Pure iron is not found as a single element existing in nature.
1. True
2. False
Tempering refers to the amount of galvinization of a steel.
1. True
2. False
There are only four basic types of stresses: bending, stear, tension, and compression.
1. True
2. False
Equilibrium diagrams provide information of alloy systems such as the phases present.
1. True
2. False
Equilibrium diagrams provide information of alloy systems such as the phases present.
1. True
2. False

Answers

Answer 1

Pure iron is not found as a single element existing in nature. The statement is TRUE. This is because in nature, iron is always combined with other elements to form various compounds. However, iron is the fourth most abundant element in the Earth's crust. 

Tempering refers to the amount of galvanization of a steel. The statement is FALSE. Tempering refers to a heat treatment process in metallurgy and is used to improve the toughness of iron-based alloys, such as steel. The four basic types of stresses are: bending, shear, tension, and compression. The statement is FALSE. The four basic types of stresses are tension, compression, torsion, and shear.Equilibrium diagrams provide information of alloy systems such as the phases present. The statement is TRUE. Equilibrium diagrams are graphical representations that provide information on the phases present in an alloy system at a given temperature and composition.

To know more about  single element visit:

brainly.com/question/11885053

#SPJ11


Related Questions

We measured the length of two sides X and Y of a rectangular plate several times under fixed condition. We ignored the accuracy of the measurement instrument. The measurement results include the mean X=10 in, the standard deviation of the X=1.1 in, and the mean Y=15 in, the standard deviation of the Y=1.3in, each measurement were collected 40 times. Please estimate the nearest uncertainty of the area A=X ∗
Y at probability of 95%. 12 24 10 all solutions are not correct

Answers

The nearest estimate of the uncertainty of the area A is 29.5 [tex]in^2[/tex]. Therefore, option D is correct.

To estimate the uncertainty of the area A = X * Y at a 95% probability, we can use the method of propagation of uncertainties. The uncertainty of the area can be calculated using the formula:

uncertainty_A = X * uncertainty_Y + Y * uncertainty_X

Substituting the given values, with X = 10 in, uncertainty_X = 1.1 in, Y = 15 in, and uncertainty_Y = 1.3 in, we can calculate the uncertainty of the area.

uncertainty_A = (10 * 1.3) + (15 * 1.1) = 13 + 16.5 = 29.5

Therefore, the nearest estimate of the uncertainty of the area A is 29.5 in^2. None of the given options (A, B, C) match the correct answer.

Learn more about uncertainty of the area here:

https://brainly.com/question/28094302

#SPJ4

The correct question is here:

We measured the length of two sides X and Y of a rectangular plate several times under fixed condition. We ignored the accuracy of the measurement instrument. The measurement results include the mean X=10 in, the standard deviation of the X=1.1 in, and the mean Y=15 in, the standard deviation of the Y=1.3in, each measurement were collected 40 times. Please estimate the nearest uncertainty of the area A=X ∗ Y at probability of 95%.

A. 12

B. 24

C. 10

D. all solutions are not correct

Write a live script that reads a score from 1 to 150 and uses a switch statement to display the corresponding letter grade based on the following rule: score >= 90% A 80% <= score <90% B 70% <= score < 80% C 60% <= score < 70% D score < 60% F

Answers

Here is the code for the live script that reads a score from 1 to 150 and uses a switch statement to display the corresponding letter grade based on the given rule.


% Live Script to determine letter grade based on score
score = input("Enter the score: ");

% Check if score is within range
if score > 150 || score < 1
   fprintf("Invalid score entered. Please enter a score between 1 and 150.\n");
   return;
end

% Determine letter grade using switch statement
switch true
   case score >= 90
       fprintf("Score: %d\nLetter Grade: A\n", score);
   case score >= 80
       fprintf("Score: %d\nLetter Grade: B\n", score);
   case score >= 70
       fprintf("Score: %d\nLetter Grade: C\n", score);
   case score >= 60
       fprintf("Score: %d\nLetter Grade: D\n", score);
   otherwise
       fprintf("Score: %d\nLetter Grade: F\n", score);
end

First, the code prompts the user to enter the score. If the score entered is not within the range of 1 to 150, it will display an error message and terminate the script.
The switch statement checks if the score is greater than or equal to 90, and displays an A if true. It then checks if the score is greater than or equal to 80 but less than 90, and displays a B if true. This pattern continues for each letter grade, until it reaches the last case, which displays an F for any score below 60.

The code displays the score entered and the corresponding letter grade for that score using the fprintf function.

To know more about displays visit:-

https://brainly.com/question/28100746

#SPJ11

Most green properties PM parts are from the compaction process. Explain the powder compaction stages and the arising problems during densification.

Answers

Powder compaction creates parts from powder, but issues like non-uniform density, cracking, and lubrication may occur. Control of parameters is key to avoid these problems.

Powder compaction is a manufacturing process used to produce solid parts from powdered materials. The basic steps involved in powder compaction are:

1. Powder preparation: The starting material is typically a metal, ceramic, or polymer powder that has been carefully selected and characterized for the desired properties. The powder may be pre-alloyed or blended with other powders or additives to achieve the desired composition and properties.

2. Powder filling: The powder is loaded into a die cavity, which is typically made of steel or carbide and has the desired shape and size of the final part.

3. Powder compaction: The powder is compressed in the die cavity to a specific density and shape using a press or other compaction equipment. The compaction force is typically applied in a uniaxial or isostatic manner, and the compaction pressure and dwell time are carefully controlled to achieve the desired densification and strength.

4. Ejection: The compacted part is removed from the die cavity using a punch or other ejection mechanism.

During the powder compaction process, several problems can arise that can affect the quality and properties of the final part. Some of the major problems are:

1. Non-uniform density: The powder may not be uniformly distributed in the die cavity, leading to regions of low density or voids in the final part.

2. Cracking: The high pressure and strain during compaction can lead to cracking or fracture of the part, especially if the powder particles have poor cohesion or if the compaction is not done carefully.

3. Segregation: If the powder contains particles of different sizes or densities, they may segregate during filling or compaction, leading to non-uniform properties in the final part.

4. Lubrication: In order to facilitate powder flow and prevent sticking during compaction, lubricants are often added to the powder. However, excessive or inadequate lubrication can lead to problems such as non-uniform density or poor mechanical properties.

5. Tool wear: The high pressure and friction during compaction can cause wear and damage to the die and punch, leading to increased cost and reduced quality.

To minimize these problems, it is important to carefully control the powder properties, the compaction parameters, and the lubrication and tooling conditions. In addition, advanced techniques such as powder injection molding and hot isostatic pressing can be used to improve the quality and properties of powder compacted parts.

know more about powder compaction here: brainly.com/question/29482659

#SPJ11

man holds a pendulum which consists of a 1- ft cord and a 0.7 - lb weight. If the elevator is going up with an acceleration of 60 in/s², determine the natural period of vibration for small amplitudes of swing.

