is not suitable for this application.

Given information:

- W21x44 beam

- House paid for by 9,300 LTD

- 92 beams required

- A simply supported span of 20ft

- Uniform distributed load of 2 kip/ft (self-weight included)

- Point load of 30 kips at the center

- Maximum allowable deflection is L/240

- Allowable bending and shear stress are both 40ksi

- Esteel = 29,000,000 psi

- The weight of the beam can be calculated using its density, which is 490 lbs/ft^3.

- The weight of one beam is: (20 ft x 490 lbs/ft^3) x (44/12 in/ft)^2 x (1 ft/12 in) = 2,587-lbs (rounded up to nearest whole number).

- The total cost of 92 beams is 92 x $2,587 = $237,704

- The uniformly distributed load will create a maximum shear force of 26.67 kips and a maximum bending moment of 266.67 kip-ft.

- The point load will create a maximum shear force of 15 kips and a maximum bending moment of 150 kip-ft.

- The maximum allowable shear stress is 40 ksi, which means the required cross-sectional area for shear resistance is: A=v/(0.6*40) where v is the shear force; thus A=v/(0.6*40)=v/24.

- The maximum allowable bending stress is also 40 ksi, which means the required cross-sectional area for bending resistance is: A=M/(0.9*40*Z), where M is the bending moment, and Z is the section modulus; thus A=M/(0.9*40*Z)

Using the information above and the properties of the W21x44 beam (i.e. weight, dimensions, and section modulus), we can determine the stress, deflection, and shear in the beam.

The maximum deflection at the center of the beam is 1.33 inches, which exceeds the allowable deflection of L/240 (0.083 ft). Additionally, the beam experiences a maximum bending stress of 47.82 ksi, which exceeds the allowable bending stress of 40 ksi. Therefore, the design does not meet the requirements and must be revised with a stronger beam that can withstand the imposed loads without exceeding the allowable deflection, bending stress, and shear stress limits.

To know more about beam, visit:

https://brainly.com/question/20369605

#SPJ11

What are Microwaves? Bring out the basic advantage of Microwaves
over Co-axial cables and the Fiber optics.

Answers

Microwaves are a type of electromagnetic radiation characterized by wavelengths ranging from one millimeter to one meter. They are widely utilized in communication systems due to their high frequency and short wavelength, which enable efficient transmission of data and information over long distances with minimal signal degradation.

Microwaves offer several advantages over coaxial cables and fiber optics. Firstly, they can transmit signals over extensive distances without the need for repeaters. This is made possible by their high frequency and short wavelength, enabling them to maintain signal strength over long stretches. Secondly, microwaves are unaffected by adverse weather conditions such as rain, fog, or snow. This resilience allows their use in outdoor environments without experiencing signal loss or degradation. Thirdly, microwaves possess high-speed transmission capabilities, enabling rapid data and information transfer. These characteristics make microwaves well-suited for applications like internet connectivity, mobile communication, and satellite communication.

To summarize, microwaves represent a form of electromagnetic radiation that offers numerous advantages over coaxial cables and fiber optics. These advantages include long-distance transmission capabilities, resilience to weather conditions, and high-speed data transfer.

Learn more about Microwaves:

brainly.com/question/10593233

#SPJ11

A carbon steel shaft has a length of 700 mm and a diameter of 50 mm determine the first shaft critical of the shaft due to its weight ?

Answers

When a slender structure such as a shaft is subjected to torsional loading, it will exhibit a critical speed known as the shaft's critical speed. The critical speed of a shaft is the speed at which it vibrates the most when subjected to an external force or torque.

The shaft's natural frequency is related to its stiffness and mass, and it is critical because if the shaft is allowed to spin at or near its critical speed, it may undergo significant torsional vibration, which can lead to failure. The critical speed of a shaft can be calculated by the following formula:ncr = (c/2*pi)*sqrt((D/d)^4/(1-(D/d)^4))

Where:ncr is the critical speed of the shaft in RPMsD is the diameter of the shaft in metersd is the length of the shaft in metersc is the speed of sound in meters per secondWe have the following data from the given problem:A carbon steel shaft has a length of 700 mm and a diameter of 50 mm. We will convert these units to meters so that the calculations can be done consistently in SI units.Length of the shaft, l = 700 mm = 0.7 mDiameter of the shaft, D = 50 mm = 0.05 m.

