Polarized light passes through a polarizer. If the electric vector of the polarized light is horizontal what, in terms of the initial intensity I0, is the intensity of the light that passes through a polarizer if the polarizer is tilted 42° from the horizontal?

Answers

Answer 1

Answer:

The intensity of the light that passes through a polarizer is 0.55I₀.

Explanation:

The intensity of the light that passes through a polarizer can be found using Malus's law:  

[tex] I = I_{0}cos^{2}(\theta) [/tex]

Where:

I: is the intensity of the light that passes through a polarizer

I₀: is the initial intensity

θ:  is the angle between the light's initial polarization direction and the axis of the polarizer = 42°  

[tex] I = I_{0}cos^{2}(\theta) = I_{0}cos^{2}(42) = 0.55*I_{0} [/tex]

Therefore, the intensity of the light that passes through a polarizer is 0.55I₀.

I hope it helps you!  


Related Questions

When a hydrometer (see Fig. 2) having a stem diameter of 0.30 in. is placed in water, the stem protrudes 3.15 in. above the water surface. If the water is replaced with a liquid having a specific gravity of 1.10, how much of the stem would protrude above the liquid surface

Answers

Answer:

5.79 in

Explanation:

We are given that

Diameter,d=0.30 in

Radius,r=[tex]\frac{d}{2}=\frac{0.30}{2}=0.15 in[/tex]

Weight of hydrometer,W=0.042 lb

Specific gravity(SG)=1.10

Height of stem from the water surface=3.15 in

Density of water=[tex]62.4lb/ft^3[/tex]

In water

Volume  of water displaced [tex]V=\frac{mass}{density}=\frac{0.042}{62.4}=6.73\times 10^{-4} ft^3[/tex]

Volume of another liquid displaced=[tex]V'=\frac{V}{SG}=\frac{6.73\times 10^{-4}}{1.19}=5.66\times 10^{-4}ft^3[/tex]

Change in volume=V-V'

[tex]V-V'=\pi r^2 l[/tex]

Substitute the values

[tex]6.73\times 10^{-4}-5.66\times 10^{-4}=3.14\times (\frac{0.15}{12})^2l[/tex]

By using

1 ft=12 in

[tex]\pi=3.14[/tex]

[tex]l=\frac{6.73\times 10^{-4}-5.66\times 10^{-4}}{3.14\times (\frac{0.15}{12})^2}[/tex]

l=2.64 in

Total height=h+l=3.15+2.64= 5.79 in

Hence, the height of the stem protrude above the liquid surface=5.79 in

Charge of uniform surface density (0.20 nC/m2) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z

Answers

The question is not complete, the value of z is not given.

Assuming the value of z = 4.0m

Answer:

the magnitude of the electric field at any point having z(4.0 m)  =

E = 5.65 N/C

Explanation:

given

σ(surface density) = 0.20 nC/m² = 0.20 × 10⁻⁹C/m²

z = 4.0 m

Recall

E =F/q (coulumb's law)

E = kQ/r²

σ = Q/A

A = 4πr²

∴ The electric field at point z =

E = σ/zε₀

E = 0.20 × 10⁻⁹C/m²/(4 × 8.85 × 10⁻¹²C²/N.m²)

E = 5.65 N/C

An electron has an initial velocity of (17.1 + 12.7) km/s, and a constant acceleration of (1.60 × 1012 m/s2) in the positive x direction in a region in which uniform electric and magnetic fields are present. If = (529 µT) find the electric field .

Answers

Answer:

Explanation:

Since B is perpendicular, it does no work on the electron but instead deflects it in a circular path.

q = 1.6 x 10-19 C

v = (17.1j + 12.7k) km/s = square root(17.1² + 12.7²) = 2.13 x 10⁴ m/s

the force acting on electron is

F= qvBsinΦ

F= (1.6 x 10⁻¹⁹C)(2.13.x 10⁴ m/s)(526 x 10⁻⁶ T)(sin90º)

F = 1.793x 10⁻¹⁸ N

The net force acting on electron is

F = e ( E+ ( vXB)

= ( - 1.6 × 10⁻¹⁹) ( E + ( 17.1 × 10³j + 12.7 × 10³ k)X( 529 × 10⁻⁶ ) (i)

= ( -1.6 × 10⁻¹⁹ ) ( E- 6.7k + 9.0j)

a= F/m

1.60 × 10¹² i =  ( -1.6 × 10⁻¹⁹ ) ( E- 6.9 k + 7.56 j)/9.11 × 10⁻³¹

9.11 i = - ( E- 6.7 k + 9.0 j)

E = -9.11i + 6.7k - 9.0j

A circular coil of wire of 200 turns and diameter 2.0 cm carries a current of 4.0 A. It is placed in a magnetic field of 0.70 T with the plane of the coil making an angle of 30° with the magnetic field. What is the magnetic torque on the coil?

Answers

Answer:

0.087976 Nm

Explanation:

The magnetic torque (τ) on a current-carrying loop in a magnetic field is given by;

τ = NIAB sinθ     --------- (i)

Where;

N = number of turns of the loop

I = current in the loop

A = area of each of the turns

B = magnetic field

θ = angle the loop makes with the magnetic field

From the question;

N = 200

I = 4.0A

B = 0.70T

θ = 30°

A = π d² / 4        [d = diameter of the coil = 2.0cm = 0.02m]

A = π x 0.02² / 4 = 0.0003142m²         [taking π = 3.142]

Substitute these values into equation (i) as follows;

τ = 200 x 4.0 x 0.0003142 x 0.70 sin30°

τ = 200 x 4.0 x 0.0003142 x 0.70 x 0.5

τ = 200 x 4.0 x 0.0003142 x 0.70      

τ = 0.087976 Nm

Therefore, the torque on the coil is 0.087976 Nm

A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal energy generated by the impact remains with the bullet. What is the temperature change of the bullet?