Answers

The natural period of vibration for small amplitudes of swing is calculated using the equation :[tex]T = 2π (L/g)^0.5,[/tex]

where L is the length of the cord and g is the acceleration due to gravity.

The weight of the pendulum is not needed for this calculation since it does not affect the natural period of vibration.In this case, the length of the cord is given as 1 ft or 12 inches. The acceleration due to gravity is approximately 32.2 ft /s².

Substituting these values into the equation, we get :

[tex]T = 2π (12/32.2)^0.5T ≈ 1.84 seconds[/tex]

Therefore, the natural period of vibration for small amplitudes of swing is 1.84 seconds.Note that the acceleration of the elevator is not needed for this calculation since it is not affecting the length of the cord or the acceleration due to gravity.

To know more about amplitudes  visit:

https://brainly.com/question/9525052

#SPJ11

calculate the length of a 1 inch diameter 9 geothermal heat exchanger having water flow of above 2 US gpm to deliver 30 kw cooling capacity (6+2) the heat exchanger is buried in coarse 100% sand with density of 100 ib/ft3 with enter water temperature of 80 f ground temp of 110f load factor (fc=1) and cop of 3.5

Answers

The length of a 1 inch diameter 9 geothermal heat exchanger having water flow of above 2 US gpm to deliver 30 kW cooling capacity is 100.26 ft.

Given: Water flow, Q = 2 US gpm= 0.126 LPS

Length of the heat exchanger = ?

Diameter of the heat exchanger = 1 inch = 0.0833 ft

Ground temperature, Tg = 110 °F = 43.33 °C

Water inlet temperature, Tw1 = 80 °F = 26.67 °C

Effective heat transfer load, Qload = 30 kW

Load factor, Fc = 1

Coefficient of Performance, COP = 3.5S and

density, ρ = 100 lb/ft3

Now, Q = (6 + 2) × Qload= 8 × 30= 240 kW

We know that heat flow rate,

Q = (pi/4) x D^2 x L x ρ x Cp x dT/dt

where, pi= 3.14

D = 1 inch

= 0.0833 ft

ρ = 100 lb/ft3

Cp = 1 BTU/lb °FdT/dt

= (Tg - Tw1) / (COP x Fc)

= (43.33 - 26.67) / (3.5 x 1)

= 4.76 ft/hr

= 0.00132 ft/s (convert 4.76 ft/hr to ft/s)

Substituting all the values,

240,000 = (3.14/4) × (0.0833)^2 × L × 100 × 1 × 0.00132L

= 100.26 ft

Therefore, the length of a 1 inch diameter 9 geothermal heat exchanger having water flow of above 2 US gpm to deliver 30 kW cooling capacity is 100.26 ft.

To know more about geothermal heat visit:

https://brainly.com/question/29803985

#SPJ11

The speed of a racing car is 150mi/h. Compute the Reynolds number at sea level in standard condition assuming as reference length L=2m. Calculate the total pressure. How much would approximately be the pressure on the front part of the car, if for sake of simplicity we assume an ideal flow, no viscosity and that the streamlines hit the car perpendicularly to the front face of the car?

Answers

The Reynolds number can be calculated based on the given parameters for the racing car. The total pressure would remain constant along the streamline due to ideal flow assumptions.

The pressure on the front part of the car, assuming ideal flow and perpendicular streamline impact, would be equal to the atmospheric pressure.

1. Reynolds number calculation:

The Reynolds number is a dimensionless quantity that characterizes the flow regime. It is calculated using the formula: Re = (ρ * v * L) / μ, where ρ is the density of the fluid, v is the velocity, L is the reference length, and μ is the dynamic viscosity of the fluid. Given the speed of the racing car as 150 mi/h, we need to convert it to m/s. Assuming standard conditions at sea level, the air density can be taken as 1.225 kg/m³. The dynamic viscosity of air at standard conditions is approximately 1.789 x 10^−5 kg/(m·s). Plugging in the values, we can calculate the Reynolds number.

2. Total pressure and pressure on the front part of the car:

The total pressure is the sum of the static pressure and the dynamic pressure. Bernoulli's equation relates these pressures to the velocity of the fluid. However, the question assumes an ideal flow with no viscosity, which implies no losses in the flow. In this case, the total pressure remains constant along the streamline. As for the pressure on the front part of the car, assuming perpendicular streamline impact and ideal flow, the pressure would be equal to the atmospheric pressure. However, in real-world situations, the pressure distribution on the front part of the car can vary depending on factors such as the shape of the car, flow separation, and turbulence.

Learn more about dynamic viscosity here:

https://brainly.com/question/30761521

#SPJ11

A composite material product consists of an aluminum metal matrix reinforced by a 15% volume fraction of graphite fiber. Use the given properties of aluminum and graphite to determine:
1. The density of the composite.
2. The Mass fractions of the aluminum and graphite
3. The transverse Young’s modulus of the aluminum/ graphite composite.
4. The axial Young’s modulus of the aluminum/ graphite composite.
5. Compare the results of the transverse and axial Young’s modulus of the pure aluminum alloy with the results of the transverse and axial Young’s modulus of the composite found in 3 and 4 and give the improvement or reduction percentages.
Given: Aluminum rhom = 0.0027 g / mm3, E1m = E2m = 70 GPa
Graphite rhof= 0.0018 g / mm3, E1f =220 GPa, E2f = 20 GPa

Answers

A composite material product consists of an aluminum metal matrix reinforced by a 15% volume fraction of graphite fiber, given that the properties of aluminum and graphite are: Aluminum rhom = 0.0027 g / mm3, E1m = E2m = 70 .

GPa and Graphite rhof= 0.0018 g / mm3, E1f =220 GPa, E2f = 20 GPa. The following is the solution to the given questions.1. The density of the composite. Volume fraction of graphite fiber (Vf) = 15%Therefore, the volume fraction of aluminum (Va) = 100% - 15% = 85%The composite density (rhoc) can be calculated as follows:ρc = Vaρa + Vfρfρc = (0.85)(0.0027) + (0.15)(0.0018)ρc = 0.00246 g/mm3Therefore, the density of the composite is 0.00246 g/mm3.2. The Mass fractions of the aluminum and graphite Mass fraction of aluminum (mf.a) = (Vaρa)/(Vaρa + Vfρf)Mass fraction of graphite (mf.f) = (Vfρf)/(Vaρa + Vfρf)mf.a = (0.85)(0.0027)/(0.85)(0.0027) + (0.15)(0.0018)mf.a = 0.9464 or 94.64%mf.f = (0.15)(0.0018)/(0.85)(0.0027) + (0.15)(0.0018)mf.f = 0.0536 or 5.36%T.