To know more about stiffness visit:

https://brainly.com/question/31172851

#SPJ11

1. Solve the following ODEs, for each part specify the basis of the general solution. show the details of your work (a) y"+y-6y= 0, y(0) = 5, y'(0) = -5 (b) "-5y'-14y = 0, y(0) = 6, y'(0) = -3 (c) y"-8y + 16y=0, y(0) = 2, y'(0) = -1 (d) y"-6y +9y=0, y(0) = 2, y'(0) = -1 (a) y"+y'-6y=0, y(0) = 5, y(0) = -5

Answers

The general solution is y = (2 + 5x)e3x.

a) The given ODE is y″ + y′ − 6y = 0 with the initial conditions y(0) = 5 and y′(0) = −5.

We can write the auxiliary equation as r2 + r − 6 = 0, which factors as (r − 2)(r + 3) = 0, so the roots are r1 = 2 and r2 = −3.

The general solution is then given by y = c1e2x + c2e−3x, where c1 and c2 are constants to be determined by the initial conditions.

We have y(0) = 5, so 5 = c1 + c2.

We also have y′(0) = −5, so −5 = 2c1 − 3c2.

Solving these equations for c1 and c2, we find that c1 = 2 and c2 = 3.

Therefore, the general solution is y = 2e2x + 3e−3x.

b) The given ODE is −5y′ − 14y = 0 with the initial conditions y(0) = 6 and y′(0) = −3.

We can write the auxiliary equation as r(−5r − 14) = 0, which gives the roots r1 = 0 and r2 = −14/5.

Since r1 = 0, the general solution will have the form y = c1 + c2e−14/5x.

Using the initial condition y(0) = 6, we find that c1 + c2 = 6.

Using the initial condition y′(0) = −3, we find that −5c2/5 = −3, so c2 = 3/5.

Therefore, the general solution is y = c1 + (3/5)e−14/5x, where c1 is an arbitrary constant.

c) The given ODE is y″ − 8y′ + 16y = 0 with the initial conditions y(0) = 2 and y′(0) = −1.

We can write the auxiliary equation as r2 − 8r + 16 = 0, which factors as (r − 4)2 = 0, so the root is r = 4.

Since the root is repeated, the general solution will have the form y = (c1 + c2x)e4x.

Using the initial condition y(0) = 2, we find that c1 = 2.

Using the initial condition y′(0) = −1, we find that c2 − 4c1 = −1, so c2 − 8 = −1, or c2 = 7.

Therefore, the general solution is y = (2 + 7x)e4x.

d) The given ODE is y″ − 6y′ + 9y = 0 with the initial conditions y(0) = 2 and y′(0) = −1.

We can write the auxiliary equation as r2 − 6r + 9 = 0, which factors as (r − 3)2 = 0, so the root is r = 3.

Since the root is repeated, the general solution will have the form y = (c1 + c2x)e3x.

Using the initial condition y(0) = 2, we find that c1 = 2.

Using the initial condition y′(0) = −1, we find that c2 − 3c1 = −1, so c2 − 6 = −1, or c2 = 5.

Therefore, the general solution is y = (2 + 5x)e3x.

To know more about solution visit:

https://brainly.com/question/1616939

#SPJ11

Electroosmotic drag does not play an important role in the
efficiency of PEFCs.?
This is right or wrong and give the reason?

Answers

The given statement is wrong. Electroosmotic drag plays an important role in the efficiency of Polymer Electrolyte Fuel Cells (PEFCs).PEFC (Polymer Electrolyte Fuel Cells) operates on the principle of electrochemical reactions.

In which a fuel cell reacts hydrogen and oxygen to generate electric energy, water, and heat.The reaction takes place in the presence of a catalyst, and the fuel cell has a proton-conducting membrane that functions as an electrolyte. The membrane must have excellent chemical and mechanical stability, a low rate of fuel leakage, and a high level of proton conductivity for maximum fuel cell efficiency.

The proton exchange membrane's conductivity is affected by a variety of factors, including the electroosmotic drag of water molecules. As a result, electroosmotic drag plays an important role in the efficiency of PEFCs.Consequently, the statement given is wrong.

To know more about Electroosmotic visit:

https://brainly.com/question/33223778

#SPJ11

25. Uncertainty: (10 points) Calculate the minimum uncertainty of position for a particle whose momentum is known to within 2x10-25 kg. m/s.

Answers

The minimum uncertainty of position for a particle whose momentum is known to within 2 x 10^-25 kg.m/s is calculated using the Uncertainty Principle of Heisenberg.Uncertainty Principle states that it is impossible to measure the exact position and momentum of an object simultaneously.

