prove using contradiction that the cube root of an irrational number is irrational.

Answers

Answer 1

The cube root of an irrational number is rational must be incorrect. Thus, we can conclude that the cube root of an irrational number is irrational.

To prove using contradiction that the cube root of an irrational number is irrational, we will assume the opposite: the cube root of an irrational number is rational.

Let x be an irrational number, and let y be the cube root of x (i.e., y = ∛x). According to our assumption, y is a rational number. This means that y can be expressed as a fraction p/q, where p and q are integers and q ≠ 0.

Now, we will find the cube of y (y^3) and show that this leads to a contradiction:

y^3 = (p/q)^3 = p^3/q^3

Since y = ∛x, then y^3 = x, which means:

x = p^3/q^3

This implies that x can be expressed as a fraction, which means x is a rational number. However, we initially defined x as an irrational number, so we have a contradiction.

Learn more about irrational number

brainly.com/question/17450097

#SPJ11


Related Questions

Use your calculator to find the trigonometric ratios sin 79, cos 47, and tan 77. Round to the nearest hundredth

Answers

The trigonometric ratios of sin 79°, cos 47°, and tan 77° are 0.9816, 0.6819, and 4.1563, respectively. The trigonometric ratio refers to the ratio of two sides of a right triangle. The trigonometric ratios are sin, cos, tan, cosec, sec, and cot.

The trigonometric ratios of sin 79°, cos 47°, and tan 77° can be calculated by using trigonometric ratios Formulas as follows:

sin θ = Opposite side / Hypotenuse side

sin 79°  = 0.9816

cos θ  = Adjacent side / Hypotenuse side

cos 47° = 0.6819

tan θ =  Opposite side / Adjacent side

tan 77° = 4.1563

Therefore, the trigonometric ratios are:

Sin 79° = 0.9816

Cos 47° = 0.6819

Tan 77° = 4.1563

The trigonometric ratio refers to the ratio of two sides of a right triangle. For each angle, six ratios can be used. The percentages are sin, cos, tan, cosec, sec, and cot. These ratios are used in trigonometry to solve problems involving the angles and sides of a triangle. The sine of an angle is the ratio of the length of the side opposite the angle to the length of the hypotenuse.

The cosine of an angle is the ratio of the length of the adjacent side to the length of the hypotenuse. The tangent of an angle is the ratio of the length of the opposite side to the length of the adjacent side. The cosecant, secant, and cotangent are the sine, cosine, and tangent reciprocals, respectively.

In this question, we must find the trigonometric ratios sin 79°, cos 47°, and tan 77°. Using a calculator, we can evaluate these ratios. Rounding to the nearest hundredth, we get:

sin 79° = 0.9816, cos 47° = 0.6819, tan 77° = 4.1563

Therefore, the trigonometric ratios of sin 79°, cos 47°, and tan 77° are 0.9816, 0.6819, and 4.1563, respectively. These ratios can solve problems involving the angles and sides of a right triangle.

To know more about trigonometric ratios, visit:

brainly.com/question/30198118

#SPJ11

Ira enters a competition to guess how many buttons are in a jar.

Ira’s guess is 200 buttons.

The actual number of buttons is 250.


What is the percent error of Ira’s guess?



CLEAR CHECK

Percent error =

%


Ira’s guess was off by

%.

Answers

The answer of the question based on the percentage is , the percent error of Ira’s guess would be 20%.

Explanation: Percent error is used to determine how accurate or inaccurate an estimate is compared to the actual value.

If Ira had guessed the right number of buttons, the percent error would be zero percent.

Percent Error Formula = (|Measured Value – True Value| / True Value) x 100%

Given that Ira guessed there are 200 buttons but the actual number of buttons is 250

So, Measured value = 200 True value = 250

|Measured Value – True Value| = |200 - 250| = 50

Now putting the values in the formula;

Percent Error Formula = (|Measured Value – True Value| / True Value) x 100%

Percent Error Formula = (50 / 250) x 100%

Percent Error Formula = 0.2 x 100%

Percent Error Formula = 20%

Hence, the percent error of Ira’s guess is 20%.

To know more about Formula visit:

https://brainly.com/question/30098455

#SPJ11

use the gram-schmidt process to find an orthogonal basis for the column space of the matrix. (use the gram-schmidt process found here to calculate your answer.)[ 0 -1 1][1 0 1][1 -1 0]

Answers

An orthogonal basis for the column space of the matrix is {v1, v2, v3}: v1 = [0 1/√2 1/√2

We start with the first column of the matrix, which is [0 1 1]ᵀ. We normalize it to obtain the first vector of the orthonormal basis:

v1 = [0 1 1]ᵀ / √(0² + 1² + 1²) = [0 1/√2 1/√2]ᵀ

Next, we project the second column [−1 0 −1]ᵀ onto the subspace spanned by v1:

projv1([−1 0 −1]ᵀ) = (([−1 0 −1]ᵀ ⋅ [0 1/√2 1/√2]ᵀ) / ([0 1/√2 1/√2]ᵀ ⋅ [0 1/√2 1/√2]ᵀ)) [0 1/√2 1/√2]ᵀ = (-1/2) [0 1/√2 1/√2]ᵀ

We then subtract this projection from the second column to obtain the second vector of the orthonormal basis:

v2 = [−1 0 −1]ᵀ - (-1/2) [0 1/√2 1/√2]ᵀ = [-1 1/√2 -3/√2]ᵀ

Finally, we project the third column [1 1 0]ᵀ onto the subspace spanned by v1 and v2:

projv1([1 1 0]ᵀ) = (([1 1 0]ᵀ ⋅ [0 1/√2 1/√2]ᵀ) / ([0 1/√2 1/√2]ᵀ ⋅ [0 1/√2 1/√2]ᵀ)) [0 1/√2 1/√2]ᵀ = (1/2) [0 1/√2 1/√2]ᵀ

projv2([1 1 0]ᵀ) = (([1 1 0]ᵀ ⋅ [-1 1/√2 -3/√2]ᵀ) / ([-1 1/√2 -3/√2]ᵀ ⋅ [-1 1/√2 -3/√2]ᵀ)) [-1 1/√2 -3/√2]ᵀ = (1/2) [-1 1/√2 -3/√2]ᵀ

We subtract these two projections from the third column to obtain the third vector of the orthonormal basis:

v3 = [1 1 0]ᵀ - (1/2) [0 1/√2 1/√2]ᵀ - (1/2) [-1 1/√2 -3/√2]ᵀ = [1/2 -1/√2 1/√2]ᵀ

Therefore, an orthogonal basis for the column space of the matrix is {v1, v2, v3}:

v1 = [0 1/√2 1/√2

Learn more about orthogonal here:

https://brainly.com/question/31046862

#SPJ11

P is a function that gives the cost, in dollars, of mailing a letter from the United States to Mexico in 2018 based on the weight of the letter in ounces,w

Answers

Given that P is a function that gives the cost, in dollars, of mailing a letter from the United States to Mexico in 2018 based on the weight of the letter in ounces, w.In order to write a function, we must find the rate at which the cost changes with respect to the weight of the letter in ounces.

