Predict which element in each of the following pairs is more electronegative according to the general trends in the periodic table.Se or Bra. Seb. Br

Answers

Answer 1

a. Based on the general trends in the periodic table, bromine (Br) is more electronegative than selenium (Se). Electronegativity generally increases as you move from left to right across a period and from bottom to top in a group on the periodic table. Bromine is located to the right of selenium in the same period, so it has a higher electronegativity.

b. Selenium (Se) is less electronegative than bromine (Br). As mentioned earlier, electronegativity generally increases from left to right across a period on the periodic table. Therefore, since bromine is to the right of selenium in the periodic table, it has a higher electronegativity than selenium.

Answer 2

The electronegativity of an element refers to its ability to attract electrons toward itself when it is involved in a chemical bond. The more electronegative element in each pair is:

a. Br
b. Se

Electronegativity increases as you move across a period from left to right and decreases as you move down a group in the periodic table. Looking at the given pairs of elements, we can predict which element is more electronegative according to these trends.

a. Se or Br: Se is located to the left of Br on the periodic table, so we can expect Se to be less electronegative than Br. Therefore, Br is the more electronegative element in this pair.
b. Se or B: Se and B are not in the same group or period on the periodic table. However, we can still predict that Se is more electronegative than B based on their relative positions on the periodic table. Se is located below B, meaning it has more energy levels and a greater atomic radius than B. As a result, Se has a higher electronegativity than B.

To determine which element is more electronegative between Se (selenium) and Br (bromine), we need to look at their positions in the periodic table. Se is in Group 16, Period 4, while Br is in Group 17, Period 4. Electronegativity increases as we move from left to right across a period and decreases as we move down a group. Therefore, Br (bromine) is more electronegative than Se (selenium).

Se or Br:
Since this pair is the same as in part (a), the answer remains the same. Br (bromine) is more electronegative than Se (selenium) according to the general trends in the periodic table.

In summary, Br (bromine) is more electronegative than Se (selenium) in both pairs, as it is further to the right and in the same period on the periodic table.

Learn more about Electronegativity

at https://brainly.com/question/14031645

#SPJ11


Related Questions

12. what is the ratio kc/kp for the following reaction at 723 °c? o2(g) 3 uo2cl2(g) ⇌ u3o8(s) 3 cl2(g) a) 0.0122 b) 1.00 c) 59.4 d) 81.7

Answers

The ratio of the rate constants for the forward and reverse reactions, known as the equilibrium the answer is (d) 81.7. constant (K), is given by:K = k_forward / k_reverse  the answer is (d) 81.7.

At equilibrium, the concentration of reactants and products no longer change with time. This means that the amount of reactants being converted to products is exactly balanced by the amount of products being converted back to reactants.The equilibrium state can be described by the equilibrium constant, K, which is a measure of the relative amounts of products and reactants at equilibrium. The equilibrium constant is determined by the concentrations of the reactants and products at equilibrium, and it is a constant value for a given reaction at a specific temperature.The equilibrium constant expression for a reaction is derived from the balanced chemical equation and the law of mass action. It relates the concentrations of the reactants and products at equilibrium, raised to their stoichiometric coefficients, and can be written in terms of concentrations (Kc) or pressures (Kp) for gaseous reactions.A reaction can be driven towards the product side or the reactant side by changing the concentration, pressure, or temperature of the system. Le Chatelier's principle provides a useful guide for predicting the effect of such changes on the equilibrium position of a reaction.

To know more about equilibrium visit :

https://brainly.com/question/30807709

#SPJ11

From the given empirical formula and molar mass, find the molecular formula of each compound.Part A:C6H7N , 372.54 g/molExpress your answer as a chemical formulaPart B:C2HCl , 181.42 g/molExpress your answer as a chemical formula.Part C:C5H10NS2 , 593.13 g/molExpress your answer as a chemical formula

Answers

The empirical formula mass of [tex]C_6H_7N[/tex] is 93.13 g/mol. The molar mass of the compound is 372.54 g/mol. Thus, the molecular formula of the compound is ([tex]C_6H_7N[/tex][tex])^4[/tex].

To find the molecular formula of a compound from its empirical formula and molar mass, we need to determine the factor by which the empirical formula must be multiplied to obtain the actual number of atoms of each element in the compound.

This factor is calculated by dividing the molar mass by the empirical formula mass.

For Part A, the empirical formula mass of [tex]C_6H_7N[/tex] is 93.13 g/mol, and the molar mass is 372.54 g/mol.

Therefore, the factor is 4, and the molecular formula is ([tex]C_6H_7N[/tex][tex])^4[/tex]

Similarly, for Part B, the empirical formula mass of [tex]C_2HCl[/tex] is 63.48 g/mol, and the factor is 2.86, so the molecular formula is C5H14Cl2.

For Part C, the empirical formula mass of [tex]C_5H_1_0NS_2[/tex] is 162.31 g/mol, and the factor is 3.65, so the molecular formula is [tex]C_1_8H_3_3N_3S_6[/tex].

For more such questions on empirical, click on:

https://brainly.com/question/1603500

#SPJ11

Part A: The empirical formula of C6H7N has a molar mass of 93.13 g/mol.

To find the molecular formula, we need to determine the factor by which we need to multiply the empirical formula to get the molar mass. Molecular mass/empirical mass = 372.54 g/mol / 93.13 g/mol = 4 Therefore, the molecular formula of the compound is (C6H7N)4, which simplifies to C24H28N4.

Part B: The empirical formula of C2HCl has a molar mass of 65.47 g/mol. To find the molecular formula, we need to determine the factor by which we need to multiply the empirical formula to get the molar mass. Molecular mass/empirical mass = 181.42 g/mol / 65.47 g/mol = 2.77 Rounding this factor to the nearest whole number, we get 3. Therefore, the molecular formula of the compound is (C2HCl)3, which simplifies to C6H3Cl3.

Part C: The empirical formula of C5H10NS2 has a molar mass of 162.30 g/mol. To find the molecular formula, we need to determine the factor by which we need to multiply the empirical formula to get the molar mass.

Molecular mass/empirical mass = 593.13 g/mol / 162.30 g/mol = 3.66

Rounding this factor to the nearest whole number, we get 4. Therefore, the molecular formula of the compound is (C5H10NS2)4, which simplifies to C20H40N4S8.