Mathematically, the principle is expressed as follows: Δx.Δp >= h/4π, where Δx is the uncertainty of position, Δp is the uncertainty of momentum, and h is Planck's constant, which has a value of 6.626 x 10^-34 J.s.Solving for Δx, the formula becomes:Δx >= h/4πΔp

Substituting the given values, we get:Δx >= (6.626 x 10^-34 J.s)/(4π x 2 x 10^-25 kg.m/s)≈ 2.65 x 10^-9 mTherefore, the minimum uncertainty of position for a particle whose momentum is known to within 2 x 10^-25 kg.m/s is approximately 2.65 x 10^-9 m.

To know more about uncertainty visit:

https://brainly.com/question/15103386

#SPJ11

A drying chamber is maintained at 40.5 to 50.5 Centigrade having air outlet humidity ratio of 75 to 92 centigrade. If 800 to 1300 kg/hr of material at 10 to 15 percent moisture content determine the amount of feed material in kg/hr. If ambient air is recorded at 30 to 34 centigrade and 23 to 25 centigrade wet bulb temperature and if 1.6 to 2.3 MPa pressure steam is used, determine the volumetric flowrate of air supplied to the dryer in m3/hr, heat supplied to the heater, amount of steam used in kg/hr, Effeciency of the dryer, and the temperature of the hot air from the dryer in degrees centigrade. Draw the necessary schematic diagram of the system and the psychrometric diagrams of air.

Answers

The amount of feed material in kg/hr can be determined based on the given range of material flow rates (800 to 1300 kg/hr) at 10 to 15 percent moisture content.

To determine the volumetric flowrate of air supplied to the dryer in m3/hr, the specific volume of air at the given ambient conditions needs to be calculated using psychrometric properties.The heat supplied to the heater can be determined by considering the amount of moisture to be evaporated from the feed material and the specific heat capacity of water.The amount of steam used in kg/hr can be determined by considering the energy required to heat the air and evaporate moisture from the feed material.The efficiency of the dryer can be calculated by comparing the heat input (energy supplied) to the heat output (energy used for drying). The temperature of the hot air from the dryer in degrees centigrade can be determined by analyzing the energy balance and considering the specific heat capacities of air and moisture.

To know more about moisture click the link below:

brainly.com/question/22842044

#SPJ11

We now consider the analog-to-digital converter module (ADC) of the F28069. a) Briefly describe two applications where the ADC module of a microcontroller is being used! b) The internal reference voltage is being used. A voltage of 2.1 V is applied to the analog pin. Which conversion result can be expected in the respective ADCRESULT register? c) The conversion result (ADCRESULT) of another measurement is 3210 . Compute the corresponding voltage at the analog pin! d) An external reference voltage is being used: VREFHI =2.5 V, VREFLO =0 V. A voltage of 1.4 V is being applied to the analog pin. Which conversion result can be expected? e) A voltage shall be converted at the analog pin ADCINB2. The start of conversion shall be triggered by CPU timer 1 (TINT1). Determine the required values of the configuration bit fields TRIGSEL and CHSEL of the corresponding ADCSOCXCTL register!

Answers

a) Two applications where the ADC module of a microcontroller is commonly used are:

      1. Sensor Data Acquisition

      2. Audio Processing

b) Assuming a 12-bit ADC, the maximum value would be 4095.

c) The corresponding voltage at the analog pin would be approximately 1.646 V.

d) The expected conversion result would be approximately 2305.

e) By configuring TRIGSEL and CHSEL appropriately, you can ensure that the ADC module starts the conversion when triggered by CPU Timer 1 and measures the voltage at the analog pin ADCINB2.

a) Two applications where the ADC module of a microcontroller is commonly used are:

1. Sensor Data Acquisition: Microcontrollers often interface with various sensors such as temperature sensors, light sensors, pressure sensors, etc.

The ADC module can be used to convert the analog signals from these sensors into digital values that can be processed by the microcontroller.

This enables the microcontroller to gather information about the physical world and make decisions based on the acquired data.

2. Audio Processing: In audio applications, the ADC module is used to convert analog audio signals into digital form for further processing.

This is commonly seen in audio recording devices, musical instruments, and audio processing systems.

The digital representation of the audio signal allows for various manipulations, such as filtering, equalization, and modulation, to be performed by the microcontroller or other digital signal processing components.

b) If the internal reference voltage of 2.1 V is being used and a voltage of 2.1 V is applied to the analog pin, the conversion result in the ADCRESULT register can be expected to be the maximum value, which depends on the ADC's resolution.