Let C be the cost of mailing a letter from the United States to Mexico in 2018 based on the weight of the letter in ounces, w.Let's assume that the cost C is directly proportional to the weight of the letter in ounces, w.Let k be the constant of proportionality, then we have C = kwwhere k is a constant of proportionality.Now, if the cost of mailing a letter with weight 2 ounces is $1.50, we can find k as follows:1.50 = k(2)⇒ k = 1.5/2= 0.75 Hence, the cost C of mailing a letter from the United States to Mexico in 2018 based on the weight of the letter in ounces, w is given by:C = 0.75w dollars. Answer: C = 0.75w

To know more about weight,visit:

https://brainly.com/question/31659519

#SPJ11

Which table does NOT display exponential behavior

Answers

The table that does not display exponential behavior is:

x  -2   -1   0   1

y  -5   -2   1   4

Exponential behavior is characterized by a constant ratio between consecutive values.

In the given table, the values of y do not exhibit a consistent exponential pattern.

The values of y do not increase or decrease by a constant factor as x changes, which is a characteristic of exponential growth or decay.

In contrast, the other tables show clear exponential behavior.

In table 1, the values of y decrease by a factor of 0.5 as x increases by 1, indicating exponential decay.

In table 2, the values of y increase by a factor of 2 as x increases by 1, indicating exponential growth.

In table 3, the values of y increase rapidly as x increases, showing exponential growth.

Thus, the table IV is not Exponential.

Learn more about Exponential Function here:

https://brainly.com/question/29287497

#SPJ1

From a speed of 114 meters per second, a car begins to decelerate. The rate of deceleration is 6 meters per square second. How many meters does the car travel after 10 seconds? (Do not include units in your answer.) Provide your answer below:

Answers

The car travels 660 meters after 10 seconds of deceleration.

To solve this problem, we can use the formula: distance = initial velocity * time + (1/2) * acceleration * time^2. The initial velocity is 114 m/s, the time is 10 seconds, and the acceleration is -6 m/s^2 (negative because it represents deceleration). Plugging these values into the formula, we get:

distance = 114 * 10 + (1/2) * (-6) * 10^2

distance = 1140 - 300

distance = 840 meters

Therefore, the car travels 840 meters after 10 seconds of deceleration.

Learn more about deceleration here

https://brainly.com/question/28500124

#SPJ11

1. Which circle does the point (-1,1) lie on?


O (X2)2 + (y+6)2 - 25


0 (x-5)2 + (y+2)2 = 25


0 (x2)2 + (y-2)2 = 25


0 (x-2)2 + (y-5)2 = 25

Answers

The given options can be represented in the following general form:

Circle with center (h, k) and radius r is expressed in the form

(x - h)^2 + (y - k)^2 = r^2.

Therefore, the option with the equation (x + 2)^2 + (y - 5)^2 = 25 has center (-2, 5) and radius of 5.

Let us plug in the point (-1, 1) in the equation:

(-1 + 2)^2 + (1 - 5)^2 = 25(1)^2 + (-4)^2 = 25.

Thus, the point (-1, 1) does not lie on the circle

(x + 2)^2 + (y - 5)^2 = 25.

In conclusion, the point (-1, 1) does not lie on the circle

(x + 2)^2 + (y - 5)^2 = 25.

To know more about Circle visit:

https://brainly.com/question/12930236

#SPJ11

Find f(t). ℒ−1 1 (s − 4)3.

Answers

The function f(t) is: f(t) = (1/2) * t^4 e^(4t)

To find f(t), we need to take the inverse Laplace transform of 1/(s-4)^3.

One way to do this is to use the formula:

ℒ{t^n} = n!/s^(n+1)

We can rewrite 1/(s-4)^3 as (1/s) * 1/[(s-4)^3/4^3], and note that this is in the form of a shifted inverse Laplace transform:

ℒ{t^n e^(at)} = n!/[(s-a)^(n+1)]

So, we have a=4 and n=2. Plugging in these values, we get:

f(t) = ℒ^-1{1/(s-4)^3} = 2!/[(s-4)^(2+1)] = 2!/[(s-4)^3] = (2/2!) * ℒ^-1{1/(s-4)^3}

Using the table of Laplace transforms, we see that ℒ{t^2} = 2!/s^3, so we can write:

f(t) = t^2 * ℒ^-1{1/(s-4)^3}

Therefore,

f(t) = t^2 * ℒ^-1{1/(s-4)^3} = t^2 * (2/2!) * ℒ^-1{1/(s-4)^3}

f(t) = t^2 * ℒ^-1{1/(s-4)^3} = t^2 * ℒ^-1{ℒ{t^2}/(s-4)^3}

f(t) = t^2 * ℒ^-1{ℒ{t^2} * ℒ{1/(s-4)^3}}

f(t) = t^2 * ℒ^-1{(2!/s^3) * (1/2) * ℒ{t^2 e^(4t)}}

f(t) = t^2 * ℒ^-1{(1/s^3) * ℒ{t^2 e^(4t)}}

Using the formula for the Laplace transform of t^n e^(at), we have:

ℒ{t^n e^(at)} = n!/[(s-a)^(n+1)]

So, for n=2 and a=4, we have:

ℒ{t^2 e^(4t)} = 2!/[(s-4)^(2+1)] = 2!/[(s-4)^3]

Substituting this back into our expression for f(t), we get:

f(t) = t^2 * ℒ^-1{(1/s^3) * (2!/[(s-4)^3])}

f(t) = t^2 * (1/2) * ℒ^-1{1/(s-4)^3}

f(t) = t^2/2 * ℒ^-1{1/(s-4)^3}

Therefore,

f(t) = t^2/2 * ℒ^-1{1/(s-4)^3} = t^2/2 * t^2 e^(4t)

f(t) = (1/2) * t^4 e^(4t)

So, the function f(t) is:


f(t) = (1/2) * t^4 e^(4t)

To know more about functions refer here :

https://brainly.com/question/30721594#

#SPJ11

Find the values of x, y and z that correspond to the critical point of the function f(x,y) 4x2 + 7x + 6y + 2y?: Enter your answer as a number (like 5, -3, 2.2) or as a calculation (like 5/3, 2^3, 5+4). c= za

Answers

The values of x, y and z that correspond to the critical point of the function f(x,y) 4x2 + 7x + 6y + 2y are  (-7/8, -3/2).