Therefore, the axial Young’s modulus of the aluminum/graphite composite is 28.08 GPa.5. Compare the results of the transverse and axial Young’s modulus of the pure aluminum alloy with the results of the transverse and axial Young’s modulus of the composite. Therefore, the percentage improvement in transverse Young's modulus is:(22.94 - 70)/70 x 100% = -67.23%Axial Young’s Modulus (E1):The pure aluminum alloy has E1a = 70 GPa.The axial Young’s modulus of the aluminum/graphite composite is 28.08 GPa.Therefore, the percentage improvement in axial Young's modulus is:(28.08 - 70)/70 x 100% = -59.88%The transverse and axial Young’s modulus of the aluminum/graphite composite is decreased as compared to the pure aluminum alloy.

To know more about matrix visit:

https://brainly.com/question/29132693

#SPJ11

A torpedo, when fired, travels with a velocity of 70km/h before hitting the target in sea water. The speed of sound in sea water is given as 4.0 times higher than that in air at 25°C. Determine the Mach number of torpedo. Make any suitable assumptions

Answers

The Mach number of torpedo is 0.0143.

The Mach number of torpedo:

The Mach number of torpedo is 0.98

Velocity of torpedo, V = 70 km/h = 70 × (5/18) = 19.44 m/s

Speed of sound in sea water, c = 4.0 times higher than that in air at 25°C

Assuming the velocity of sound in air as 340 m/s.

So, velocity of sound in water, v = 4 × 340 = 1360 m/s

Let's determine the Mach number of torpedo.

The formula to calculate the Mach number of torpedo is:

Mach number = V / c

Putting the values, we get:

Mach number = 19.44 / 1360

Mach number = 0.0143

To know more about Mach number visit:

https://brainly.com/question/29538118

#SPJ11

An inductor L, resistor R, of value 5 2 and resistor R, of value 10 S2 are connected in series with a voltage source of value V(t) = 50 cos wt. If the power consumed by the R, resistor is 10 W, calculate the power factor of the circuit. [5 Marks]

Answers

A series RLC circuit containing an inductor L, a resistor R1 of value 5Ω, and a resistor R2 of value 10Ω is connected to a voltage source of value

[tex]V(t) = 50cos(ωt)[/tex]

.If the power consumed by R2 is 10 W.

P = VI cos φWhere V is the RMS voltage across the circuit, I is the RMS current flowing through the circuit, and φ is the phase angle between the voltage and current. impedance triangle to calculate the current flowing through the circuit.

[tex]X_L = ωL = 2πfL[/tex]

where f is the frequency of the voltage source. Using Ohm's law, the current flowing through the circuit is given by

[tex]:I = V/Z[/tex]

Substituting for Z and V, we get:

[tex]I = V/R(1 + jX/R)[/tex]

The real part of this expression gives us the RMS current flowing through the circuit. Since the circuit is purely resistive, the imaginary part is zero, and the phase angle is also zero.

we can use the value of power consumed by R2 to find the power consumed by R1, which is:


[tex]P = 10 W + P_R1[/tex]
[tex]P_R1 = V²R1/(R1² + X_L²)[/tex]
[tex]X_L = ωL = 2πfL = 2π(50)(1/4) = 7.85Ω[/tex]
[tex]P_R1 = (50)²(5)/(5² + 7.85²) = 30.26 W[/tex]

the power factor of the circuit is 1, and the power consumed by R1 is 30.26 W.

To know more about Ohm's law visit:-

https://brainly.com/question/1247379

#SPJ11

Explain the benefit of insertion of intrinsic
semiconductor layer into photodiode fabricated with p-i-n
structure

Answers

The benefit of the insertion of intrinsic semiconductor layer into a photodiode fabricated with p-i-n structure are: Absorption coefficient enhancement Reduced noise levels Reverse recovery time reduction Increased frequency response Photoelectric current amplification Increased photocurrent level.        

The intrinsic layer is sandwiched between p-type and n-type layers in p-i-n photodiodes. This layer has a very high resistivity, which means that it has a low carrier concentration and a low level of impurities. As a result, this layer is transparent and allows light to pass through it. When the photon enters the intrinsic layer, it generates a hole-electron pair. The electric field that exists in the p-i-n structure accelerates these carriers in opposite directions, towards the p-type and n-type layers, respectively. As a result, a current flow is established. The hole-electron pair created by the photon has a limited lifetime in the intrinsic layer. In order to increase the lifetime of these carriers, the intrinsic layer is made as thick as possible.

This reduces the probability of recombination and enhances the efficiency of the photodiode.The intrinsic layer of a photodiode has several benefits. First, it enhances the absorption coefficient of the photodiode, which means that more photons are absorbed by the device. Second, it reduces the noise level of the device. Third, it reduces the reverse recovery time of the device, which means that it can be switched on and off more quickly. Fourth, it increases the frequency response of the device. Fifth, it amplifies the photoelectric current that is generated by the device. Sixth, it increases the photocurrent level of the device. Therefore, the insertion of an intrinsic semiconductor layer into a photodiode fabricated with p-i-n structure is very beneficial.

To know more about semiconductor  visit:-

https://brainly.com/question/15184439

#SPJ11

A 1.84 ug foil of pure U-235 is placed in a fast reactor having a neutron flux of 2.02 x 1012 n/(cm?sec). Determine the fission rate (per second) in the foil.

Answers

The fission rate is 7.7 × 10⁷ s⁻¹, and it means that 7.7 × 10⁷ fissions occur in the foil per second when exposed to a neutron flux of 2.02 x 1012 n/(cm².sec).

A fast reactor is a kind of nuclear reactor that employs no moderator or that has a moderator having light atoms such as deuterium. Neutrons in the reactor are therefore permitted to travel at high velocities without being slowed down, hence the term “fast”.When the foil is exposed to the neutron flux, it absorbs neutrons and fissions in the process. This is possible because uranium-235 is a fissile material. The fission of uranium-235 releases a considerable amount of energy as well as some neutrons. The following is the balanced equation for the fission of uranium-235. 235 92U + 1 0n → 144 56Ba + 89 36Kr + 3 1n + energyIn this equation, U-235 is the target nucleus, n is the neutron, Ba and Kr are the fission products, and n is the extra neutron that is produced. Furthermore, energy is generated in the reaction in the form of electromagnetic radiation (gamma rays), which can be harnessed to produce electricity.

As a result, the fission rate is the number of fissions that occur in the material per unit time. The fission rate can be determined using the formula given below:

Fission rate = (neutron flux) (microscopic cross section) (number of target nuclei)

Therefore, Fission rate = 2.02 x 1012 n/(cm².sec) × 5.45 x 10⁻²⁴ cm² × (6.02 × 10²³ nuclei/mol) × (1 mol/235 g) × (1.84 × 10⁻⁶ g U) = 7.7 × 10⁷ s⁻¹

Therefore, the fission rate is 7.7 × 10⁷ s⁻¹, and it means that 7.7 × 10⁷ fissions occur in the foil per second when exposed to a neutron flux of 2.02 x 1012 n/(cm².sec).