Learn more about C6H7N here:

https://brainly.com/question/11058743

#SPJ11

The industrial degreasing solvent methylene chloride, CH2Cl2, is prepared from methane by reaction with chlorine:
CH4(g)+2Cl2(g)⟶CH2Cl2(g)+2HCl(g).
Use the following data to calculate Δ H∘ in kilojoules for the reaction:
CH4(g)+Cl2(g)⟶CH3Cl(g)+HCl(g)ΔH∘=−98.3kJCH3Cl(g)+Cl2(g)⟶CH2Cl2(g)+HCl(g)ΔH∘=−104kJ

Answers

Methylene chloride is prepared by reacting methane with chlorine in the presence of UV light or high temperature and pressure.

The reaction proceeds via a free-radical mechanism, where chlorine radicals abstract hydrogen atoms from methane to form methyl radicals, which then react with chlorine to form CH2Cl2. The reaction is highly exothermic and must be carefully controlled to prevent unwanted side reactions, such as the formation of chlorinated methane byproducts. The resulting CH2Cl2 product is then purified by distillation and used as a solvent in various industrial processes, such as paint stripping, metal cleaning, and pharmaceutical manufacturing.

Learn more about Methylene chloride here;

https://brainly.com/question/29426391

#SPJ11

calculate the enthalpy change for the reaction ch2ch2 (g) h2o (l)→ ch3ch2oh (l) in kj/mole

Answers

The enthalpy change for the reaction is +99.5 kJ/mol. This indicates that this is an endothermic reaction.

To calculate the enthalpy change for the given reaction, we need to use the enthalpy of formation values for the reactants and products. The enthalpy change of a reaction is defined as the difference between the sum of the enthalpies of the products and the sum of the enthalpies of the reactants.
The balanced chemical equation for the given reaction is:
C2H4 (g) + H2O (l) → C2H5OH (l)
Now, we need to find the enthalpy of formation values for the reactants and products. The enthalpy of formation is the energy required to form one mole of a compound from its constituent elements in their standard states.
The enthalpy of formation values for the reactants and products are:
C2H4 (g) = +52.3 kJ/mol
H2O (l) = -285.8 kJ/mol
C2H5OH (l) = -238.6 kJ/mol
Using these values, we can calculate the enthalpy change for the reaction as follows:
Enthalpy change = Σ(Enthalpy of products) - Σ(Enthalpy of reactants)
               = [-238.6 kJ/mol] - [52.3 kJ/mol + (-285.8 kJ/mol)]
               = -238.6 kJ/mol + 338.1 kJ/mol
               = +99.5 kJ/mol
Therefore, the enthalpy change for the reaction is +99.5 kJ/mol. This indicates that the reaction is endothermic, meaning that it requires energy to proceed.

To know more about endothermic reaction visit:
https://brainly.com/question/23184814
#SPJ11

How


many moles of Strontium Phosphate are in 55. 50 grams of Strontium Phosphate :


Sr3(PO4)2?

Answers

There are approximately 0.1229 moles of strontium phosphate in 55.50 grams of the compound.

To determine the number of moles of strontium phosphate [tex](Sr_3(PO_4)_2)[/tex] in 55.50 grams, we need to use the concept of molar mass and Avogadro's number.  First, we calculate the molar mass of strontium phosphate by summing up the atomic masses of each element present in the compound. Strontium (Sr) has an atomic mass of approximately 87.62 grams/mol, phosphorus (P) has an atomic mass of approximately 30.97 grams/mol, and oxygen (O) has an atomic mass of approximately 16.00 grams/mol.  So, the molar mass of strontium phosphate is:

3(Sr) + 2([tex](PO_4)[/tex]) = 3(87.62) + 2(30.97 + 4(16.00)) = 261.86 + 2(30.97 + 64.00) = 261.86 + 2(94.97) = 261.86 + 189.94 = 451.80 grams/mol

Next, we use the formula:

moles = mass / molar mass

Plugging in the given mass of 55.50 grams and the molar mass of 451.80 grams/mol:

moles = 55.50 g / 451.80 g/mol ≈ 0.1229 mol

Learn more about  molar mass here:

https://brainly.com/question/30640134

#SPJ11

Calculate the ph of a 0.2 m solution of an amine that has a pka of 9.5

Answers

The pH of a 0.2 M solution of an amine with a pKa of 9.5 is 9.5.

To calculate the pH of a 0.2 M solution of an amine with a pKa of 9.5, we first need to determine the concentration of the conjugate base of the amine (i.e., the amine with a proton removed).

Since the pKa is 9.5, the pH at which half of the amine molecules will be protonated (i.e., NH3+) and half will be deprotonated (i.e., NH2) is 9.5. This means that at pH 9.5, the concentration of the conjugate base and the amine will be equal.

Using the Henderson-Hasselbalch equation:

pH = pKa + log([conjugate base]/[amine])

We can rearrange this equation to solve for [conjugate base]:

[conjugate base] = [amine] x 10^(pH - pKa)

Plugging in the values given in the question, we get:

[conjugate base] = 0.2 M x 10^(pH - 9.5)

Since at pH 9.5, [conjugate base] = [amine], we can set these two expressions equal to each other:

[conjugate base] = [amine]

0.2 M x 10^(pH - 9.5) = 0.2 M

Dividing both sides by 0.2 M, we get:

10^(pH - 9.5) = 1

Taking the logarithm of both sides:

pH - 9.5 = 0

Solving for pH, we get:

pH = 9.5

Therefore, the pH of a 0.2 M solution of an amine with a pKa of 9.5 is 9.5.

Learn more about amine here,

https://brainly.com/question/29204285

#SPJ11

which molecule has 4 sigma (σ) bonds?

Answers

The molecule that has 4 sigma (σ) bonds is [tex]CH_{4}[/tex], methane. In [tex]CH_{4}[/tex], the central carbon atom is bonded to four hydrogen atoms via four sigma bonds.

A sigma bond is a covalent bond formed by the head-on overlap of two atomic orbitals. In [tex]CH_{4}[/tex], each hydrogen atom shares one electron with the carbon atom, forming four single covalent bonds.

These bonds are sigma bonds because they are formed by the overlap of the s orbitals of the carbon atom with the s orbitals of the hydrogen atoms.