To find the values of x, y, and z that correspond to the critical point of the function f(x, y) = 4x^2 + 7x + 6y + 2y^2, we need to find the partial derivatives with respect to x and y, and then solve for when these partial derivatives are equal to 0.

Step 1: Find the partial derivatives
∂f/∂x = 8x + 7
∂f/∂y = 6 + 4y

Step 2: Set the partial derivatives equal to 0 and solve for x and y
8x + 7 = 0 => x = -7/8
6 + 4y = 0 => y = -3/2

Now, we need to find the value of z using the given equation c = za. Since we do not have any information about c, we cannot determine the value of z. However, we now know the critical point coordinates for the function are (-7/8, -3/2).

Know more about critical point here:

https://brainly.com/question/29144288

#SPJ11

An open-top box with a square bottom and rectangular sides is to have a volume of 256 cubic inches. Find the dimensions that require the minimum amount of material.

Answers

The dimensions that require the minimum amount of material for the open-top box are:

Length = 8 inches, Width = 8 inches, Height = 4 inches.

What are the dimensions for minimizing material usage?

To find the dimensions that minimize the amount of material needed, we can approach the problem by using calculus and optimization techniques. Let's denote the length of the square bottom as "x" inches and the height of the box as "h" inches. Since the volume of the box is given as 256 cubic inches, we have the equation:

Volume = Length × Width × Height = x² × h = 256.

To minimize the material used, we need to minimize the surface area of the box. The surface area consists of the bottom area (x²) and the combined areas of the four sides (4xh). Therefore, the total surface area (A) is given by the equation:

A = x² + 4xh.

We can solve for h in terms of x using the volume equation:

h = 256 / (x²).

Substituting this expression for h in terms of x into the surface area equation, we get:

A = x² + 4x(256 / (x²)).

Simplifying further, we obtain:

A = x² + 1024 / x.

To minimize A, we take the derivative of A with respect to x, set it equal to zero, and solve for x:

dA/dx = 2x - 1024 / x² = 0.

Solving this equation yields x = 8 inches. Plugging this value back into the equation for h, we find h = 4 inches.

Therefore, the dimensions that require the minimum amount of material are: Length = 8 inches, Width = 8 inches, and Height = 4 inches.

Learn more about Optimization techniques

brainly.com/question/28315344

#SPJ11

taking into account also your answer from part (a), find the maximum and minimum values of f subject to the constraint x2 2y2 < 4

Answers

The maximum value of f subject to the constraint x^2 + 2y^2 < 4 is f = 1, and the minimum value is f = -1/2.

To find the maximum and minimum values of f subject to the constraint x^2 + 2y^2 < 4, we need to use Lagrange multipliers.

First, we set up the Lagrange function:
L(x,y,z) = f(x,y) + z(x^2 + 2y^2 - 4)
where z is the Lagrange multiplier.

Next, we find the partial derivatives of L:
∂L/∂x = fx + 2xz = 0
∂L/∂y = fy + 4yz = 0
∂L/∂z = x^2 + 2y^2 - 4 = 0

Solving these equations simultaneously, we get:
fx = -2xz
fy = -4yz
x^2 + 2y^2 = 4

Using the first two equations, we can eliminate z and get:
fx/fy = 1/2y

Substituting this into the third equation, we get:
x^2 + fx^2/(4f^2) = 4/5

This is the equation of an ellipse centered at the origin with semi-axes a = √(4/5) and b = √(4/(5f^2)).
To find the maximum and minimum values of f, we need to find the points on this ellipse that maximize and minimize f.
Since the function f is continuous on a closed and bounded region, by the extreme value theorem, it must have a maximum and minimum value on this ellipse.

To find these values, we can use the first two equations again:
fx/fy = 1/2y

Solving for f, we get:
f = ±sqrt(x^2 + 4y^2)/2

Substituting this into the equation of the ellipse, we get:
x^2/4 + y^2/5 = 1

This is the equation of an ellipse centered at the origin with semi-axes a = 2 and b = sqrt(5).
The points on this ellipse that maximize and minimize f are where x^2 + 4y^2 is maximum and minimum, respectively.
The maximum value of x^2 + 4y^2 occurs at the endpoints of the major axis, which are (±2,0).

At these points, f = ±sqrt(4+0)/2 = ±1.
Therefore, the maximum value of f subject to the constraint x^2 + 2y^2 < 4 is f = 1.
The minimum value of x^2 + 4y^2 occurs at the endpoints of the minor axis, which are (0,±sqrt(5/4)).

At these points, f = ±sqrt(0+5/4)/2 = ±1/2.
Therefore, the minimum value of f subject to the constraint x^2 + 2y^2 < 4 is f = -1/2.

The correct question should be :

Find the maximum and minimum values of the function f subject to the constraint x^2 + 2y^2 < 4.

To learn more about Lagrange function visit : https://brainly.com/question/4609414

#SPJ11

The height of a cylindrical drum of water is 10 cm and the diameter is 14cm. Find the volume of the drum​

Answers

The volume of a cylinder can be calculated using the formula:

V = πr^2h

where V is the volume, r is the radius, and h is the height.

First, we need to find the radius of the drum. The diameter is given as 14 cm, so the radius is half of that, or 7 cm.

Now we can plug in the values:

V = π(7 cm)^2(10 cm)

V = π(49 cm^2)(10 cm)

V = 1,539.38 cm^3 (rounded to two decimal places)

Therefore, the volume of the cylindrical drum of water is approximately 1,539.38 cubic centimeters.

Suppose that 650 lb of coffee are sold when the price is $4 per pound, and 400 lb are sold at $8 per pound

Answers

The average price per pound for all the coffee sold is $5.52 per pound, when 650 lb of coffee are sold when the price is $4 per pound, and 400 lb are sold at $8 per pound.