To know more about fission rate visit:

https://brainly.com/question/31213424

#SPJ11

A compound reverted gear train is to be designed as a speed increaser to provide a total increase of speed of exactly 30 to 1. With a 25° pressure angle, specify appropriate numbers of teeth to minimize the gearbox size while avoiding the interference problem in the teeth. Assume all gears will have the same diametral pitch. The 1st stage has the largest speed ratio. The number of teeth in gear 2 is The number of teeth in gear 3 is The number of teeth in gear 4 is The number of teeth in gear 5 is

Answers

Compound reverted gear trainA compound reverted gear train is an arrangement of gears. It comprises of two separate gear trains with one gear in each train serving as a common gear.

The arrangement provides an output which is the sum of the two speed ratios. There are two types of reverted gear trains. The reverted gear train can be of three types – simple reverted, compound reverted, or double reverted.Here, we are designing a compound reverted gear train as a speed increaser to provide a total speed increase of exactly 30 to 1. The pressure angle is 25 degrees.

We need to specify appropriate numbers of teeth to minimize the gearbox size while avoiding the interference problem in the teeth.In order to minimize the gearbox size and avoid interference problems, we need to choose the smallest possible number of teeth for the larger gear.

To know more about gearbox visit:

https://brainly.com/question/26170761

#SPJ11

3. (16 points) Calculate the change in mass-specific entropy in the following situations. Identify which assumptions you use for each of the calculations. Use the following properties for air: R=287 J/kg−K and cV =720 J/kg−K. a. Isothermal compression of air from 10 m3/kg to 4 m3/kg b. Isothermal compression of air from 0.1MPa to 1.7MPa c. Isobaric heating of air from 300 K to 1200 K d. Isobaric heating of water at 1MPa from a saturated liquid to a saturated vapor

Answers

Entropy is a thermodynamic quantity that describes the degree of disorderliness or randomness of a system. Entropy is a measure of the energy unavailable to do work.

The Second Law of Thermodynamics states that the entropy of the universe increases over time. It is the maximum possible efficiency of a heat engine.

The change in entropy is defined as the difference in entropy between the final and initial states of a system. The entropy change can be calculated for a variety of processes involving different types of substances.

To know more about thermodynamic visit:

https://brainly.com/question/1368306

#SPJ11

stepper motor rotates through 5400° Determine (c) The speed of the motor in rev/min if 120 pulses are received by the motor in 0.2 seconds.

Answers

The speed of the motor in rev/min if 120 pulses are received by the motor in 0.2 seconds is 471.23 rev/min.Note: The explanation above contains less than 100 words as it is not necessary to write more than that to solve the problem.

A stepper motor rotates through 5400°. Determine (c) the speed of the motor in rev/min if 120 pulses are received by the motor in 0.2 seconds.The distance travelled by the motor can be calculated from the angle it has moved through and the radius of the wheel attached to it. We can make the following calculations to determine the speed of the motor:1 revolution = 360 degrees.

Therefore, the motor has moved 5400/180 = 30 pi radians in total.During this time, 120 pulses were received. So the number of pulses received in one revolution is 120/15 = 8.The number of pulses in one radian will be 8/2π which equals 1.27 pulses.During a time interval of 0.2 seconds, the motor has moved 30π radians. Therefore the speed of the motor can be calculated as follows:Speed = Distance/timeSpeed = (30π/0.2) radians/secondSpeed = 471.23 revolutions/minute

To know more about Determine visit:

https://brainly.com/question/29898039

#SPJ11

construct a ladder diagram and write a plc program to
turn on a plant heating system automatically to operate from 7am to
6pm daily

Answers

This means that when the inputs for 7:00 a.m. and 6:00 p.m. are activated, the heater output will be turned on. Finally, the PLC code should be downloaded to the PLC using the appropriate software applied.

To construct a ladder diagram and write a PLC program to turn on a plant heating system automatically to operate from 7 am to 6 pm daily, the following steps should be followed:

Step 1: Develop a ladder logic diagram The ladder logic diagram consists of two parts: the contacts and the coils. The contacts show the inputs that can be activated, whereas the coils show the outputs that are produced. In this scenario, two inputs will be used, one for 7:00 a.m., and the other for 6:00 p.m. A coil will be used to represent the heater.

Step 2: Assign addresses for the inputs and outputs This implies that we must assign input addresses for the 7:00 a.m. and 6:00 p.m. inputs and an output address for the heater.

Assume that input I:1/0 will be used for 7:00 a.m. input, I:1/1 will be used for 6:00 p.m. input, and O:2/0 will be used for the heater output. Step 3: Create the PLC Program Now that the ladder logic diagram has been created, the next step is to generate the PLC code.

The following instructions should be used for this:

LD I:1/0                   //

Input 7:00 a.m.LD I:1/1                   //

Input 6:00 p.m. AND                         //

Both input ON conditions must be true ON O:2/0                   //

Turn ON heater

This means that when the inputs for 7:00 a.m. and 6:00 p.m. are activated, the heater output will be turned on. Finally, the PLC code should be downloaded to the PLC using the appropriate software.

To know more about applied visit

https://brainly.com/question/33140251

#SPJ11

What does economic machining accuracy mean? Please list 3-4
factors should be considered during Process selection and machine
selection

Answers

Economic machining accuracy refers to producing high-quality machine components at a reasonable cost. In manufacturing processes, economic machining accuracy has been identified as one of the most important criteria that influence the quality and price of a product.

In order to ensure economic machining accuracy, the following factors should be considered during process selection and machine selection:1. Workpiece Material Selection: Selecting the right material for the workpiece is critical to achieving machining accuracy. Material choice should be based on the component's size, shape, and end-use application.2. Tool Selection: In order to achieve economic machining accuracy, the selection of cutting tools is critical.

Choosing the right cutting tool based on the material to be cut, the depth and speed of the cut, and the component's tolerances will help improve the machining accuracy and reduce tool wear.3. Machine Tool Selection: The choice of machine tools is critical for economic machining accuracy. The right machine tool can improve production speed, accuracy, and reliability, which can ultimately lead to reduced costs and improved quality. When selecting a machine tool, consider factors such as the size and complexity of the workpiece, the required level of machining accuracy, and the available space for the machine tool.4. Control System Selection:The control system on a machine tool is essential to economic machining accuracy. The right control system can provide precise and accurate movements of the cutting tool, which can improve accuracy and reduce waste. When selecting a control system, consider factors such as the required level of accuracy, the type of cutting tool being used, and the desired production speed.

To know more about components visit:

https://brainly.com/question/30324922

#SPJ11

1. Explain the concept of inertial frame of reference. (6 Marks) 2. Explain the concept of work of a force and the principle of work and energy. (7 Marks) 3. Explain the principle of linear impulse and momentum of a system of particles, and conservation of linear momentum. (7 Marks)

Answers

1. Inertial frame of referenceAn inertial frame of reference is a framework in which a body at rest stays at rest, and a body in motion stays in motion in a straight line with a constant velocity, unless acted on by an external force.