The carbon atom has no pi (π) bonds, only sigma bonds, and therefore, [tex]CH_{4}[/tex] has four sigma bonds

To know more about sigma bonds, refer here:

https://brainly.com/question/27981568#

#SPJ11

Calculate the molarity of a potassium hydroxide solution if 30.0 mL of this solution was completely neutralized by 26.7 mL of 0.750 M hydrochloric acid.

KOH + HCl → KCl + H2O

Answers

The molarity of a potassium hydroxide solution if 30.0 mL of this solution was completely neutralized by 26.7 mL of 0.750 M hydrochloric acid is 0.6675M.

How to calculate molarity?

Molarity is the concentration of a substance in solution, expressed as the number of moles of solute per litre of solution.

The molarity of a neutralization reaction can be calculated using the following expression;

CaVa = CbVb

Where;

Ca and Va = concentration and volume of acidCb and Vb = concentration and volume of base

26.7 × 0.750 = 30 × Cb

20.025 = 30Cb

Concentration of pottasium hydroxide= 0.6675M

Learn more about molarity at: https://brainly.com/question/2817451

#SPJ1

please answer these. You have to balance the reactions, write the coefficients, then classify it.

Answers

Bbalance the reactions, write the coefficients, then classify it.

a. AgNO3 + K3PO4 → Ag3PO4 + 3KNO3 (balanced)

Classification: Double replacement

b. Cu(OH)2 + 2HC2H3O2 → Cu(C2H3O2)2 + 2H2O (balanced)

Classification: single replacement

c. Ca(C2H3O2)2 + Na2CO3 → CaCO3 + 2NaC2H3O2 (balanced)

Classification: Double replacement.

d. 2K + 2H2O → 2KOH + H2 (balanced)

Classification: single replacement

e. C6H14 + 19O2 → 6CO2 + 7H2O + heat (balanced)

Classification: Combustion

f. Cu + S8 → CuS8 (unbalanced; needs correction)

Classification: single replacement

g. P4 + 5O2 → 2P2O5 (balanced)

Classification: Combustion

h. AgNO3 + Ni → Ni(NO3)2 + Ag (balanced)

Classification: single replacement

i. Ca + 2HCl → CaCl2 + H2 (balanced)

Classification: single replacement

j. C3H8 + 5O2 → 3CO2 + 4H2O + heat (balanced)

Classification: Combustion.

k. 2NaClO3 → 2NaCl + 3O2 (balanced)

Classification: Decomposition

l. BaCO3 → BaO + CO2 (balanced)

Classification: Decomposition

m. 4Cr + 3O2 → 2Cr2O3 (balanced)

Classification: Combustion

n. 2C2H2 + 5O2 → 4CO2 + 2H2O + heat (balanced)

Classification: Combustion.

Learn more about Combustion here:

https://brainly.com/question/31123826

#SPJ1

Discuss the differences between the atlantic and pacific ocean's dissolved oxygen concentrations and describe the biogeochemical processes responsible for the shape of the individual profiles (look at the scales—which ocean has more oxygen?).

Answers

The Pacific Ocean typically has higher dissolved oxygen concentrations compared to the Atlantic Ocean. This difference arises due to variations in biogeochemical processes and circulation patterns between the two oceans.

The higher dissolved oxygen levels in the Pacific can be attributed to several factors. First, the Pacific Ocean generally experiences stronger upwelling events, where nutrient-rich deep waters are brought to the surface, promoting high primary productivity. Enhanced primary productivity leads to increased photosynthesis by marine plants, resulting in higher oxygen production through photosynthesis. Additionally, the Pacific Ocean's larger size provides a larger area for these biological processes to occur, contributing to higher overall oxygen concentrations.

In contrast, the Atlantic Ocean exhibits lower dissolved oxygen levels due to different biogeochemical processes. The Atlantic Ocean experiences weaker upwelling events compared to the Pacific, leading to less nutrient supply to the surface waters and lower primary productivity. Furthermore, the Atlantic Ocean has stronger stratification, which limits the vertical mixing of oxygen-rich surface waters with deeper oxygen-depleted waters. This stratification restricts the replenishment of dissolved oxygen in the deeper layers, resulting in lower overall oxygen concentrations.

Therefore, due to variations in upwelling, primary productivity, and circulation patterns, the Pacific Ocean generally has higher dissolved oxygen concentrations compared to the Atlantic Ocean.

LEARN MORE ABOUT biogeochemical here: brainly.com/question/1204069

#SPJ11

For parts of the free response question that require calculations, clearly show the method used and the steps involved in arriving at your answers. You must show your work to receive credit for your answer.

Answers

The number of moles of CO₂ present in the vessel at equilibrium is calculated as 1.040 moles.

1) V = 100L = 0.1 cubic metre

Pressure = 1 atm = 101325 Pascal.

R = 8.314 J/K mole.

T = 898•C = 898 + 273 = 1171 K

Using ideal gas equation , PV= nRT

                                      n = PV/RT

                             n = 101325 × 0.1/8.314 × 1171

                                 n = 10132.5 / 9735

                              = 1.040 moles.

2) equilibrium constant = [Product]/[Reactant]

                                Kp = [CaO][CO₂]/[CACO₃]

Initial moles of CaCO₃ = 2 moles  .

Initial moles of CaO = 0 .

Initial moles of CO₂ = 0 .

Moles at equilibrium of CaCO₃ = 2-x.

Moles at equilibrium of CaO = x.

Moles at equilibrium of CO₂ = x.

Moles of CO₂ = 1.040 moles

Moles at equilibrium of CaCO₃ = 2-1.040 = 0.96 moles.

Moles at equilibrium of CaO = 1.040 moles.

Moles at equilibrium of CO₂ = 1.040 moles.

                 Concentration = moles / volume  .

Concentration of CaCO₃ = 0.96/100(in litre)

                          = 0.0096 moles / litre.

Concentration of CaO = 1.040/100 = 0.01040 moles / litre.

Concentration of CO₂ = 1.040/100

                   = 0.01040 moles / litre.

Equilibrium constant = 0.0096/0.01040× 0.01040

                              = 0.0096/0.00010816

                               = 88.75 .

What gives it its name, "ideal gas equation"?