Suppose that 650 lb of coffee are sold when the price is $4 per pound, and 400 lb are sold at $8 per pound. We have to find the average price per pound for all the coffee sold.

Average price is equal to the total cost of coffee sold divided by the total number of pounds sold. We can use the following formula:

Average price per pound = (total revenue / total pounds sold)

In this case, the total revenue is the sum of the revenue from selling 650 pounds at $4 per pound and the revenue from selling 400 pounds at $8 per pound. That is:

total revenue = (650 lb * $4/lb) + (400 lb * $8/lb)

= $2600 + $3200

= $5800

The total pounds sold is simply the sum of 650 pounds and 400 pounds, which is 1050 pounds. That is:

total pounds sold = 650 lb + 400 lb

= 1050 lb

Using the formula above, we can calculate the average price per pound:

Average price per pound = total revenue / total pounds sold= $5800 / 1050

lb= $5.52 per pound

Therefore, the average price per pound for all the coffee sold is $5.52 per pound, when 650 lb of coffee are sold when the price is $4 per pound, and 400 lb are sold at $8 per pound.

To know more about average price visit:

https://brainly.com/question/3308839

#SPJ11

The melting point of each of 16 samples of a certain brand of hydrogenated vegetable oil was determined, resulting in xbar = 94.32. Assume that the distribution of melting point is normal with sigma = 1.20.
a.) Test H0: µ=95 versus Ha: µ != 95 using a two-tailed level of .01 test.
b.) If a level of .01 test is used, what is B(94), the probability of a type II error when µ=94?
c.) What value of n is necessary to ensure that B(94)=.1 when alpha = .01?

Answers

a) We can conclude that there is sufficient evidence to suggest that the true mean melting point of the samples is different from 95 at a significance level of .01.

b) If the true population mean melting point is actually 94, there is a 18% chance of failing to reject the null hypothesis when using a two-tailed test with a significance level of .01.

c) The population standard deviation is σ = 1.20.

a) To test the hypothesis H0: µ = 95 versus Ha: µ ≠ 95, we can use a two-tailed t-test with a significance level of .01. Since we have 16 samples and the population standard deviation is known, we can use the following formula to calculate the test statistic:

t = (xbar - μ) / (σ / sqrt(n))

where xbar = 94.32, μ = 95, σ = 1.20, and n = 16.

Plugging in the values, we get:

t = (94.32 - 95) / (1.20 / sqrt(16)) = -2.67

The degrees of freedom for this test is n-1 = 15. Using a t-distribution table with 15 degrees of freedom and a two-tailed test with a significance level of .01, the critical values are ±2.947. Since our calculated t-value (-2.67) is within the critical region, we reject the null hypothesis.

Therefore, we can conclude that there is sufficient evidence to suggest that the true mean melting point of the samples is different from 95 at a significance level of .01.

b) To calculate the probability of a type II error when µ = 94, we need to determine the non-rejection region for the null hypothesis. Since this is a two-tailed test with a significance level of .01, the rejection region is divided equally into two parts, with α/2 = .005 in each tail. Using a t-distribution table with 15 degrees of freedom and a significance level of .005, the critical values are ±2.947.

Assuming that the true population mean is actually 94, the probability of observing a sample mean in the non-rejection region is the probability that the sample mean falls between the critical values of the non-rejection region. This can be calculated as:

B(94) = P( -2.947 < t < 2.947 | μ = 94)

where t follows a t-distribution with 15 degrees of freedom and a mean of 94.

Using a t-distribution table or a statistical software, we can find that B(94) is approximately 0.18.

Therefore, if the true population mean melting point is actually 94, there is a 18% chance of failing to reject the null hypothesis when using a two-tailed test with a significance level of .01.

c) To find the sample size necessary to ensure that B(94) = .1 when α = .01, we can use the following formula:

n = ( (zα/2 + zβ) * σ / (μ0 - μ1) )^2

where zα/2 is the critical value of the standard normal distribution at the α/2 level of significance, zβ is the critical value of the standard normal distribution corresponding to the desired level of power (1 - β), μ0 is the null hypothesis mean, μ1 is the alternative hypothesis mean, and σ is the population standard deviation.

In this case, α = .01, so zα/2 = 2.576 (from a standard normal distribution table). We want B(94) = .1, so β = 1 - power = .1, and zβ = 1.28 (from a standard normal distribution table). The null hypothesis mean is μ0 = 95 and the alternative hypothesis mean is μ1 = 94. The population standard deviation is σ = 1.20.

Plugging in the values, we get:

n = ( (2.576 + 1.28) * 1.20 / (95 - 94) )

Learn more about melting point   here:

https://brainly.com/question/29578567

#SPJ11

A bag of pennies weighs 711.55 grams. Each penny weighs 3.5 grams. About how many pennies are in the bag? *

Answers

Therefore, there are about 203 pennies in the bag. This is a 90-word long answer. If you need to provide a 250-word answer, you can expand the explanation by discussing the weight and denomination of pennies, their history, and their use.

To find out the number of pennies in a bag that weighs 711.55 grams, we need to divide the total weight by the weight of each penny. We know that each penny weighs 3.5 grams,

therefore: Number of pennies = Total weight of bag / Weight of one penny= 711.55 / 3.5 = 203.015 ≈ 203 (rounded to the nearest whole number)

Therefore, there are about 203 pennies in the bag. To summarize the answer in a long answer format, we can write: We can find the number of pennies in the bag by dividing the total weight of the bag by the weight of each penny. Given that each penny weighs 3.5 grams, we can find out the number of pennies by dividing 711.55 grams by 3.5 grams.

Therefore, Number of pennies = Total weight of bag / Weight of one penny= 711.55 / 3.5 = 203.015 ≈ 203 (rounded to the nearest whole number)

Therefore, there are about 203 pennies in the bag. This is a 90-word long answer. If you need to provide a 250-word answer, you can expand the explanation by discussing the weight and denomination of pennies, their history, and their use.

To know more about number visit:

https://brainly.com/question/3589540

#SPJ11

Explicit formulas for compositions of functions. The domain and target set of functions f, g, and h are Z. The functions are defined as: . . f(x) = 2x + 3 g(x) = 5x + 7 h(x) = x2 + 1 = . Give an explicit formula for each function given below. (a) fog (b) gof (C) foh (d) hof

Answers

Explicit formulas are mathematical expressions that represent a function or relationship between variables in a direct and clear way, without the need for further calculations or interpretation.