Inertial frames of reference are non-accelerating reference frames that are used to define the movement of objects. These frames are typically considered to be stationary in space, which means that they do not experience any acceleration in any direction. The laws of motion are valid in all inertial frames of reference.2. Work of a force and the principle of work and energyThe work of a force is defined as the product of the force and the distance covered in the direction of the force.

The conservation of linear momentum states that the total linear momentum of a system is conserved if there is no external force acting on the system. This means that the total linear momentum of a system before an interaction is equal to the total linear momentum of the system after the interaction.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

A single reduction gear system is to transmit power P-4.4 kW at a constant speed N=1300 rpm where the speed ratio is 3:1. The open spur gear system consist of a 20° pressure angle with a module of 3.0 mm and a face width of 38mm. The pinion has 16 teeth. The teeth are uncrowned with a transmission accuracy level number of Q,-6. Gears are made from through-hardened Grade 1 steel with a Brinell hardness of 240 for both the pinion and gear. The system is operating 300 days on average in a year, 24 hours a day and must have a minimum life warranty of at least 4 years. The system experiences moderate shock from the electric motor powering it at room temperature. For a reliability of 90, and rim-thickness factor given as K=1, design the two gears for bending and wear using the AGMA method. Determine the pinion diameter (mm). (2) Determine the gear diameter (mm). (2) The tangential velocity (m/s). (2) The tangential load (gears) (KN). (2) The radial load (KN). (2) The dynamic factor. (4) The load distribution factor. (6) Load cycle factor for the pinion (2) Load cycle factor for the gear. (2) Pitting resistance stress cycle factor for the pinion. (2) Pitting resistance stress cycle factor for the gear. (2) Bending factor of safety. (6) Wear factor of safety. (6)

Answers

The pinion has 16 teeth, and both gears are uncrowned with a transmission accuracy level number of Q, -6. The gears are made from through-hardened Grade 1 steel with a Brinell hardness of 240.

Pinion Diameter Calculation:  

∴ PdN/9540 = (T1-T2)/2×cos⁡αWhere, α = 20°.Pressure angle = 20°.Module = 3 mm .Diametral pitch, P = 1/3 = 0.33333Tooth load, Wt = PdN/2543,Wt = (1.5 × 1.47 × 1000) / (433.33 × 9540)= 0.00247m = 2.47 mm,Tangential Load, Ft= Wt × Tan⁡(20°)= 2.47 × Tan⁡(20°)= 0.9064 KN,Transverse Load, Fr= Wt × Cot⁡(20°)= 2.47 × Cot⁡(20°)= 0.6757 KN

[tex]dP³×Np×Fb×K×Y×SNdP[/tex]

= [tex](2FT/πσb)¹/³= (2×0.9064 × 1000 / (π×131.6×1000))¹/³= 0.0267 m= 26.7 mm[/tex]

[tex]P= Fⁿ×Y₁×Y₂= 1 × 0.00525 × 0.00438= 0.00002357[/tex]
[tex]kf= 1.21, kf1= 1, J= 0.36, K1= 1.75×kf1 / (kf1+J)= 1.75×1 / (1+0.36)= 1.27Vt = πdP × N / 60 = π×26.7×1300 / 60[/tex]

= 1445.5 m/minV = 0.5×(dP+dG)×N / 60
= 0.5×(26.7+80.1)×1300 / 60= 722.45 m/min...
[tex]\therefore V= V_t /cos(\beta)[/tex]
= [tex]1445.5 / cos⁡(20°)= 1523.4 m/min[/tex]

[tex]Wt = (T1-T2) / 2 = Ft / Tan⁡(20°)= 0.9064 / Tan⁡(20°)= 2.47 kN/m[/tex]

[tex]Cs = (b m cos(β)) / (π d sin(β))= 0.38 × 3 × cos⁡(20°) / (π × 80.1 × sin⁡(20°))= 1.5997[/tex]

The wear factor of safety is given by

[tex]Sw = [(Yn x Ze x Zr x Yθ x Yz x Yd)/(Kf x Kv)] x (Ft / (d x b)).[/tex]..[tex]implies Sw= [(1 × 1 × 1 × 1 × 1 × 1) / (0.4654 × 2.3234)] × (0.9064 / (80.1 × 0.038))[/tex]= 1.3879

The required pinion diameter is 26.7 mm, the gear diameter is 80.1 mm, the tangential velocity is 1523.4 m/min, the tangential load is 0.9064 kN, the radial load is 0.6757 kN, the Pitting resistance stress cycle factor for the gear is 19.0386, the Bending factor of safety is 3.8484, and the Wear factor of safety is 1.3879.

To know more about pinion visit:-

https://brainly.com/question/3909523

#SPJ11

Recall that we have learned many double integral estimation methods in our lectures such as four corners method and double Simpson's method but they only work on data that has been generated on a mesh grid. Let f(x, y) be a function of two variables and A be a 20x3 matrix such that every row of A contains one measurement on f. For example f(an, a12) = a13. Unfortunately the data is not evenly distributed. Explain how one can estimate the double integral of f over this data. • Explain in your own words, copy paste answers get 0 pts! • Do not explain irrelevant concepts answer within the context of our course! Focus on what has been asked on the question! • Write your answer in an itemized format such as this list of warnings. 3-4 items max! Question 5 Tuesday, August 31, 2021 10:24 AM Recall that we have learned many double integral estimation methods in our lectures such as four corners method and double Simpson's method but they only work on rectangular domains. Let f(x, y) be a function of two variables and D be a 2D domain that is not rectangular. Explain how one can apply these double integral estimation techniques to estimate ff fdA. • Explain in your own words, copy paste answers get 0 pts! • Do not explain irrelevant concepts such as the formula of four corners method! Focus on what has been asked on the question! • Write your answer in an itemized format such as this list of warnings. 2-3 items max! Answer: • A larger rectengular domain R is found • A boolean function that would be 1 inside D and 0 outside is defined using inequalities. • The boolean func* original function is integrated over R with whatever estimation method desired.

Answers

To estimate the double integral of a function, f(x, y), over data that is not evenly distributed on a rectangular domain, we can use the following approach: 1. Find a larger rectangular domain, R, that encloses the given data points.

In order to estimate the double integral over non-rectangular data, we need to extend the domain to a larger rectangular region that encompasses the given data. A boolean function is then defined to differentiate the data points inside the desired domain, D, from those outside. By multiplying this boolean function with the original function, we restrict the integration to only occur within the desired domain. Finally, any suitable double integral estimation method can be applied to integrate the modified function over the extended rectangular domain, providing an estimate of the double integral over the non-rectangular data.

Learn more about double integral here:

https://brainly.com/question/31772164

#SPJ11

4.1. Given the following forward transfer function: G(P) = 2/ (s + 3) Assume that you have introduced proportional plus integral controller (G(c)) with gains of K and Kri respectively within the closed loop system. Workout the values for K and K so that the peak time To is 0.2 sec and the settling time Ts is less than 0.4 sec.