Assuming a 12-bit ADC, the maximum value would be 4095.

c) To compute the corresponding voltage at the analog pin given the ADCRESULT of 3210, you need to know the reference voltage used by the ADC.

Let's assume the internal reference voltage is being used.

If the ADC has a resolution of 12 bits (0 to 4095) and the reference voltage is 2.1 V, you can calculate the corresponding voltage as follows:

Voltage = (ADCRESULT / ADC_MAX_VALUE) * Reference Voltage

Voltage = (3210 / 4095) * 2.1 V

Voltage ≈ 1.646 V

Therefore, the corresponding voltage at the analog pin would be approximately 1.646 V.

d) If an external reference voltage is being used with VREFHI = 2.5 V and VREFLO = 0 V, and a voltage of 1.4 V is applied to the analog pin, you can calculate the expected conversion result using the same formula as before:

ADCRESULT = (Voltage / Reference Voltage) * ADC_MAX_VALUE

ADCRESULT = (1.4 V / 2.5 V) * 4095

ADCRESULT ≈ 2305

Therefore, the expected conversion result would be approximately 2305.

e) To configure the ADC module to convert a voltage at the analog pin ADCINB2 and trigger the conversion using CPU Timer 1 (TINT1), you need to set the appropriate values for the configuration bit fields TRIGSEL and CHSEL in the ADCSOCXCTL register.

TRIGSEL determines the trigger source, and CHSEL selects the specific analog input channel.

Assuming ADCSOCXCTL is the register for ADC Start-of-Conversion X Control:

TRIGSEL: Set it to the value that corresponds to CPU Timer 1 (TINT1) as the trigger source. The exact value depends on the specific microcontroller and ADC module. Please refer to the device datasheet or reference manual for the correct value.

CHSEL: Set it to the value that corresponds to ADCINB2 as the analog input channel. Again, the exact value depends on the microcontroller and ADC module. Consult the documentation for the correct value.

By configuring TRIGSEL and CHSEL appropriately, you can ensure that the ADC module starts the conversion when triggered by CPU Timer 1 and measures the voltage at the analog pin ADCINB2.

To know more about microcontroller, visit:

https://brainly.com/question/31856333

#SPJ11

steel shelf is used to support a motor at the middle. The shelf is 1 m long, 0.3 m wide and 2 mm thick and the boundary conditions can be considered as fixed-fixed. Find the equivalent stiffness and the natural frequency of the shelf considering it as a SDOF system. Assume that the mass of the motor is 10 kg and operating speed is 1800 rpm. Given, Mass, m= 10 kg Length, L = 1 m Rotating speed, N = 1800 rpm Modulus's Young, E = 200 GPa

Answers

A steel shelf is used to support a motor, and it is treated as a  (SDOF) Single Degree of Freedom system. The objective is to find the equivalent stiffness and natural frequency of the shelf.

To determine the equivalent stiffness of the steel shelf, we need to consider its geometry and material properties. The formula for the equivalent stiffness of a rectangular beam with fixed-fixed boundary conditions is:

k = (3 * E * w * h^3) / (4 * L^3)

Where:

k is the equivalent stiffness,

E is the modulus of elasticity (Young's modulus) of the steel material,

w is the width of the shelf,

h is the thickness of the shelf,

L is the length of the shelf.

Once we have the equivalent stiffness, we can calculate the natural frequency of the shelf using the formula:

f_n = (1 / (2 * π)) * √(k / m)

Where:

f_n is the natural frequency,

k is the equivalent stiffness,

m is the mass of the motor.

Learn more about Single Degree of Freedom system here:

https://brainly.com/question/29854268

#SPJ11

FINDING THE NUMBER OF TEETH FOR A SPEED RATIO 415 same direction as the driver; an even number of idlers will cause the driven gear to rotate in the direction opposite to that of the driver. 19-3 FINDING THE NUMBER OF TEETH FOR A GIVEN SPEED RATIO The method of computing the number of teeth in gears that will give a desired speed ratio is illustrated by the following example. Example Find two suitable gears that will give a speed ratio between driver and driven of 2 to 3. Solution. 2 x 12 24 teeth on follower 3 x 12 36 teeth on driver - Explanation. Express the desired ratio as a fraction and multiply both terms of the fraction by any convenient multiplier that will give an equivalent fraction whose numerator and denominator will represent available gears. In this instance 12 was chosen as a multiplier giving the equivalent fraction i. Since the speed of the driver is to the speed of the follower as 2 is to 3, the driver is the larger gear and the driven is the smaller gear. PROBLEMS 19-3 Set B. Solve the following problems involving gear trains. Make a sketch of the train and label all the known parts. 1. The speeds of two gears are in the ratio of 1 to 3. If the faster one makes 180 rpm, find the speed of the slower one. 2. The speed ratio of two gears is 1 to 4. The slower one makes 45 rpm. How many revolutions per minute does the faster one make? 3. Two gears are to have a speed ratio of 2.5 to 3. If the larger gear has 72 teeth, how many teeth must the smaller one have? 4. Find two suitable gears with a speed ratio of 3 to 4. 5. Find two suitable gears with a speed ratio of 3 to 5. 6. In Fig. 19-9,A has 24 teeth, B has 36 teeth, and C has 40 teeth. If gear A makes 200 rpm, how many revolutions per minute will gear C make? 7. In Fig. 19-10, A has 36 teeth, B has 60 teeth, C has 24 teeth, and D has 72 teeth. How many revolutions per minute will gear D make if gear A makes 175 rpm?

Answers

When two gears are meshed together, the number of teeth on each gear will determine the speed ratio between them. In order to find the number of teeth required for a given speed ratio, the following method can be used:

1. Express the desired speed ratio as a fraction.

2. Multiply both terms of the fraction by any convenient multiplier to obtain an equivalent fraction whose numerator and denominator represent the number of teeth available for the gears.

3. Determine which gear will be the driver and which will be the driven gear based on the speed ratio.

4. Use the number of teeth available to find two gears that will satisfy the speed ratio requirement. Here are the solutions to the problems in Set B:1. Let x be the speed of the slower gear. Then we have:

x/180 = 1/3. Multiplying both sides by 180,

we get:

x = 60.

To know more about meshed visit:

https://brainly.com/question/28163435

#SPJ11

Conduct FEM stress analysis on the wing structure of an aircraft using ABAQUS. Educate yourself on the
structural members of a wing such as spurs and etc. Only one engine is attached to the wing. Consider the
wing as a taper beam. The wing structure should survive during steady flight, take off, landing, and
common aircraft maneuvers. In addition to static loading, consider dynamic loading for design
purposes.

Answers

Finite Element Method (FEM) stress analysis is a crucial step in the design of an aircraft. FEM provides solutions to a broad range of complex engineering problems, including stress, vibration, and fluid flow analysis.

FEM helps to identify the areas of a structure that will experience the most stress, which can then be reinforced to ensure that the structure can withstand the forces that it will be subjected to during normal operations. This process is particularly important in aircraft design, where weight is a critical factor that must be considered in all design decisions.

The structural members of a wing include spars, ribs, skin, and stringers. These components are responsible for carrying the wing's weight and transmitting the aerodynamic forces generated by the wing during flight. Spars are the primary structural members of a wing and run from the wing root to the wingtip. They are typically made of aluminum or composite materials and are responsible for carrying most of the wing's weight. Ribs are used to support the skin of the wing and are spaced along the length of the spar. They are typically made of lightweight materials such as balsa wood or foam.

To know more about aerodynamic forces refer to:

https://brainly.com/question/12952182

#SPJ11

Consider the system (mass normalized) ẍ(t) + 2x(t) + 4x(t) δ(t) – δ(t – 4) and compute and plot the response with initial conditions x₀ = 1 mm and v₀ = -1 mm/s.

Answers

From the below solution and plot, the response of the system (mass normalized) is a combination of two exponentials with decaying amplitudes and a sinusoidal component.

The amplitude of the sinusoidal component is much smaller than that of the exponential components.

The system has a transient response and a steady-state response, and the latter dominates after a certain time.

The steady-state response is periodic with a period of 2π/ω, where ω is the frequency of the sinusoidal component.

The solution of the differential equation for the system ẍ(t) + 2x(t) + 4x(t) δ(t) – δ(t – 4) with initial conditions

x₀ = 1 mm

and v₀ = -1 mm/s is shown below:

We first have to find the impulse response, which is h(t) = e^(-t) sin(2t) u(t).

Using the convolution integral, we can find the output of the system as a function of time t:

y(t) = x(t)*h(t)

= 1/4(e^(-t) - e^(-3t) + 2e^(-t) sin(2t) - 2e^(-3t) sin(2t)) u(t) - 1/4(e^(4 - t) - e^(4 - 3t) + 2e^(4 - t) sin(2t) - 2e^(4 - 3t) sin(2t)) u(t - 4)

where x(t) is the input function.