An ideal gas is a hypothetical gas made out of many haphazardly moving point particles that are not expose to interparticle co-operations. The ideal gas idea is helpful on the grounds that it complies with the best gas regulation, an improved on condition of state, and is manageable to examination under factual mechanics.

Incomplete question:

For parts of the free response question that require calculations, clearly show the method used and the steps involved in arriving at your answers. You must show your work to receive credit for your answer.For parts of the free-response question that require calculations, clearly show the method used and the steps involved in arriving at your answers. You must show your work to receive credit for your answer. Examples and equations may be included in your answers where appropriate CaCO₃(s)CaO(s) +CO₂(g) When heated strongly, solid calcium carbonate decomposes to produce solid calcium oxide and carbon dioxide gas, as represented by the equation above. A 2.0 mol sample of CaCO₃(s) is placed in a rigid 100. L reaction vessel from which all the air has been evacuated. The vessel is heated to 898 C at which time the pressure of CO₂(g) in the vessel is constant at 1.00 atm, while some CaCO₃(8) remains in the vessel. (a) Calculate the number of moles of CO₂(9) present in the vessel at equilibrium B. 0 / 10000 Word Limit (b) Write the expression for Kp the equilibrium constant for the reaction, and determine its value at 898 C B 0 / 10000

Learn more about Ideal Gas equation:

brainly.com/question/20348074

#SPJ4

Calculate ΔS° for the reaction SO2(s) + NO2(g) → SO3(g) + NO(g).
S°(J/K·mol)
SO2(g) 248.5
SO3(g) 256.2
NO(g) 210.6
NO2(g) 240.5

Answers

The standard entropy change for the reaction is ΔS° = 228.8 J/K·mol.

The standard entropy change, ΔS°, can be calculated using the following equation:

ΔS° = ΣS°(products) - ΣS°(reactants)

where ΣS° represents the sum of the standard entropies of the products or reactants, respectively.

Using the standard entropy values given:

ΔS° = [S°([tex]SO_3(g)[/tex]) + S°([tex]NO(g)[/tex])] - [S°([tex]SO_2(s)[/tex]) + S°([tex]NO_2(g)[/tex])]

ΔS° = [(256.2 J/K·mol) + (210.6 J/K·mol)] - [(248.5 J/K·mol) + (240.5 J/K·mol)]

ΔS° = 228.8 J/K·mol

For more question on standard entropy click on

https://brainly.com/question/30174483

#SPJ11

How can the turnover number of an enzyme be determined? a. as Vmax b. when half of the enzyme is occupied with the substratec. by the initial velocity d. when the enzyme is fully saturated e. as [E]T

Answers

The turnover number of an enzyme can be determined as Vmax, which is the maximum velocity of the enzymatic reaction when all the enzyme active sites are fully saturated with substrate.

Vmax is the maximum rate of reaction achievable when all enzyme active sites are occupied by substrate, and the rate of the reaction is at its maximum.

At this point, the enzyme is said to be saturated with substrate, and the rate of the reaction can no longer be increased, even if the concentration of substrate is increased. The turnover number is defined as the number of substrate molecules converted into product by one enzyme molecule in a given time period. Therefore, Vmax represents the turnover number, as it indicates the maximum rate of reaction that the enzyme can achieve when all the active sites are occupied by substrate.

Learn more about enzyme here:

https://brainly.com/question/31385011

#SPJ11

5. calculate the ratio [pbt-]/[ht2-] for nta in equilibrium with pbco3 in a medium having [hco3-] = 3.00 10-3 m

Answers

The ratio [Pb(NTA)(HCO3)]/[HCO3-]^2 for nta in equilibrium is:

[Pb(NTA)(HCO3)]/[HCO3-]^2 = 6.37 × 10^-7 M / 9.00 × 10^-6 M^2 = 0.0708 M^-1.

What is the ratio [pbt-]/[ht2-] for nta in equilibrium with pbco3?

The balanced equation for the equilibrium reaction between NTA and PbCO3 is:

NTA + PbCO3 + H2O ⇌ Pb(NTA)(HCO3) + OH-

To calculate the ratio [Pb(NTA)(HCO3)]/[HCO3-]^2, we need to first write the expression for the equilibrium constant (K) for this reaction:

K = [Pb(NTA)(HCO3)]/[HCO3-][NTA]

Next, we need to express the concentrations of Pb(NTA)(HCO3) and NTA in terms of the initial concentrations of NTA, PbCO3, and HCO3- and the extent of the reaction (α):

[Pb(NTA)(HCO3)] = α[PbCO3]

[NTA] = [NTA]0 - α

Since we are given the concentration of HCO3- and not PbCO3, we need to first use the equilibrium expression for the reaction between HCO3- and PbCO3 to calculate [PbCO3]:

Ksp = [Pb2+][CO32-] = 1.4 × 10^-13

[HCO3-] = 3.00 × 10^-3 M

Let x be the extent of the reaction between HCO3- and PbCO3, then:

[PbCO3] = x

[CO32-] = x

[HCO3-] = 3.00 × 10^-3 - x

Substituting these values into the Ksp expression and solving for x gives:

x = [PbCO3] = [CO32-] = 1.18 × 10^-8 M

Now we can calculate the extent of the reaction between NTA and PbCO3:

α = [Pb(NTA)(HCO3)]/[PbCO3] = K[HCO3-]/[NTA]0 = (1.8 × 10^5)(3.00 × 10^-3)/(0.01) = 54

Using the expressions for [Pb(NTA)(HCO3)] and [NTA], we can calculate the ratio [Pb(NTA)(HCO3)]/[HCO3-]^2:

[Pb(NTA)(HCO3)] = α[PbCO3] = (54)(1.18 × 10^-8) = 6.37 × 10^-7 M

[HCO3-]^2 = (3.00 × 10^-3)^2 = 9.00 × 10^-6 M^2

Therefore, the ratio [Pb(NTA)(HCO3)]/[HCO3-]^2 is:

[Pb(NTA)(HCO3)]/[HCO3-]^2 = 6.37 × 10^-7 M / 9.00 × 10^-6 M^2 = 0.0708 M^-1.