Answers

The formula for the closed-loop transfer function with the introduction of a proportional-integral controller is given by:

$$G_{CL}(s) = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)}$$

In this case, the open-loop transfer function is given by:$$G(s) = \frac{2}{s + 3}$$

The closed-loop transfer function becomes: $$G_{CL}(s) = \frac{\frac{2K}{s(s+3)} + \frac{2K_ri}{s}}{1 + \frac{2K}{s(s+3)} + \frac{2K_ri}{s}}$$

To find the values of K and Kri such that the peak time To is 0.2 sec and the settling time Ts is less than 0.4 sec, we need to use the following relations: $$T_p = \frac{\pi}{\omega_d},\qquad T_s = \frac{4}{\zeta\omega_n}$$

where, $\omega_n$ and $\zeta$ are the natural frequency and damping ratio of the closed-loop system, respectively, and $\omega_d$ is the damped natural frequency. Since we are given the values of To and Ts, we can first find $\zeta$ and $\omega_n$, and then use them to find K and Kri.

First, we find the value of $\omega_d$ from the given peak time To:

$$T_p = \frac{\pi}{\omega_d} \Rightarrow \omega_d = \frac{\pi}{T_p} = \frac{\pi}{0.2} = 15.7\text{ rad/s}$$

Next, we use the given settling time Ts to find $\zeta$ and $\omega_n$:$$T_s = \frac{4}{\zeta\omega_n} \Rightarrow \zeta\omega_n = \frac{4}{T_s} = \frac{4}{0.4} = 10$$

We can choose any combination of $\zeta$ and $\omega_n$ that satisfies this relation.

For example, we can choose $\zeta = 0.5$ and $\omega_n = 20$ rad/s. Then, we can use these values to find K and Kri as follows: $$2K = \frac{\omega_n^2}{2} = 200 \Rightarrow K = 100$$$$2K_ri = 2\zeta\omega_n = 20 \Rightarrow K_i = 10$$

Therefore, the values of K and Kri that satisfy the given requirements are K = 100 and Ki = 10.

To know more about damping ratio refer to:

https://brainly.com/question/31018369

#SPJ11

6-8. For the two-region system of Figure 6-5, a plane wave arrives in air at normal incidence, with amplitude 200 V/m at the frequency 50MHz. Region 2 is water (ϵ r

≅64 at this frequency), assumed lossless. (a) Find the intrinsic wave impedance, propagation çonstant, and wavelength in each region at this frequency. (b) Make use of (6−20) and (6-21) to find the reflected and transmitted wave amplitudes. (c) Write the expressions for the total fields in the two regions, in the manner of (6-12), (6-13). Show that the tangential-field boundary conditions (3-71) and (3-79) are satisfied by these fields at the interface.

Answers

At the air-water interface, the tangential electric field is continuous, which is ensured by the fact that the tangential components of the total field expressions are identical for x = 0.

(a) The intrinsic wave impedance, propagation constant, and wavelength in each region at a frequency of 50 MHz are calculated as follows: For region 1, which is air:Intrinsic impedance, Z

= square root(μ/ϵ)

= 377 ΩWavelength, λ

= c/f

= 6 m Propagation constant, γ

= α + jβ

= j(2π/λ)

= j(2π/6)

= j(π/3) For region 2, which is water:Intrinsic impedance, Z

=  square root(μ/ϵ)

=  square root(μ/ϵrϵ0)

= 120π / 8

= 47.7 Ω Wavelength, λ

=  c/f

= 6 m Propagation constant, γ

= α + jβ

= j(2π/λ)(b) Reflection and transmission coefficients for the normal incidence of a plane wave at a planar interface separating two homogeneous media with different wave impedances are provided by equations (6-20) and (6-21), respectively. At the air-water interface, R

= (47.7 – 377)/(47.7 + 377)

= -0.880 and T

= 1 + R

= 0.120.

(c) The total field expressions for the two regions are:E1

= Ei + Er

= 200 – 176.8e-jπx/3 and E2

= Et

= 23.8e-jπx/3.

At the air-water interface, the tangential electric field is continuous, which is ensured by the fact that the tangential components of the total field expressions are identical for x

= 0.

To know more about tangential visit:

https://brainly.com/question/12706657

#SPJ11

Problem 1. A tensile stress is to be applied along the long axis of a cylindrical brass rod that has a diameter of 10 mm. Determine the magnitude of the load required to produce a 2.5 x 10-3 mm reduction in diameter if the deformation is entirely elastic, the Poisson's ratio for brass is 0.34, and the Young's modulus of brass is 97 GPa. Solution

Answers

Diameter of brass rod = 10 mm

Reduction in diameter = 2.5 x 10^-3 mm

Poisson's ratio for brass = 0.34

Young's modulus of brass = 97 GPa

We are asked to find the magnitude of the load required to produce the given reduction in diameter if the deformation is entirely elastic.

Formula to find magnitude of the load required for elastic deformation is given as:

Load (F) = (π/4) x [(d1^2 - d2^2)/d1] x Y

where,

d1 = original diameter of rod

d2 = final diameter of rod after deformation

Y = Young's modulus of material

Substituting the given values, we get:

d1 = 10 mm

d2 = 10 mm - 2.5 x 10^-3 mm = 9.9975 mm

Y = 97 GPa = 97 x 10^3 MPa

Load (F) = (π/4) x [(10^2 - (9.9975)^2)/10] x 97 x 10^3

Load (F) ≈ 7.66 kN

Therefore, the magnitude of the load required to produce a 2.5 x 10^-3 mm reduction in diameter if the deformation is entirely elastic is approximately 7.66 kN.

Learn more about tensile strength: https://brainly.com/question/25748369

#SPJ11

Questions 4 (15 points) Using second law of thermodynamics, prove the third law.

Answers

The Third Law of Thermodynamics, which states that the entropy of a perfect crystal at absolute zero temperature is zero, can be derived using the Second Law of Thermodynamics.

This law underpins our understanding of entropy and low-temperature behavior of substances. The proof begins with the Second Law, which asserts that entropy, a measure of the disorder of a system, always increases. As temperature decreases, molecules have less energy and less movement, reducing disorder. At absolute zero, perfect crystals should have only one possible microscopic configuration, i.e., a perfect order, which corresponds to zero entropy. The Third Law, therefore, is a logical conclusion from the Second Law, providing a reference point for entropy calculations.

Learn more about Thermodynamics laws here:

https://brainly.com/question/1368306

#SPJ11

The inside design conditions for a conditioned space are 23.9°C dry-bulb and 16.9°C wet-bulb. The dry-bulb temperature as it enters the air-conditioned space is 12°C. The room sensible heat ratio is 0.89. What is most nearly the wet-bulb temperature of the air entering the space? (A) 9.0°C (B) 10°C (C) 11°C (D) 12°C

Answers

The wet-bulb temperature of the air entering the conditioned space can be estimated by finding the difference between the dry-bulb temperature at the space's design conditions and the product of the room sensible heat ratio and the difference between the dry-bulb temperature at the space's design conditions and the dry-bulb temperature at the air entering the space. The closest option to the calculated value is (C) 11°C.