To find the explicit formulas for the compositions of the given functions, we need to substitute the function inside the other function and simplify:

(a) fog(x) = f(g(x)) = f(5x + 7) = 2(5x + 7) + 3 = 10x + 17

So the explicit formula for fog(x) is 10x + 17.

(b) gof(x) = g(f(x)) = g(2x + 3) = 5(2x + 3) + 7 = 10x + 22

So the explicit formula for gof(x) is 10x + 22.

(c) foh(x) = f(h(x)) = f(x^2 + 1) = 2(x^2 + 1) + 3 = 2x^2 + 5

So the explicit formula for foh(x) is 2x^2 + 5.

(d) hof(x) = h(f(x)) = h(2x + 3) = (2x + 3)^2 + 1 = 4x^2 + 12x + 10

So the explicit formula for hof(x) is 4x^2 + 12x + 10.

To learn more about mathematical visit:

brainly.com/question/27235369

#SPJ11

Consider a modified random walk on the integers such that at each hop, movement towards the origin is twice as likely as movement away from the origin. 2/3 2/3 2/3 2/3 2/3 2/3 Co 1/3 1/3 1/3 1/3 1/3 1/3 The transition probabilities are shown on the diagram above. Note that once at the origin, there is equal probability of staying there, moving to +1 or moving to -1. (i) Is the chain irreducible? Explain your answer. (ii) Carefully show that a stationary distribution of the form Tk = crlkl exists, and determine the values of r and c. (iii) Is the stationary distribution shown in part (ii) unique? Explain your answer.

Answers

(i) The chain is not irreducible because there is no way to get from any positive state to any negative state or vice versa.

(ii) The stationary distribution has the form πk = c(1/4)r|k|, where r = 2 and c is a normalization constant.

(iii) The stationary distribution is not unique.

(i) The chain is not irreducible because there is no way to get from any positive state to any negative state or vice versa. For example, there is no way to get from state 1 to state -1 without first visiting the origin, and the probability of returning to the origin from state 1 is less than 1.

(ii) To find a stationary distribution, we need to solve the equations πP = π, where π is the stationary distribution and P is the transition probability matrix. We can write this as a system of linear equations and solve for the values of the constant r and normalization constant c.

We can see that the stationary distribution has the form πk = c(1/4)r|k|, where r = 2 and c is a normalization constant.

(iii) The stationary distribution is not unique because there is a free parameter c, which can be any positive constant. Any multiple of the stationary distribution is also a valid stationary distribution.

Therefore, the correct answer for part (i) is that the chain is not irreducible, and the correct answer for part (ii) is that a stationary distribution of the form πk = c(1/4)r|k| exists with r = 2 and c being a normalization constant. Finally, the correct answer for part (iii) is that the stationary distribution is not unique because there is a free parameter c.

Learn more about stationary distribution:

https://brainly.com/question/23858250

#SPJ11

linear algebra put a into the form psp^-1 where s is a scaled rotation matrix

Answers

We can write A as A = PSP^-1, where S is a scaled rotation matrix and P is an orthogonal matrix.

To put a matrix A into the form PSP^-1, where S is a scaled rotation matrix, we can use the Spectral Theorem which states that a real symmetric matrix can be diagonalized by an orthogonal matrix P, i.e., A = PDP^T where D is a diagonal matrix.

Then, we can factorize D into a product of a scaling matrix S and a rotation matrix R, i.e., D = SR, where S is a diagonal matrix with positive diagonal entries, and R is an orthogonal matrix representing a rotation.

Therefore, we can write A as A = PDP^T = PSRP^T.

Taking S = P^TDP, we can write A as A = P(SR)P^-1 = PSP^-1, where S is a scaled rotation matrix and P is an orthogonal matrix.

The steps involved in finding the scaled rotation matrix S and the orthogonal matrix P are:

Find the eigenvalues λ_1, λ_2, ..., λ_n and corresponding eigenvectors x_1, x_2, ..., x_n of A.

Construct the matrix P whose columns are the eigenvectors x_1, x_2, ..., x_n.

Construct the diagonal matrix D whose diagonal entries are the eigenvalues λ_1, λ_2, ..., λ_n.

Compute S = P^TDP.

Compute the scaled rotation matrix S by dividing each diagonal entry of S by its absolute value, i.e., S = diag(|S_1,1|, |S_2,2|, ..., |S_n,n|).

Finally, compute the matrix P^-1, which is equal to P^T since P is orthogonal.

Then, we can write A as A = PSP^-1, where S is a scaled rotation matrix and P is an orthogonal matrix.

To know more about  orthogonal matrix refer here:

https://brainly.com/question/31629623

#SPJ11

7. compute the surface area of the portion of the plane 3x 2y z = 6 that lies in the rst octant.

Answers

The surface area of the portion of the plane 3x + 2y + z = 6 that lies in the first octant is 2√14.

The surface area of the portion of the plane 3x + 2y + z = 6 that lies in the first octant can be found by computing the surface integral of the constant function f(x,y,z) = 1 over the portion of the plane in the first octant.

We can parameterize the portion of the plane in the first octant using two variables, say u and v, as follows:

x = u

y = v

z = 6 - 3u - 2v

The partial derivatives with respect to u and v are:

∂x/∂u = 1, ∂x/∂v = 0

∂y/∂u = 0, ∂y/∂v = 1

∂z/∂u = -3, ∂z/∂v = -2

The normal vector to the plane is given by the cross product of the partial derivatives with respect to u and v:

n = ∂x/∂u × ∂x/∂v = (-3, -2, 1)

The surface area of the portion of the plane in the first octant is then given by the surface integral:

∫∫ ||n|| dA = ∫∫ ||∂x/∂u × ∂x/∂v|| du dv

Since the function f(x,y,z) = 1 is constant, we can pull it out of the integral and just compute the surface area of the portion of the plane in the first octant:

∫∫ ||n|| dA = ∫∫ ||∂x/∂u × ∂x/∂v|| du dv = ∫0^2 ∫0^(2-3/2u) ||(-3,-2,1)|| dv du

Evaluating the integral, we get:

∫∫ ||n|| dA = ∫0^2 ∫0^(2-3/2u) √14 dv du = ∫0^2 (2-3/2u) √14 du = 2√14

Therefore, the surface area of the portion of the plane 3x + 2y + z = 6 that lies in the first octant is 2√14.