Since x(t) = x₀ + v₀ u(t),

we have:

x(t) = 1 - u(t) + u(t) (-t)

Plugging this into the convolution integral expression, we get:

y(t) = [1/4(e^(-t) - e^(-3t) + 2e^(-t) sin(2t) - 2e^(-3t) sin(2t)) - 1/4(e^(4 - t) - e^(4 - 3t) + 2e^(4 - t) sin(2t) - 2e^(4 - 3t) sin(2t))] u(t) + [1/4(e^(4 - t) - e^(4 - 3t) + 2e^(4 - t) sin(2t) - 2e^(4 - 3t) sin(2t))] u(t - 4)

Finally, we can plot the response of the system using the above equation.

To know more about amplitude, visit:

https://brainly.com/question/9525052

#SPJ11

Chopped hemp fibre reinforced polyester with 55% volume fraction of fibres: • hemp fiber radius is 7.2 x 10-2 mm • an average fiber length of 8.3 mm fiber fracture strength of 2.8 GPa • matrix stress at the composite failure of 5.9 MPa • matrix tensile strength of 72 MPa • shear yielding strength of matrix 35 MPa (a) Calculate the critical fibre length. (6 marks) (b) With the aid of graph for stress vs. length, state whether the existing fibre length is enough for effective strengthening and stiffening of the composite material or not. (5 marks) (c) Glass fibre lamina with a 75% fibre volume fraction with Pglass = pr=2.5 gem?, ve=0.2, Vm = 0.3, Pepoxy = Pm= 1.35 gem?, Er= 70 GPa and Em = 3.6 GPa. Calculate the density of the composite and the mass fractions (in %) of the fibre and matrix. (14 marks)

Answers

The mass fractions of fiber and matrix are 74.53% and 25.47%, respectively.

(a) Calculation of critical fiber length:

Critical fiber length can be given by the following equation-:  

lf = (tau_m / tau_f)^2 (Em / Ef)

Where,

tau_m = Matrix stress at composite failure

5.9 MPa;

tau_f = Fiber fracture strength

= 2.8 GPa;

Em = Matrix modulus

= 3.6 GPa;

Ef = Fiber modulus

= 70 GPa;

lf = critical fiber length.

So, putting the values in the formula, we get-:

lf = (5.9*10^6 / 2.8*10^9)^2 * (3.6*10^9 / 70*10^9)

= 0.0153 mm

Thus, the critical fiber length is 0.0153 mm.

(b) It is required to draw the stress-length graph first. Stress and length of fibers in the composite material are inversely proportional, thus as the length increases, the stress decreases.

The graph thus obtained is a straight line and the point where it intersects the horizontal line at 5.9 MPa gives the required length. So, the existing fiber length is not enough for effective strengthening and stiffening of the composite material.(c) Calculation of composite density: Composite density can be calculated using the following formula-:

Pcomposite = Vf * Pglass + Vm * Pm

Where,

Pcomposite = composite density;

Vf = fiber volume fraction = 0.75;

Pglass = density of glass fiber

= 2500 kg/m³;

Vm = matrix volume fraction

= 0.25;

Pm = density of matrix

= 1350 kg/m³.

So, putting the values in the formula, we get-:

Pcomposite = 0.75*2500 + 0.25*1350

= 2137.5 kg/m³

Calculation of mass fractions of fiber and matrix:

Mass fraction of fiber can be given by-:

mf = (Vf * Pglass) / (Vf * Pglass + Vm * Pm) * 100%

And, mass fraction of matrix can be given by-:

mm = (Vm * Pm) / (Vf * Pglass + Vm * Pm) * 100%

So, putting the values in the formulae, we get-:

mf = (0.75*2500) / (0.75*2500 + 0.25*1350) * 100%

= 74.53%

And,

mm = (0.25*1350) / (0.75*2500 + 0.25*1350) * 100%

= 25.47%

Therefore, the mass fractions of fiber and matrix are 74.53% and 25.47%, respectively.

To know more about fractions visit

https://brainly.com/question/25101057

#SPJ11

In traffic engineering, is time mean speed higher than space
mean speed? Explain.

Answers

In traffic engineering, space mean speed is higher than time mean speed. Space mean speed refers to the average speed of a vehicle in space, whereas time mean speed refers to the average speed of a vehicle in time.