Learn more about equilibrium

brainly.com/question/30807709

#SPJ11

Chlorine gas, Cl2, and fluorine gas, F2, react at 2500 K to produce an equilibrium with CIF. The equilibrium constant for this reaction at 2500K, Kc = 25. A vessel is charged with 0.364 M chlorine, 0.364 M of fluorine, and 2.397 M CIF and allowed to reach equilibrium. i) write a balanced equation for this reaction. ii) Write an expression for the reaction quotient (Qc). iii) What are the equilibrium concentrations for this reaction? Show your work and use the methods I showed you in class.

Answers

When, chlorine and fluorine gas will react at 2500k to produce an equilibrium with CIF then, the balanced equation is; Cl₂(g) + F₂(g) ⇌ 2CIF(g), the expression for the reaction quotient is; Qc = [CIF]² / [Cl₂][F₂], and the equilibrium concentrations for chlorine is -0.688 M, for fluorine -0.688 M, and for chlorine fluoride is 3.449 M.

The balanced equation for the reaction is;

Cl₂(g) + F₂(g) ⇌ 2CIF(g)

The expression for the reaction quotient Qc will be;

Qc = [CIF]² / [Cl₂][F₂]

To find the equilibrium concentrations, we can use the ICE table;

Initial concentrations: [Cl₂] = 0.364 M

[F₂] = 0.364 M

[CIF] = 2.397 M

Change: -2x -2x +2x

Equilibrium concentrations; [Cl₂] = 0.364 - 2x M

[F₂] = 0.364 - 2x M

[CIF] = 2.397 + 2x M

At equilibrium, Qc = Kc;

25 = ([CIF]² / [Cl₂][F₂])

Substituting the equilibrium concentrations into this expression, we have;

25 = ((2.397 + 2x)² / (0.364 - 2x)(0.364 - 2x))

Simplifying and rearranging, we get a quadratic equation;

4x² - 14.518x + 4.1126 = 0

Solving for x using quadratic formula, we get;

x = 0.526 M

Therefore, the equilibrium concentrations are;

[Cl₂] = 0.364 - 2(0.526) = -0.688 M (this negative value indicates that all of the chlorine has reacted)

[F₂] = 0.364 - 2(0.526) = -0.688 M (this negative value indicates that all of the fluorine has reacted)

[CIF] = 2.397 + 2(0.526) = 3.449 M

Note that the negative concentrations for Cl₂ and F₂ simply indicate that all of the reactants have been consumed to form the product CIF at equilibrium.

To know more about equilibrium concentrations here

https://brainly.com/question/16645766

#SPJ4

4. a metal-silicon junction is biased so

Answers

When a metal-silicon junction is biased, it means that an external voltage source is connected to the junction in order to control the flow of electric current through it.

In this case, when the metal is connected to the p-type silicon, it forms a p-n junction. The external voltage source can be used to either forward bias or reverse bias the junction. Forward biasing the junction means that the voltage source is connected in such a way that it allows current to flow easily through the junction. This is typically done by connecting the positive end of the voltage source to the p-type material and the negative end to the metal.

On the other hand, reverse biasing the junction means that the voltage source is connected in a way that makes it harder for current to flow through the junction. This is typically done by connecting the positive end of the voltage source to the metal and the negative end to the p-type material.

In either case, the external voltage source can be used to control the flow of electric current through the metal-silicon junction. This can be useful in a variety of electronic applications, such as in diodes and transistors.

Learn more about p-n junction here:

https://brainly.com/question/29513692

#SPJ11

if a reaction has happened between a substrate and the soidum iodide in acetone solution what visual cues are you looking for

Answers

If a reaction has happened between a substrate and sodium iodide in an acetone solution, the visual cues you might look for include:

1. Colour change: Depending on the substrate, the reaction might produce a change in colour, which would be a clear indication of a chemical change taking place. The appearance of a yellow-brown colour can indicate the formation of iodoform, which is a product of the reaction between a ketone or aldehyde and sodium iodide.

2. Precipitate formation: Some reactions may result in the formation of an insoluble product or precipitate. You can look for solid particles appearing and settling at the bottom of the solution. The formation of a white precipitate, which can indicate the presence of an alkyl halide

3. Gas formation: In some cases, a reaction could produce a gas as one of its products. You may observe bubbles forming in the solution, indicating gas formation.

Keep in mind that the specific visual cues might depend on the nature of the substrate and the particular reaction that occurs with sodium iodide in the acetone solution.

Learn more about sodium iodide : https://brainly.com/question/19952754

#SPJ11

For the following equilibrium, if the concentration of A+ is 2.8×10−5 M, what is the solubility product for A2B?
A2B(s)↽−−⇀2A+(aq)+B2−(aq)
2 sig figures

Answers

The solubility product for A₂B, given that at equilibrium, A⁺ has a concentration of 2.8×10⁻⁵ M, is 1.1×10⁻¹⁴

How do i determine the solubility product?

First, we shall determine the concentration of B²⁻ in the solution. Details below:

A₂B(s) <=> 2A⁺(aq) + B²⁻(aq)

From the above,

2 mole of A⁺ is present in 1 moles of A₂B

Thus,

2.8×10⁻⁵ M A⁺ will be present in = 2.8×10⁻⁵ / 2 = 1.4×10⁻⁵ M A₂B

But

1 mole of A₂B contains 1 moles of B²⁻

Therefore,

1.4×10⁻⁵ M A₂B will also contain 1.4×10⁻⁵ M B²⁻

Finally, we can determine the solubility product. This is illustarted below:

Concentration of A⁺ = 2.8×10⁻⁵ MConcentration of B²⁻ = 1.4×10⁻⁵ M MSolubility product (Ksp) =?

A₂B(s) <=> 2A⁺(aq) + B²⁻(aq)

Ksp = [A⁺]² × [B²⁻]

Ksp =  (2.8×10⁻⁵)² × 1.4×10⁻⁵

Ksp = 1.1×10⁻¹⁴

Thus, we can conclude that the solubility product is 1.1×10⁻¹⁴

Learn more about solubility of product:

https://brainly.com/question/4530083

#SPJ1

Why are solar cells particularly suitable for developing countries?

Answers

Answer: They give energy without having to hire trained workers to manage power plants.

Explanation: You can just slap them on houses hook them up and there good for a month till you have to clean the dust off them which anyone can do.

Solar cells are particularly suitable for developing countries because they provide a sustainable and affordable source of energy.

Solar cells, also known as photovoltaic cells, are electronic devices that convert sunlight into electricity. They are made of semiconductor materials, such as silicon, and work by absorbing photons from sunlight.