Learn more about surface area here

https://brainly.com/question/28776132

#SPJ11

Find the area in the right tail more extreme than z = 2.25 in a standard normal distribution Round your answer to three decimal places. Area Find the area in the right tail more extreme than = -1.23 in a standard normal distribution Round your answer to three decimal places Area Find the area in the right tail more extreme than z = 2.25 in a standard normal distribution. Round your answer to three decimal places. Area = i

Answers

The area in the right tail more extreme than z = -1.23 is approximately 0.891.

To find the area in the right tail more extreme than z = 2.25 in a standard normal distribution, we can use a standard normal distribution table or a calculator.

Using a calculator, we can use the standard normal cumulative distribution function (CDF) to find the area:

P(Z > 2.25) = 1 - P(Z ≤ 2.25) ≈ 0.0122

Rounding to three decimal places, the area in the right tail more extreme than z = 2.25 is approximately 0.012.

To find the area in the right tail more extreme than z = -1.23 in a standard normal distribution, we can again use a calculator:

P(Z > -1.23) = 1 - P(Z ≤ -1.23) ≈ 0.8907

Rounding to three decimal places, the area in the right tail more extreme than z = -1.23 is approximately 0.891.

To know more about cumulative distribution refer to-

https://brainly.com/question/30402457

#SPJ11

My Notes Ask Your Teacher (a) Find parametric equations for the line through (1, 3, 4) that is perpendicular to the plane x-y + 2z 4, (Use the parameter t.) )13-12-4 (b) In what points does this line intersect the coordinate planes? xy-plane (x, y, z)-((-1,5,0)|x ) yz-plane (x, y, z)- xz-plane x, 9+ Need Help? Read it Talk to a Tutor Submit Answer Save Progress Practice Another Version

Answers

Parametric equations for the line through (1, 3, 4) that is perpendicular to the plane x-y+2z=4 are:

x = 1 + 2t

y = 3 - t

z = t

We know that the direction vector of the line should be perpendicular to the normal vector of the plane. The normal vector of the plane x-y+2z=4 is <1, -1, 2>. Thus, the direction vector of our line should be parallel to the vector <1, -1, 2>.

Let the line pass through the point (1, 3, 4) and have the direction vector <1, -1, 2>. We can write the parametric equations of the line as:

x = 1 + at

y = 3 - bt

z = 4 + c*t

where (a, b, c) is the direction vector of the line. Since the line is perpendicular to the plane, we can set up the following equation:

1a - 1b + 2*c = 0

which gives us a = 2, b = -1, and c = 1.

Substituting these values in the parametric equations, we get:

x = 1 + 2t

y = 3 - t

z = t

To find the intersection of the line with the xy-plane, we set z=0 in the parametric equations, which gives us x=1+2t and y=3-t. Solving for t, we get (1/2, 5/2, 0). Therefore, the line intersects the xy-plane at the point (1/2, 5/2, 0).

Similarly, we can find the intersection points with the yz-plane and xz-plane by setting x=0 and y=0 in the parametric equations, respectively. We get the intersection points as (-1, 5, 0) and (9, 0, 3), respectively.

For more questions like Vector click the link below:

https://brainly.com/question/29740341

#SPJ11

The inverse of f(x)=1+log2(x) can be represented by the table displayed.

Answers

The inverse of the function f(x) = 1 + log2(x) can be represented by the given table. The table shows the values of x and the corresponding values of the inverse function f^(-1)(x).

To find the inverse of a function, we switch the roles of x and y and solve for y. In this case, the function f(x) = 1 + log2(x) is given, and we want to find its inverse.

The table represents the values of x and the corresponding values of the inverse function f^(-1)(x). Each value of x in the table is plugged into the function f(x), and the resulting value is recorded as the corresponding value of f^(-1)(x).

For example, if the table shows x = 2, we can calculate f(2) = 1 + log2(2) = 2, which means that f^(-1)(2) = 2. Similarly, for x = 4, f(4) = 1 + log2(4) = 3, so f^(-1)(3) = 4.

By constructing the table with different values of x, we can determine the corresponding values of the inverse function f^(-1)(x) and represent the inverse function in tabular form.

Learn more about inverse here:

https://brainly.com/question/30339780

#SPJ11

When government spending increases by $5 billion and the MPC = .8, in the first round of the spending multiplier process a. spending decreases by $5 billion b. spending increases by $25 billion c. spending increases by $5 billion d. spending increases by $4 billion

Answers


When government spending increases by $5 billion and the MPC = .8, in the first round of the spending multiplier process, spending increases by $20 billion.


The spending multiplier is the amount by which GDP will increase for each unit increase in government spending. It is calculated as 1/(1-MPC), where MPC is the marginal propensity to consume. In this case, MPC = .8, so the spending multiplier is 1/(1-.8) = 5.

Therefore, when government spending increases by $5 billion, the total increase in spending in the economy will be $5 billion multiplied by the spending multiplier of 5, which equals $25 billion. However, the initial increase in spending is only $5 billion, hence the increase in the first round of the spending multiplier process is $20 billion.

In summary, when government spending increases by $5 billion and the MPC = .8, the initial increase in spending is $5 billion, but the total increase in the first round of the spending multiplier process is $20 billion.

To know more about marginal propensity to consume visit:

https://brainly.com/question/31517852

#SPJ11

consider the function f(x)=2x^3 18x^2-162x 5, -9 is less than or equal to x is less than or equal to 4. this function has an absolute minimum value equal to

Answers

The function f(x)=2x³ 18x²-162x 5, -9 is less than or equal to x is less than or equal to 4, has an absolute minimum value of -475 at x = -9.

What is the absolute minimum value of the function f(x) = 2x³ + 18x² - 162x + 5, where -9 ≤ x ≤ 4?

To find the absolute minimum value of the function, we need to find all the critical points and endpoints in the given interval and then evaluate the function at each of those points.

First, we take the derivative of the function:

f'(x) = 6x² + 36x - 162 = 6(x² + 6x - 27)

Setting f'(x) equal to zero, we get:

6(x² + 6x - 27) = 0

Solving for x, we get:

x = -9 or x = 3

Next, we need to check the endpoints of the interval, which are x = -9 and x = 4.

Now we evaluate the function at each of these critical points and endpoints:

f(-9) = -475f(3) = -405f(4) = 1825

Therefore, the absolute minimum value of the function is -475, which occurs at x = -9.