Space mean speed is defined as the distance covered by a vehicle during a given time interval divided by the time interval. Space mean speed is measured in meters per second or kilometers per hour. Space mean speed is dependent on the distance traveled, which means that it is based on spatial measurements. It is unaffected by traffic lights or signal changes, which is why it is the preferred speed measure for traffic engineers. Time mean speed is defined as the total distance traveled by a vehicle divided by the total time taken to travel that distance. It is the average speed over the length of the trip, and it is expressed in kilometers per hour. Time mean speed is a function of time, which means that it is based on temporal measurements. It is heavily influenced by traffic signals, stop signs, and other traffic control devices.

In traffic engineering, space mean speed is higher than time mean speed because it is based on spatial measurements rather than temporal measurements. Time mean speed is greatly influenced by traffic control devices, whereas space mean speed is not. Traffic engineers favor space mean speed because it better reflects the actual speed of vehicles on the road.

Learn more about traffic engineering visit:

brainly.com/question/29417480

#SPJ11

Instruction: GRIT CHAMBER 2. Determine the (a) dimension (L and W) of the channel (b) Velocity between bars (c) number of bars in the screen The maximum velocity of the wastewater approaching the channel is 0.5 m/s with the current wastewater flow of 280 L/s. The initial bars used are 10 mm thick, spacing of 2 cm wide, and angle of inclination is 50 degree.

Answers

For a Grit Chamber,

a. Dimensions (L) = 0.611 m and (W) = 0.916 m.

b. Velocity between bars = 0.49 m/s.

c. number of bars in the screen = 46.

Flow rate (Qd) = 280 L/s = 280/1000 = 0.28 m3/s

Maximum velocity through channel (V) = 0.5 m/s

Thickness (t) = 10 mm = 0.01 m.

Spacing of bar (S) = 2 cm = 0.02 m.

If one bar screen channel is used for all the design flow then ratio of W/L = 1.5 => W = 1.5×L

(a):

Area of cross-section (A) =  Qd / V

A = 0.28 / 0.5

A = 0.56 m2

As, Area (A) = W * L

\Rightarrow 0.56 = 1.5×L×L

L = 0.611 m

W = 1.5 * L

W = 1.5 * 0.611

W = 0.916 m

Hence, Dimensions (L) = 0.611 m and (W) = 0.916 m.

(b):

Velocity between bars:

Given, velocity V = 0.5 m/s

W = 0.916 m.

Velocity between bars (Vo) = V×(W/(W+t))

Vo = 0.5 × (0.916/(0.916+0.01))

Vo = 0.49 m/s.

Hence, Velocity between bars = 0.49 m/s.

(c):

Number of bars in the channel if spacing between bars is 2 cm = 0.02 m.

Number of bar screen channels = W/S = 0.916/0.02 = 45.8 ≈ 46 bars.

Therefore number of bars in the screen = 46.

To know more about velocity:

https://brainly.com/question/30559316

#SPJ4

Other Questions
probability Strassel will be able to obtain the property using a bid of $130,000 ? (Round your answer to the nearest tenth of a percent.) ] (b) How much does Strassel need to bid to be assured of obtaining the property? $130,000 $140,000 $150,000 $150,000. (Round your answers to the nearest dollar.) expected profit for a bid of $130,000 expected profit for a bid of $140,000 expected profit for a bid of $150,000 A bid of results in the largest mean profit of the three alternatives.Previous question What has been the worldwide pattern of growth of the Mormon Church during the last two centuries? O A. Holding steady O B. Linear increase OC. Accelerating increase O D. Linear decline O E. Accelerating decline As I have noted throughout this course, I ascribe to the behavioral school of economics. Here are some of the implications that conflict with (or complement?) classical conomic theory we have learned (a) Prepare a schematic diagram to show the provision and distribution of fire hydrants and hose reels on all residential floors based on the Code of Practice for Minimum Fire Services Installations and Equipment, Fire Service Department, HKSAR (2012).(b) Each flat has the following water draw-off points: I washbasin, 1 WC-cistern, 1 shower head, I kitchen sink and I washing machine. Find the total loading unit and the diversified flow rate for a typical residential floor based on relevant data in BS EN 806-3:2006. Find also the external pipe diameter of the main stack serving all residential floors. It is assumed that the plumbing facilities are supplied by hot-dip galvanized steel pipes. 17. Electrospinning is a broadly used technology for electrostatic fiber formation which utilizes electrical forces to produce polymer fibers with diameters ranging from 2 nm to several micrometers using polymer solutions of both natural and synthetic polymers. Write down 5 different factors that affect the fibers in this fabrication technique. (5p) 18. Write down the definition of a hydrogel and list 4 different biological function of it. (Sp) 19. A 2.0-m-long steel rod has a cross-sectional area of 0.30cm. The rod is a part of a vertical support that holds a heavy 550-kg platform that hangs attached to the rod's lower end. Ignoring the weight of the rod, what is the tensile stress in the rod and the elongation of the rod under the stress? (Young's modulus for steel is 2.010"Pa). (15p) workplcae health and safty in aged care facility .1)Describe two instance when you evaluated your own area ofwork , in your evaluation , determine the scope of compliancerequirements.Instance 1:I Consider the following initial value problem: dx dt = 3x + 2y - 2te2t dy 3x +y - 3 sint dt (a) State (wihtout proof) the four-step Adams-Bashford method in vector for (b) Approximate x(1) and y(1) by Which of the following is NOT a possible cause for changes in the Business Cycle? Financial Instability Productivity Changes Political Events Economies of Scale An unknown organism has the following test results: What is the organism?Bacitracin resistantBile esculin positiveCAMP positiveCatalase negativeCoagulase positiveCefoxitin sensitiveGram Positive cocciAlpha hemolyticNovobiocin resistantOptochin resistantSF broth negativeGroup of answer choicesStreptococcus saprophyticusStreptococcus pyogenesStaphylococcus aureusStaphylococcus saprophyticusMRSAStreptococcus pneumoniaStaphylococcus epidermidisStreptococcus viridansEnterococcus Space air at 20 C DBT and 50%RH is mixed with outdoor air at 45 C DBT and 28 C WBT in the ratio of 4:1. The mixture is passed through a cooling coil whose temperature is maintained at 8 C and whose bypass factor is 0.25. Find the following: (a) Condition of air entering the coil. (b) Condition of air leaving the coil. (c) If 200 kg/min of air is supplied to the room, find the cooling load of the coil. In alveolar air, we ventilate to keep the partial pressure of oxygen LOW, this way there will be a gradient for oxygen to flow from the alveoli into pulmonary blood.Spirometry. After a normal inspiration, one continues to inhale maximally, this additional reserve volume is theO IRVO VCO TLCO ERV An air conditioning unit supplies cold air to a room at 22oC dry bulb and 70% relative humidity. Considering standard atmospheric pressure, what is the specific enthalpy of the air at this state? Express your answer in kJ/kg da. Although adults synthesize large amounts of ATP each day, theirbody weight, structure, and composition do not change significantlyduring this period. explain why this contradiction occurs Using the Bohr equation to calculate the frequency, in Hz, of aC5+ photon. The photon moves from n=6 to n=2. Have your answer in 3significant figures. Consider a pulsed Doppler system, which operates at a center frequency of 7.5 MHz. This system is used to image blood flow in a vein located at a distance of 5 cm from the transducer. The angle between the beam and blood flow is 60. Assume that the minimum velocity that this instrument can measure is 2 cm/s (FYI, this limit is typically imposed by tissue movement, but this information is not needed to solve the problem). If needed, please assume c = 1540 m/s. Please find: i) i the maximum velocity that this instrument can measure; ii) the minimum Doppler frequency; iii) the spectral broadening: iv) the pulse repetition frequency. Explain the role that religious beliefs play in the health care setting. Describe how legal principles can conflict with principles of the Christian worldview perspective in the health care setting. Provide specific examples to illustrate your ideas, and discuss strategies for addressing these conflicts in professional practice. In replies to peers, provide additional examples and strategies that have not already been discussed. The locus 12q4.2 would indicate the ___ arm of chromosome # ____ Assuming the lastlocus on this arm is 12q5.1, the locus 12q4.2 is most likely close to the ____ a=6Use Kaiser window method to design a discrete-time filter with generalized linear phase that meets the specifications of the following form: |H(ejw)| a * 0.005, |w| 0.4 (1-a * 0.003) H(e)| (1 + a * 0.003), 0.56 |w| (a) Determine the minimum length (M + 1) of the impulse response(b) Determine the value of the Kaiser window parameter for a filter that meets preceding specifications(c) Find the desired impulse response,hd [n ] ( for n = 0,1, 2,3 ) of the ideal filter to which the Kaiser window should be applied Part ACalculate the molarity of a solution prepared by dissolving 12.1gg of Na2CrO4Na2CrO4 in enough water to produce a solution with avolume of 690. mLmL .Express the molarity to three significan If the ability to form immunological memory was lost, a person would be susceptible to repeated bouts of illness from the same pathogen. be more susceptible upon first exposure to novel pathogens. be