By using solar cells, developing countries can improve access to electricity and reduce their reliance on fossil fuels.

Developing countries often lack access to reliable electricity, and solar cells can provide a solution to this problem. Solar cells are also easy to install and maintain, making them a practical option for developing countries.

In conclusion, solar cells are a great option for developing countries because they provide a sustainable, affordable, and practical source of energy.

Learn more about solar cells here:

https://brainly.com/question/29553595

#SPJ6

The Henry's law constant for the solubility of nitrogen in water is 6.4 x 104 M/atm at 25°C. At 0.75 atm of N2, what mass of N2(8) dissolves in 1.0 L of water at 25°C? a. 4.8 x 104 g b. 8.5 x 104 g c. 4.5 x 10' g d. 1.3 x 104g

Answers

Every moment a bottle of Pepsi (or any other carbonated beverage) is opened, Henry's law is put into action. Usually, pure carbon dioxide is retained in the gas above a sealed carbonated beverage at a pressure that is just a little bit higher than atmospheric pressure. The correct option is A.

Henry's law, a gas law, states that, while the temperature is held constant, the amount of gas that is dissolved in a liquid is directly proportional to the partial pressure of that gas above the liquid. Henry's law constant (sometimes abbreviated as "kH") is the proportionality constant for this relationship.

c = kH × p

c =  6.4 x 10⁴ × 0.75

c = 4.8 × 10⁴  mol / L

Mass in 1 L = 4.8 × 10⁴ × 1 =  4.8 × 10⁴ g

Thus the correct option is A.

To know more about Henry's law, visit;

https://brainly.com/question/11994691

#SPJ1

The solubility of PbBr2 is .427 g per 100 ml of solution at 25 C. Determine the value of the solubility product constant for this strong electrolyte. Lead(II) bromide does not react with water.A. 5.4 x 10^-4B. 2.7 x 10^-4C. 3.1 x 10^-6D. 1.6 x 10^-6E. 6.3 x 10^-6

Answers

The value of the solubility product constant for PbBr2 at 25°C is 2.7 x 10^-4 (Option B).

To determine the solubility product constant (Ksp) for PbBr2, first, you need to calculate the molar solubility. Given the solubility is 0.427 g per 100 mL of solution, you can convert it to moles per liter:

Molar solubility = (0.427 g / 367.01 g/mol) / 0.1 L = 0.0116 mol/L

PbBr2 dissociates in water as follows: PbBr2(s) → Pb2+(aq) + 2Br-(aq)

Since there is 1 Pb2+ ion and 2 Br- ions produced for every mole of PbBr2 dissolved, the equilibrium concentrations are:

[Pb2+] = 0.0116 mol/L and [Br-] = 2 * 0.0116 mol/L = 0.0232 mol/L

Now, you can calculate the Ksp using these concentrations:

Ksp = [Pb2+] * [Br-]^2 = (0.0116) * (0.0232)^2 = 2.7 x 10^-4

Considering the given solubility of PbBr2 and the fact that it is a strong electrolyte that does not react with water, you can determine the solubility product constant (Ksp) by first finding the molar solubility, then using the equilibrium concentrations to calculate Ksp. The correct answer is 2.7 x 10^-4 (Option B).

To learn more about solubility product visit:

brainly.com/question/31493083

#SPJ11

Generally it acid is used to catalyze the opening or an epoxide
ring this would be an example of a(n) unimolecular or bimolecular and the acid would be used ___

Answers

Generally it acid is used to catalyze the opening or an epoxide ring this would be an example bimolecular reaction and the acid would be used as a catalyst

This type of reaction is known as an acid-catalyzed bimolecular reaction, specifically referred to as an SN2 reaction (substitution nucleophilic bimolecular). In this process, the acid acts as a catalyst to facilitate the opening of the epoxide ring, making the electrophilic carbon more susceptible to nucleophilic attack by a nucleophile. The bimolecular nature of the reaction means that the rate of the reaction depends on the concentration of both the epoxide and the nucleophile.

The acid serves as a proton donor, protonating the oxygen atom in the epoxide ring, which results in the weakening of the carbon-oxygen bond. This allows the nucleophile to attack the carbon more easily, leading to the ring opening and the formation of the desired product. Overall, an acid-catalyzed opening of an epoxide ring is an example of a bimolecular reaction (SN2), and the acid is used as a catalyst to facilitate this reaction.

To learn more about SN2 reaction here:

https://brainly.com/question/31324595

#SPJ11

how many minutes are required to deposit 2.61 g cr from a cr³⁺(aq) solution using a current of 2.50 a? (f = 96,500 c/mol)

Answers

1.73 minutes are required to deposit 2.61 g cr from a cr³⁺(aq) solution using a current of 2.50 a

Electroplating is a process of depositing a metal onto a conductive surface by using electrolysis. In this process, an electric current is passed through an electrolyte solution containing ions of the metal to be deposited. The metal ions are reduced at the cathode, which is the surface where the metal is being deposited. The rate at which the metal is deposited depends on the current and the time for which the current is applied.

To calculate the time required to deposit a certain amount of metal, we can use Faraday's law of electrolysis, which states that the amount of metal deposited is proportional to the amount of electric charge that passes through the cell. The equation for this is:

mass of metal deposited = (current x time x atomic mass of metal) / (Faraday's constant x charge on ion)

In this problem, we are given the current (2.50 A), the mass of metal to be deposited (2.61 g), the charge on the Cr³⁺ ion (3+), and the Faraday's constant (96,500 C/mol). The atomic mass of Cr is 52.0 g/mol.

Substituting these values into the equation, we get:

2.61 g = (2.50 A x time x 52.0 g/mol) / (96,500 C/mol x 3)

Simplifying this equation gives:

time = (2.61 g x 96,500 C/mol x 3) / (2.50 A x 52.0 g/mol)

time = 103.9 s or 1.73 minutes (rounded to two decimal places)

Therefore, it would take approximately 1.73 minutes to deposit 2.61 g of Cr from a Cr³⁺(aq) solution using a current of 2.50 A.

Learn more about Electrolysis at: https://brainly.com/question/16929894

#SPJ11

calculate the ph of an aqueous solution, which has an [h3o ] = 1.0x10-11 m.