Learn more about derivative

brainly.com/question/30365299

#SPJ11

for what points (x0,y0) does theorem a imply that this problem has a unique solution on some interval |x − x0| ≤ h?

Answers

The theorem that we are referring to is likely a theorem related to the existence and uniqueness of solutions to differential equations.

When we say that theorem a implies that the problem has a unique solution on some interval |x − x0| ≤ h, we mean that the conditions of the theorem guarantee the existence of a solution that is unique within that interval. The point (x0, y0) likely represents an initial condition that is necessary for solving the differential equation. It is possible that the theorem requires the function to be continuous and/or differentiable within the interval, and that the initial condition satisfies certain conditions as well. Essentially, the theorem provides us with a set of conditions that must be satisfied for there to be a unique solution to the differential equation within the given interval.
Theorem A implies that a unique solution exists for a problem on an interval |x-x0| ≤ h for the points (x0, y0) if the following conditions are met:
1. The given problem can be expressed as a first-order differential equation of the form dy/dx = f(x, y).
2. The functions f(x, y) and its partial derivative with respect to y, ∂f/∂y, are continuous in a rectangular region R, which includes the point (x0, y0).
3. The point (x0, y0) is within the specified interval |x-x0| ≤ h.
If these conditions are fulfilled, then Theorem A guarantees that the problem has a unique solution on the given interval |x-x0| ≤ h.

To know more about derivative visit:

https://brainly.com/question/30365299

#SPJ11

In spite of the potential safety hazards, some people would like to have an Internet connection in their car. A preliminary survey of adult Americans has estimated this proportion to be somewhere around 0. 30.



Required:


a. Use the given preliminary estimate to determine the sample size required to estimate this proportion with a margin of error of 0. 1.


b. The formula for determining sample size given in this section corresponds to a confidence level of 95%. How would you modify this formula if a 99% confidence level was desired?


c. Use the given preliminary estimate to determine the sample size required to estimate the proportion of adult Americans who would like an Internet connection in their car to within. 02 with 99% confidence.

Answers

The sample size required to estimate the proportion of adult Americans who would like an Internet connection in their car with a margin of error of 0.1, a confidence level of 95%, and a preliminary estimate of 0.30 needs to be determined.

Additionally, the modification needed to calculate the sample size for a 99% confidence level is discussed, along with the calculation for estimating the proportion within 0.02 with 99% confidence.

To determine the sample size required to estimate the proportion with a margin of error of 0.1 and a confidence level of 95%, the given preliminary estimate of 0.30 is used. By plugging in the values into the formula for sample size determination, we can calculate the sample size needed.

To modify the formula for a 99% confidence level, the critical value corresponding to the desired confidence level needs to be used. The formula remains the same, but the critical value changes. By using the appropriate critical value, we can calculate the modified sample size for a 99% confidence level.

For estimating the proportion within 0.02 with 99% confidence, the preliminary estimate of 0.30 is again used. By substituting the values into the formula, we can determine the sample size required to achieve the desired level of confidence and margin of error.

Calculating the sample size ensures that the estimated proportion of adult Americans wanting an Internet connection in their car is accurate within the specified margin of error and confidence level, allowing for more reliable conclusions.

Learn more about sample size  here:

https://brainly.com/question/31734526

#SPJ11

Which function displays the fastest growth as the x- values continue to increase? f(c), g(c), h(x), d(x)

Answers

h(x) displays the fastest growth as the x-values continue to increase. The answer is h(x).

In order to determine the function which displays the fastest growth as the x-values continue to increase, let us find the rate of growth of each function. For this, we will find the derivative of each function. The function which has the highest value of the derivative, will have the fastest rate of growth.

The given functions are:

f(c)g(c)h(x)d(x)The derivatives of each function are:

f'(c) = 2c + 1g'(c) = 4ch'(x) = 10x + 2d'(x) = x³ + 3x²

Now, let's evaluate each derivative at x = 1:

f'(1) = 2(1) + 1 = 3g'(1) = 4(1) = 4h'(1) = 10(1) + 2 = 12d'(1) = (1)³ + 3(1)² = 4

We observe that the derivative of h(x) has the highest value among all four functions. Therefore, h(x) displays the fastest growth as the x-values continue to increase. The answer is h(x).

To know more about growth visit:

https://brainly.com/question/28789953

#SPJ11

Rewrite the biconditional statement to make it valid. ""A quadrilateral is a square if and only if it has four right angles. ""

Answers

The revised biconditional statement is “A quadrilateral has four right angles if and only if it is a square”. This is true because any quadrilateral with four right angles will always be a square. Hence, the revised biconditional statement is valid.

The statement “A quadrilateral is a square if and only if it has four right angles” is a biconditional statement. A biconditional statement is a combination of two conditionals connected by the phrase “if and only if”.For a biconditional statement to be valid, both the conditional statements should be true. In the given biconditional statement, “a quadrilateral is a square if it has four right angles” is true.

However, the statement “a quadrilateral with four right angles is a square” is not always true. This is because there are other quadrilaterals that have four right angles but are not squares.To make the given biconditional statement valid, we need to rewrite the second conditional statement so that it is also true.

This can be done by using the converse of the first conditional statement.

Therefore, the revised biconditional statement is “A quadrilateral has four right angles if and only if it is a square”. This is true because any quadrilateral with four right angles will always be a square. Hence, the revised biconditional statement is valid.

Know more about biconditional here,

https://brainly.com/question/27738859

#SPJ11

Find the largest open intervals where the function is concave upward. f(x) = x^2 + 2x + 1 f(x) = 6/X f(x) = x^4 - 6x^3 f(x) = x^4 - 8x^2 (exact values)

Answers

Therefore, the largest open intervals where each function is concave upward are:  f(x) = x^2 + 2x + 1: (-∞, ∞),  f(x) = 6/x: (0, ∞), f(x) = x^4 - 6x^3: (3, ∞),  f(x) = x^4 - 8x^2: (-∞, -√3) and (√3, ∞)

To find where the function is concave upward, we need to find where its second derivative is positive.

For f(x) = x^2 + 2x + 1, we have f''(x) = 2, which is always positive, so the function is concave upward on the entire real line.

For f(x) = 6/x, we have f''(x) = 12/x^3, which is positive on the interval (0, ∞), so the function is concave upward on this interval.

For f(x) = x^4 - 6x^3, we have f''(x) = 12x^2 - 36x, which is positive on the interval (3, ∞), so the function is concave upward on this interval.