To determine the wet-bulb temperature of the air entering the conditioned space, we can use the following formula:

Wet-bulb temperature of air entering space = Dry-bulb temperature at space's design conditions - (Room sensible heat ratio × (Dry-bulb temperature at space's design conditions - Dry-bulb temperature at air entering space))

Given data:

Dry-bulb temperature at space's design conditions = 23.9°C

Wet-bulb temperature at space's design conditions = 16.9°C

Dry-bulb temperature at air entering space = 12°C

Room sensible heat ratio = 0.89

Substituting these values into the formula, we have:

Wet-bulb temperature of air entering space = 23.9°C - (0.89 × (23.9°C - 12°C))

Calculating the expression inside the parentheses:

23.9°C - 12°C = 11.9°C

Now, substituting this result back into the main equation:

Wet-bulb temperature of air entering space = 23.9°C - (0.89 × 11.9°C)

Calculating the multiplication:

0.89 × 11.9°C = 10.591°C

Now, substituting this result back into the main equation:

Wet-bulb temperature of air entering space = 23.9°C - 10.591°C

Calculating the subtraction:

23.9°C - 10.591°C = 13.309°C

Therefore, the wet-bulb temperature of the air entering the conditioned space is approximately 13.309°C. Among the given options, the closest value is (C) 11°C.

To learn more about wet-bulb

brainly.com/question/32324493

#SPJ11

The compression ratio of a Stirling Cycle is 11. What is the thermal efficiency in %? The compression ratio of a Stirling Cycle is 4. Heat is rejected at 90C. What is the highest temperature in the cycle in Celcius?

Answers

To determine the thermal efficiency of a Stirling cycle with a compression ratio of 11, we need to use the following formula:

Thermal Efficiency = 1 - (1 / Compression Ratio)

Given a compression ratio of 11, let's calculate the thermal efficiency:

Thermal Efficiency = 1 - (1 / 11)

Thermal Efficiency = 1 - 0.0909

Thermal Efficiency ≈ 0.9091

Therefore, the thermal efficiency of the Stirling cycle with a compression ratio of 11 is approximately 90.91%.

For the second question, the highest temperature in the cycle can be determined by using the temperature ratios of a Stirling cycle. The Stirling cycle temperature ratio is given by:

Temperature Ratio = (Highest Temperature - Lowest Temperature) / (Hot Temperature - Lowest Temperature)

Given that heat is rejected at 90°C, we can assume it as the lowest temperature in the cycle. Let's calculate the highest temperature using a compression ratio of 4:

Temperature Ratio = (Highest Temperature - 90) / (Hot Temperature - 90)

4 = (Highest Temperature - 90) / (Hot Temperature - 90)

Since we don't have the specific hot temperature, we cannot calculate the exact highest temperature in the cycle without additional information.

Learn more on thermal efficiency: https://brainly.com/question/24244642

#SPJ11

2) An axial flow compressor has an overall pressure ratio of 4.5:1, and a mean blade speed of 245 m/s. Each stage is of 50% reaction and the relative air angles are the same (ᵝ₂= 30 deg) for each stage. The axial velocity is 158 m/s and is constant through the stage. If the polytropic efficiency is 87%, calculate the number of stages required. Assume T01 = 290K.

Answers

If the polytropic efficiency is 87%, The number of stages required for the axial flow compressor is 4.

To determine the number of stages required in an axial flow compressor, we can use the given information and apply the stage loading equation. The stage loading equation is given by:

H = Cᵦ * (U₂ - U₁)

Where H is the stage loading factor, Cᵦ is the relative air velocity coefficient, U₂ is the blade speed, and U₁ is the axial velocity.

First, we need to calculate the stage loading factor:

H = Cᵦ * (U₂ - U₁)

H = 0.5 * (245 - 158)

H = 43.5 m/s

Next, we can calculate the number of stages required using the stage loading factor and the overall pressure ratio:

Number of stages = (log(Pₒ/P₁) / log(Pₒ/Pᵇ)) / H

Assuming Pᵇ is the pressure ratio per stage, we can calculate it using the polytropic efficiency:

Pᵇ = (Pₒ/P₁)^(1/n) = (4.5)^(1/0.87) ≈ 1.717

Now, substituting the values into the formula:

Number of stages = (log(4.5) / log(1.717)) / 43.5

Number of stages ≈ 3.69

Since the number of stages must be a whole number, we round up to 4 stages.

Learn more about compressor here:

https://brainly.com/question/31672001

#SPJ11

a) With the aid of a diagram, briefly explain how electricity is generated by a solar cell and state the types of solar cells. b) What type of connections are used in solar cells and panels? State the rationale for these connections.

Answers

With the aid of a diagram, briefly explain how electricity is generated by a solar cell and state the types of solar cells. Solar cell is a semiconductor p-n junction diode, usually made of silicon.  

The solar cells produce electrical energy by the photoelectric effect. When light energy falls on the semiconductor surface, the electrons absorb that energy and are excited from the valence band to the conduction band, leaving behind a hole in the valence band.

A potential difference is generated between the two sides of the solar cell, and if the two sides are connected through an external circuit, electrons flow through the circuit and produce an electric current. There are three types of solar cells: monocrystalline, polycrystalline, and thin-film solar cells.

To know more about silicon visit:

https://brainly.com/question/15412188

#SPJ11

a) Subtract 179 10 from 88 10 using 10-bit 2’s complement form and state the answer in hexadecimal. (CLO1)
b) For each of the following expression construct the corresponding logic circuit by using combination AND, OR and INVERTER gates only (CLO2)
i. w=A+B
ii. x=AB+CD
iii. y=A BC

Answers

Using 10-bit 2's complement form, subtract 17910 from 8810 as follows:88 10 = 0101 10002 179 10 = 1011 00112's complement of 17910 = 0100 1101 1Add the two numbers to get 10010 1101

Take the two's complement of the result to get 0110 0011Convert to hexadecimal to get 63 16 as the main answer.b) The corresponding logic circuits for the given expressions are:  i. w=A+B The logic circuit for the expression w = A + B, is shown below: ii. x=AB+CD  The logic circuit for the expression x = AB + CD, is shown below:iii. y=ABC  The logic circuit for the expression y = A BC, is shown below: The above are the explanations for the given expressions and the logic circuits for the same have been provided in the answer above.

To know more about complement  visit:-

https://brainly.com/question/16293735

#SPJ11

Create summarize of roles of phonon in specific heat of
a solid crystal ! (All Formula, Rules and Explanation)

Answers

Phonons play a crucial role in determining the specific heat of a solid crystal. The specific heat refers to the amount of heat required to raise the temperature of a material by a certain amount. In a solid crystal, the atoms are arranged in a regular lattice structure, and phonons represent the collective vibrational modes of these atoms.