Answers

The pH of the aqueous solution with an [H3O+] concentration of 1.0x10-11 M is 11.

The pH scale is a logarithmic scale that measures the concentration of hydrogen ions in a solution. A pH of 7 is neutral, while a pH below 7 is acidic and a pH above 7 is basic. The pH can be calculated using the formula pH = -log[H3O+].

In this case, the [H3O+] concentration is 1.0x10-11 M.

To calculate the pH of an aqueous solution with an [H3O+] concentration of 1.0 x 10^-11 M:

The pH is calculated using the formula pH = -log10[H3O+]. In this case, the [H3O+] concentration is 1.0 x 10^-11 M.

By substituting the given concentration into the formula, we get pH = -log10(1.0 x 10^-11). Calculating the logarithm, we find that the pH of the aqueous solution is 11, which is basic.

To learn more about pH of solution visit:

brainly.com/question/491373

#SPJ11

according to the pauli exclusion principle for an atom with n = 4, calculate the occupation limit of electrons

Answers

According to the Pauli exclusion principle, no two electrons in an atom can have the same set of quantum numbers.

For an atom with n = 4, the possible values of the quantum number are l = 0, 1, 2, and 3.

Each value of l can have a maximum of 2(2l + 1) electrons.

Therefore, the occupation limit of electrons for n = 4 would be:

l = 0 (s sublevel): 2 electrons.

l = 1 (p sublevel): 6 electrons.

l = 2 (d sublevel): 10 electrons.

l = 3 (f sublevel): 14 electrons.

Thus, the total occupation limit of electrons for an atom with n = 4 would be 2+6+10+14 = 32 electrons.

Read more about Pauli's Exclusion Principle.

https://brainly.com/question/30563805

#SPJ11

The pH of 0.150 M CH3CO2H, acetic acid, is 2.78. What is the value of Ka for the acetic acid? Oa. 2.8 x 10-6 Ob.1.9 x 10-5 Oc. 1.7 x 10-3 Od.1.1 x 10-2

Answers

To find the value of Ka for acetic acid (CH3CO2H), we can use the pH and concentration of the acid.

Given:

pH of acetic acid (CH3CO2H) = 2.78

Concentration of acetic acid (CH3CO2H) = 0.150 M

The pH of a weak acid, such as acetic acid, is related to the concentration and the acid dissociation constant (Ka) by the equation:

pH = -log10([H+]) = -log10(√(Ka * [CH3CO2H]))

Here, [H+] represents the concentration of H+ ions, and [CH3CO2H] represents the concentration of acetic acid.

To solve for Ka, we rearrange the equation:

Ka = 10^(-2pH) * [CH3CO2H]^2

Plugging in the given values:

Ka = 10^(-2 * 2.78) * (0.150 M)^2

Calculating this expression:

Ka ≈ 10^(-5.56) * (0.0225 M^2)

Ka ≈ 2.8 x 10^(-6)

Therefore, the value of Ka for acetic acid (CH3CO2H) is approximately 2.8 x 10^(-6) (Option A).

To know more about acetic acid refer here

https://brainly.com/question/29141213#

#SPJ11

3. Calcium phosphate (Ca3(PO4)2) has the solubility product Ksp 2.07x10-33. For the study of a calcium dependent enzyme, a biochemist is considering to prepare a 0.1 M phosphate buffer pH 7.5, which is also 10 mM with respect to CaCl2. Is it possible to prepare such a buffer ? Reason your answer by a calculation

Answers

The low concentration of phosphate that would form due to the precipitation of calcium phosphate makes it impossible to prepare a 0.1 M phosphate buffer pH 7.5 which is also 10 mM with respect to [tex]CaCl_2[/tex].

To determine whether it is possible to prepare a 0.1 M phosphate buffer pH 7.5, which is also 10 mM with respect to [tex]CaCl_2[/tex], we need to calculate the concentration of [tex]Ca_3(PO_4)_2[/tex] that will form in the solution.

Firstly, let's consider the dissociation of [tex]Ca_3(PO_4)_2[/tex] in water:

[tex]$\mathrm{Ca_3(PO_4)_2(s) \rightleftharpoons 3 Ca^{2+}(aq) + 2 PO_4^{3-}(aq)}$[/tex]

The solubility product expression for [tex]Ca_3(PO_4)_2[/tex] is:

[tex]$K_{sp} = [\mathrm{Ca^{2+}}]^3 [\mathrm{PO_4^{3-}}]^2$[/tex]

where Ksp [tex]= 2.07 \times 10^{-33[/tex]

We can assume that the concentration of [tex]Ca_2^+[/tex] is 10 mM, so:

[tex]$K_{sp} = (10\ \mathrm{mM})^3 [\mathrm{PO_4^{3-}}]^2$[/tex]

Solving for [[tex]$\mathrm{PO_4^{3-}}$[/tex]], we get:

[tex]$[\mathrm{PO_4^{3-}}] = \sqrt{\frac{K_{sp}}{(10\ \mathrm{mM})^6}} = 2.6\times 10^{-14}\ \mathrm{M}$[/tex]

This concentration of phosphate is much lower than the desired concentration of 0.1 M for the buffer. Therefore, it is not possible to prepare a 0.1 M phosphate buffer pH 7.5 that is also 10 mM with respect to [tex]CaCl_2[/tex], as the addition of [tex]CaCl_2[/tex] will cause precipitation of calcium phosphate due to its low solubility product constant. The biochemist may need to consider alternative buffer systems or find a way to avoid the formation of calcium phosphate in experimental conditions.

To learn more about phosphate

https://brainly.com/question/16411744

#SPJ4

a 9.950 l sample of gas is cooled from 79.50°c to a temperature at which its volume is 8.550 l. what is this new temperature? assume no change in pressure of the gas.

Answers

To solve this problem, we can use the combined gas law, which states:

(P1 * V1) / T1 = (P2 * V2) / T2

where:

P1 and P2 are the initial and final pressures of the gas (assumed to be constant)

V1 and V2 are the initial and final volumes of the gas

T1 and T2 are the initial and final temperatures of the gas

In this case, the pressure is assumed to be constant, so we can simplify the equation as follows:

(V1 / T1) = (V2 / T2)

Rearranging the equation to solve for T2, we have:

T2 = (V2 * T1) / V1

Now, let's plug in the given values:

V1 = 9.950 L

T1 = 79.50 °C = 79.50 + 273.15 K (convert to Kelvin)

V2 = 8.550 L

T2 = (8.550 * (79.50 + 273.15)) / 9.950

Calculating the expression, we find:

T2 ≈ 330.07 K

Therefore, the new temperature is approximately 330.07 K.