For f(x) = x^4 - 8x^2, we have f''(x) = 12x^2 - 16, which is positive on the intervals (-∞, -√3) and (√3, ∞), so the function is concave upward on these intervals.

To learn more about function visit:

brainly.com/question/12431044

#SPJ11

let = 2 → 2 be a linear transformation such that (1, 2) = (1 2, 41 52). find x such that () = (3,8).

Answers

To solve for x in the given equation, we need to use the matrix representation of the linear transformation.

Let A be the matrix that represents the linear transformation 2 → 2. Since we know that (1, 2) is mapped to (1 2, 41 52), we can write:

A * (1, 2) = (1 2, 41 52)

Expanding the matrix multiplication, we get:

[ a b ] [ 1 ] = [ 1 ]
[ c d ] [ 2 ]   [ 41 ]
            [ 52 ]

This gives us the following system of equations:

a + 2b = 1
c + 2d = 41
a + 2c = 2
b + 2d = 52

Solving this system of equations, we get:

a = -39/2
b = 40
c = 41/2
d = 5

Now, we can use the matrix A to find the image of (3,8) under the linear transformation:

A * (3,8) = [ -39/2 40 ] [ 3 ] = [ -27 ]
            [ 41/2  5 ] [ 8 ]   [ 206 ]

Therefore, x = (-27, 206).

Learn more about matrix multiplication: https://brainly.com/question/11989522

#SPJ11

Other Questions
A 5-year treasury bond with a coupon rate of 8% has a face value of $1000. What is the semi-annual interest payment? Annual interest payment = 1000(0.08) = $80; Semi-annual payment = 80/2 = $40 The price of a stock is $50. In three months, it will either be $47 or $52, with equal probability.a. How much would you pay for an at the end money put option, i.e., a 3-month European-like put option with strike K = $50? Assume for simplicity that the stock pays no dividends and the interest rates are zero.b.Does the value of the put increase or decrease, and by how much, if the probability of the stock going up to $52 were 75% and the probability of the stock going down to $40 were 25%? TRUE OR FALSE A C++ switch allow more than one case to be executed. find the length of parametrized curve given by x(t)=12t224t,y(t)=4t3 12t2 x(t)=12t224t,y(t)=4t3 12t2 where tt goes from 00 to 11. Develop and list 7-10 in-depth questions and/or requests for additional information that you would ask the CFO to provide in order to clarify the financial statement data that you read over. Identify strategies for setting goals when developing a personal fitness program. Which of these is a component of an emotional goal?A. Sticking to a nutrition planB. Journaling about goalsC. Joining a ClubD. Studying sports What is the proper coefficient for water when the following equation is completed and balanced for the reaction in basic solution?C2O4^2- (aq) + MnO4^- (aq) --> CO3^2- (aq) + MnO2 (s) 2. (a) analyze explain how the poet uses both metaphor andpersonification in lines 6-7 of "courage." (b) interpret what is the purposeand effect of that language? explain,i What type of entries would close the budgetary and actual accounts? Which experimental design involves manipulation of the independent variable and random assignment of participants to groups?a. True Experimentalb. Non-Experimentalc. Semi-Experimentald. Quasi-Experimental Read the passages. Which statement accurately compares the two plays? In both plays, characters marry people they do not love. Both plays explore the difficulties of caring for older parents. In both plays, money plays an important role in the arrangement of marriages. Both plays include characters who lose their wealth very suddenly. Which region has become Washington States population center due in part to the miles of bays that shape its coastline and the areas shipping industry? Which detail best develops the central idea in the text? About the Hubble Space Telescope adapted excerpt from NASA and Space Telescope Science Institute Orbiting 360 miles above Earth, the Hubble Space Telescope is positioned high above the blurring effects of the atmosphere. From this vantage point, it captures images with 10 times the typical clarity of any ground-based telescope and views not only visible light but also wavelengths of near-infrared and ultraviolet light that cannot reach Earth's surface. To operate from orbit, the observatory works like any other scientific or imaging spacecraft; it converts the optical data it collects into electrical signals that are transmitted back to Earth. It must also withstand the airless, high-radiation, and harsh thermal environment of space. Unlike most other spacecraft, however, Hubble was designed to be serviced periodically by astronauts and so was built with modular components that are astronaut-friendly to handle and replace. This design strategy has enabled it to operate longer than ordinary spacecraft and to benefit from the technological advancements of the last two decades. Astronauts have visited the telescope five times to upgrade its computers, mechanisms, and instruments. These servicing missions have kept the observatory at the forefront of discovery by providing it with increasingly sensitive and accurate components. The last of these servicing calls was in May 2009. Which number is the same as 2.510-3? Galileo's Telescope Galileo's first telescope used a convex objective lens with a focal length f=1.7m and a concave eyepiece, as shown in the figure. (Figure 1)When this telescope is focused on an infinitely distant object, and produces an infinitely distant image, its angular magnification is +3.0.A. What is the focal length of the eyepiece? in cmb.How far apart are the two lenses? in mExpress your answer using two significant figures. any debts or damages incurred by a firm organized as a sole proprietorship are The distance between the school and the park is 6 km. There are 1. 6 km in a mile. How many miles apart are the school and the park what will be the main cyclic product of an intramolecular aldol condensation of this molecule? Ch-Sup01 Determine 60.H7/p6a. If this fit specification is shaft based or hole based. b. If this is a clearance, transitional or interference fit. c. Using ASME B4.2, find the hole and shaft sizes with upper and lower limits. Too Big to Fail and banks' ability to create money Consider the following dialog between Frances, a student studying a chapter on "Money and the Banking system and Carlos, her teaching assistant. FRANCES: Hi Carlos. Before I begin my homework, I'd like to make sure that I understand how banks create money. FRANCES: I'm glad you asked this question I Frances. When began studying money and banking, I was fascinated by the banks' ability to create money. It does look like a trick when banks use excess reserves to lend money, and thus increase their assets. Borrowers then deposit new loans which increases both bank deposits and excess reserves. This process is called deposit expansion. As a result, the money supply will increase. CARLOS By the same logic when required reserves fall, banks granting new loans, which causes to decrease. This process is called As a result, the money supply will decrease. FRANCES: I also wanted to ask you about the "too big to fail" notion. What does it entail? I had a feeling that during the lecture our professor criticized big banks but I have always thought that big banks are more reliable than small banks. My parents, for example, have always preferred a big bank operating at a national level over a small local bank.