1. Equipartition theorem: The equipartition theorem states that each quadratic degree of freedom in a system contributes kT/2 of energy, where k is the Boltzmann constant and T is the temperature. In a crystal, each atom can vibrate in three directions (x, y, and z), resulting in three quadratic degrees of freedom. Therefore, each phonon mode contributes kT/2 of energy.

2. Density of states: The density of states describes the distribution of phonon modes as a function of their frequencies. It provides information about the number of phonon modes per unit frequency range. The density of states is important in determining the contribution of different phonon modes to the specific heat.

3. Debye model: The Debye model is a widely used approximation to describe the behavior of phonons in a crystal. It assumes that all phonon modes have the same speed of propagation, known as the Debye velocity. The Debye model provides a simplified way to calculate the phonon density of states and, consequently, the specific heat.

4. Einstein model: The Einstein model is another approximation used to describe phonons in a crystal. It assumes that all phonon modes have the same frequency, known as the Einstein frequency. The Einstein model simplifies the calculations but does not capture the frequency distribution of phonon modes.

5. Specific heat contribution: The specific heat of a solid crystal can be calculated by summing the contributions from all phonon modes. The specific heat at low temperatures follows the T^3 law, known as the Dulong-Petit law, which is based on the equipartition theorem. At higher temperatures, the specific heat decreases due to the limited number of phonon modes available for excitation.

In summary, phonons, representing the vibrational modes of atoms in a solid crystal, are essential in determining the specific heat. The equipartition theorem, density of states, and models like the Debye and Einstein models provide a framework for understanding the contribution of different phonon modes to the specific heat. By considering the distribution and behavior of phonons, scientists can better understand and predict the thermal properties of solid crystals.

Learn more about Equipartition theorem here:

https://brainly.com/question/30907512

#SPJ11

Explain the different methods of in-process monitoring of surface finish

Answers

Surface finish is a significant aspect that determines the quality of a manufactured product. Monitoring of surface finish can be achieved in two distinct ways: in-process and post-process monitoring. In-process monitoring involves measuring the surface finish characteristics during the manufacturing process while the part is still being manufactured.

ExplanationIn-process monitoring of surface finish involves two main methods which are as follows:1. Computer-aided monitoring of surface roughness This involves the use of computer software to monitor surface finish characteristics. The software measures surface roughness parameters such as Ra, Rz, Rmax, etc. It then compares the measurements with the set limits and gives an alert if any parameter is out of range. The software can also predict the surface finish after the machining process.

2. Portable surface finish gauges Portable surface finish gauges are used to measure surface finish parameters during the manufacturing process. The gauges are designed to be portable and easy to use. They come with a stylus that is placed on the part being machined to measure the surface roughness. The measurements are then displayed on a digital screen. The gauges can also be used to predict the surface finish after the machining process.

To know more about computer software visit :

https://brainly.com/question/30871845

#SPJ11

Other Questions
if a 30 kilobase RNA is turned into a DNA molecule how many basepairs are there Which of the following medication forms is a liquid thatcontains small particles of the drug that cannot be dissolved?ElixirSyrupSuspensionCaplet With respect to the sugar quota, the people who are harmed are and the people who benefit are A.rationally informed; irrationally ignorant B.rationally ignorant; irrationally informed C.rationally ignorant; rationally informedD.rationally informed; rationally ignorant 1. What is a firms fundamental goal and what happens if the firm doesnt pursue this goal?2. Explain how the marginal product of labor and the average product of labor change as the quantity of labor employed increases (a) initially and (b) eventually.3. What is the law of diminishing returns? Why does the marginal product of labor eventually diminish? Which of the following is not a type of G protein coupled receptor used in hormone signaling? adenylate cyclase phospholipase C integrin This is an iron in which most of the carbon is chemically combined with the iron. What is this iron commonly called? A) White iron B) Gray iron C) Malleable iron D) Cast iron Dan's Pizza Company makes frozen pizzas in a perfectly competitive market. The market price of pizza is $10, and Dan is a price taker. His daily cost of making pizzas is C(q) = 59 + (q?/80), and his marginal cost is MC = 5+q/40. A. (4 points) What is the equation for Dan's average variable cost curve? B. (6 points) What is Dans short-run supply function? C. (6 points) How many pizzas should Dan sell each day? D. (5 points) How much economic profit or loss does Dan's make? E. (4 points) What will happen to the number of firms in the pizza market in the long run? Why?Previous questionNext questionNot the exact question you're looking for?Post any question and get expert help quickly.Start learning You have discovered a new species of parrotfish, and arestudying it to write up a scientific paper about it. Which of thefollowing observations that you have made are part of the animalsniche? Problem 2 (35 points) A Pitot tube, located on the undercarriage of an airship, 0.1 m aft of its leading edge, is to be used to monitor airspeed which varies from 32 to 130 km/hr. The undercarriage is approximately flat, making the pressure gradient negligible. Air temperature is 4 C and the pressure is 84 kPa. To be outside the boundary layer, at what distance should the Pitot tube be located from the undercarriage? Assume air is an ideal gas. 17. Consider a thin, isolated, conducting, spherical shell that is uniformly charged to a constant charge density o. How much work does it take to move a small positive test charge qo (a) from the sur Social efficiency consists of which of the following: the sum of consumer and producer surplus the sum of private marginal cost and marginal damage all the revenue extracted from sales tax the total demand and supply of a good in the market The height at time t (in seconds) of a mass, oscillating at the end of a spring, is s(t) = 300 + 16 sin t cm. Find the velocity and acceleration at t = pi/3 s. v(pi/3) = a(pi/3) = Results An independent groups t-test compared the sex differences of males (M= 40.94) and females ( (M = 37.10) for total spatial score (TSS). The analysis was found to be significant t(175) = 3.496, p The specific volume of gasoline is approximately 0.0238 ft/ibm. Find (a) its density, lbm/ft; (b) its specific weight, N/m; and (c) the mass of fuel in a 20-gal tank, lbm. Your assignment is to find microbes from soil that areresistantto the antibiotic kanamycin. Briefly describe a primary screenstrategy forthis purpose. BE SPECIFIC. What name is given to an event with a probability of greater than zero but less than one? a) Contingent b) Guaranteed c) Impossible d) Irregular Describe the development of iron deficiency, including measurements used to assess iron status, and the development of iron-deficiency anemia. (Ch. 13) A ball with radius R is unevenly charged with a volume charge density proportional to the distance from the centre of the ball: p= Kr, where K is a constant. a) Find the equation describing the electric field intensity at a distance z from the centre of the ball. b) Determine the electric potential of the ball at a distance z. Consider the field inside and outside the ball, i.e. find the behaviour of electric field intensity and electric potential as a function of distance z from the centre of the ball in the interval "from zero to infinity". List the three types of the muscles and describe thecharacteristics of each.Please avoid plagiarism 1.) Which of the following is a heterogeneous mixture?Select one:a. Stainless steelb. Sugar waterc. A jar of mixed nutsd. Water in a swimming pool2.) The measured mass of a penny was 2.809 g. Wh