To know more about combined gas law refer here

https://brainly.com/question/30458409#

#SPJ11

What carboxylic acid and alcohol are needed to synthesize benzyl acetate?

Answers

Acetic acid and benzyl alcohol are needed to synthesize benzyl acetate through an esterification reaction.

To synthesize benzyl acetate, you will need the carboxylic acid , acetic acid and the alcohol benzyl alcohol. Here's a step-by-step explanation:

1. Identify the carboxylic acid: Acetic acid (CH3COOH) is required for this synthesis. It contains a carboxyl group (COOH) that will react with the alcohol.

2. Identify the alcohol: Benzyl alcohol (C6H5CH2OH) is needed. It contains a hydroxyl group (OH) that will react with the carboxylic acid.

3. Perform the esterification reaction: Combine acetic acid and benzyl alcohol in the presence of an acid catalyst (such as sulfuric acid) to form benzyl acetate (C6H5CH2OOCCH3) and water as a byproduct.

In summary, acetic acid and benzyl alcohol are needed to synthesize benzyl acetate through an esterification reaction.

Learn more about carboxylic acid here,

https://brainly.com/question/26855500

#SPJ11

Consider a mixture of the amino acids lysine (pI 9.7) tyrosine (pl 5.7), and glutamic acid (pl 3.2) at a pH 5.7 that is subjected to an electric current. towards the positive electrode(+) A) Lysine B) Tyrosine C) Glutamic acid D) All of the amino acids

Answers

The answer to this question is D) All of the amino acids. When subjected to an electric current towards the positive electrode (+) at a pH of 5.7, all three amino acids in the mixture will be affected.

Amino acids are molecules that contain both a carboxyl group (-COOH) and an amino group (-NH2) that can act as both an acid and a base, respectively. At different pH values, these groups can become either positively or negatively charged. The isoelectric point (pI) is the pH at which an amino acid has a net charge of zero.
At a pH of 5.7, all three amino acids in the mixture will have a net positive charge, meaning they will be attracted to the negative electrode (-) and repelled by the positive electrode (+). However, as they move towards the negative electrode (-), they will encounter regions of differing pH values, which can affect their charge and behaviour.
Lysine, with a pI of 9.7, will become increasingly negatively charged as it moves towards the negative electrode (-), causing it to slow down and potentially even reverse direction. Tyrosine, with a pI of 5.7, will remain neutral and unaffected by the electric current. Glutamic acid, with a pI of 3.2, will become increasingly positively charged as it moves towards the negative electrode (-), causing it to accelerate and potentially even reach the electrode.
Overall, the behaviour of the amino acid mixture will be complex and depend on the specific conditions of the electric field and pH gradient. However, all three amino acids will be affected by the electric current in some way.

To learn more about amino acids refer:-

https://brainly.com/question/15687833

#SPJ11

Other Questions
The non-metal element selenium, Se, has sixelectrons in its outer orbit. Will atoms of this elementform positively charged or negatively charged ions?What will their ionic charge be? use part one of the fundamental theorem of calculus to find the derivative of the function. f(x) = 0 1 sec(7t) dt x hint: 0 x 1 sec(7t) dt = x 0 1 sec(7t) dt By weight, chromatin consists roughly of:_________ which electronic transition in a hydrogen atom is associated with the largest emission of energy? data sheet and periodic table n = 2 to n =1 n = 2 to n = 3 n = 2 to n = 4 n = 3 to n = 2 what are the arithmetic and geometric average returns for a stock with annual returns of 22 percent, 9 percent, 7 percent, and 13 percent? Your location has been assigned the 172.16.99.0 /24 network. You are tasked with dividing the network into 7 subnets with the maximum number of hosts possible on each subnet. What is the dotted decimal value for the subnet mask? suppose that an algorithm performs f(n) steps, and each step takes g(n) time. how long does the algorithm take? f(n)g(n) f(n) g(n) f(n^2) g(n^2) If Joy, Irene, and Wendy all take 2. 0 h to walk from their house to their school at a rate of 1. 0 m/s, how far is their school from the house? (first, convert 2hrs to minutes before you follow the gresa method) If the MPC in an economy is 0.75, government could close a recessionary expenditure gap of $225 billion by cutting taxes byA. $300 billionB. $225 billionC. $75 billionD. $168 billion 13- what is the limiting reactant and how much ammonia (nh3) is formed when 5.65 g of nitrogen reacts with 1.15 g of hydrogen? start by writing a balanced chemical equation for the reaction. find the critical value(s) and rejection region(s) for a right-tailed chi-square test with a sample size and level of significance . Explain the distinction between synchronous and asynchronous inputs to a flip-flop. If blue light of wavelength 434 nm shines on a diffraction grating and the spacing of the resulting lines on a screen that is 1.05m away is what is the spacing between the slits in the grating? treatment of the dna sequence 5-atggatcctaagctttagagc-3 with hind iii, ecori, and bamhi will produce how many dna fragments? find the missing coordinate of p, using the fact that p lies on the unit circle in the given quadrant. coordinates quadrant p 2 3 , ii The metal loop is being pulled through a uniform magnetic field. Is the magnetic flux through the loop changing? Show that if a DECREMENT operation were included in the k-bit counter example, n operations could cost as much as (nk) time. Use the Standard Reduction Potentials table to pick a reagent that is capable of each of the following oxidations (under standard conditions in acidic solution). (Select all that apply.) oxidizes VO^2+ to VO^2+ but does not oxidize Pb^2+ to PbO2 Cr2O72-Ag+ Co3+ IO3-Pb2+ H2O2 Calculate the standard entropy, Srxn, of the following reaction at 25.0 C using the data in this table. The standard enthalpy of the reaction, Hrxn, is 44.2 kJmol1.C2H4 (g) + H2O (l) ----> C2H5OH(l)Then, calculate the standard Gibbs free energy of the reaction, Grxn. how many functions are there from a set of 5 elements to a set of 7 elements that are not 1-1 ? explain your reasoning fully