Answers

Explanation:

KE = q

½ mv² = mCΔT

ΔT = v² / (2C)

ΔT = (200 m/s)² / (2 × 236 J/kg/°C)

ΔT = 84.7°C

This question involves the concepts of the law of conservation of energy.

The temperature change of the bullet is "84.38°C".

What is the Law of Conservation of Energy?

According to the law of conservation of energy, total energy of the system must remain constant. Therefore, in this situation.

[tex]Kinetic\ energy\ of\ bullet\ before\ impact=heat\ absorbed\ in\ bullet\\\\\frac{1}{2}mv^2=mC\Delta T\\\\\Delta T = \frac{v^2}{2C}[/tex]

where,

ΔT = change in temperature of the bullet = ?C = specific heat capacity of silver = 237 J/kg°Cv = speed of bullet = 200 m/s

Therefore,

[tex]\Delta T = \frac{(200\ m/s)^2}{2(237\ J/kg.^oC)}[/tex]

ΔT = 84.38°C

Learn more about the law of conservation of energy here:

https://brainly.com/question/20971995

#SPJ2

A car moving at a speed of 25 m/s enters a curve that traces a circular quarter turn of radius 129 m. The driver gently applies the brakes, slowing the car with a constant tangential acceleration of magnitude 1.2 m/s2.a) Just before emerging from the turn, what is the magnitudeof the car's acceleration?
b) At that same moment, what is the angle q between the velocity vector and theacceleration vector?
I am having trouble because this problem seems to have bothradial and tangential accleration. I tried finding the velocityusing V^2/R, but then that didnt take into account thedeceleration. Any help would be great.

Answers

Answer:

8.7 m/s^2

82.15°

Explanation:

Given:-

- The initial speed of the car, vi = 25 m/s

- The radius of track, r = 129 m

- Car makes a circular " quarter turn "

- The constant tangential acceleration, at = 1.2 m/s^2

Solution:-

- We will solve the problem using rotational kinematics. Determine the initial angular velocity of car ( wi ) as follows:

                          [tex]w_i = \frac{v_i}{r} \\\\w_i = \frac{25}{129}\\\\w_i = 0.19379 \frac{rad}{s}[/tex]

- Now use the constant tangential acceleration ( at ) and determine the constant angular acceleration ( α ) for the rotational motion as follows:

                           at = r*α

                           α = ( 1.2 / 129 )

                           α = 0.00930 rad/s^2

- We know that the angular displacement from the initial entry to the exit of the turn is quarter of a turn. The angular displacement would be ( θ = π/2 ).

- Now we will use the third rotational kinematic equation of motion to determine the angular velocity at the exit of the turn (wf) as follows:

                            [tex]w_f^2 = w_i^2 + 2\alpha*theta\\\\w_f = \sqrt{0.19379^2 + 0.00930\pi } \\\\w_f = 0.25840 \frac{rad}{s}[/tex]

- We will use the evaluated final velocity ( wf ) and determine the corresponding velocity ( vf ) as follows:

                            [tex]v_f = r*w_f\\\\v_f = 129*0.2584\\\\v_f = 33.33380 \frac{x}{y}[/tex]

- Now use the formulation to determine the centripetal acceleration ( ac ) at this point as follows:

                            [tex]a_c = \frac{v_f^2}{r} \\\\a_c = \frac{33.3338^2}{129} \\\\a_c = 8.6135 \frac{m}{s^2}[/tex]

- To determine the magnitude of acceleration we will use find the resultant of the constant tangential acceleration ( at ) and the calculated centripetal acceleration at the exit of turn ( ac ) as follows:

                             [tex]|a| = \sqrt{a^2_t + a_c^2} \\\\|a| = \sqrt{1.2^2 + 8.6135^2} \\\\|a| = 8.7 \frac{m}{s^2}[/tex]

- To determine the angle between the velocity vector and the acceleration vector. We need to recall that the velocity vector only has one component and always tangential to the curved path. Hence, the velocity vector is parallel to the tangential acceleration vector ( at ). We can use the tangential acceleration ( at ) component of acceleration ( a ) and the centripetal acceleration ( ac ) component of the acceleration and apply trigonometric ratio as follows:

                          [tex]q = arctan \frac{a_c}{a_t} = arctan \frac{8.7}{1.2} \\\\q = 82.15 ^.[/tex] 

Answer: The angle ( q ) between acceleration vector ( a ) and the velocity vector ( v ) at the exit of the turn is 82.15° .

How do I find an apparent weight in N for a metal connected to a string submerged in water if a scale shows the mass 29.52 g when it is submerged ? Also how do I measure its density

Answers

The Tension of the string is going to be less when submerged in water by a value called the buoyancy force, so below in the attached file is explanation on how to calculate the apparent weight and density of the submerged object

(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Suppose a spring has a natural length of 20 cm. If a 25-N force is required to keep it stretched to a length of 30 cm, how much work is required to stretch it from 20 cm to 25 cm?
(b) Find the area of the region enclosed by one loop of the curve r=2sin(5θ).

Answers

Answer:

a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve [tex]r(\theta) = 2\cdot \sin 5\theta[/tex] is [tex]4\pi[/tex].

Explanation:

a) The work, measured in joules, is a physical variable represented by the following integral:

[tex]W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx[/tex]

Where

[tex]x_{o}[/tex], [tex]x_{f}[/tex] - Initial and final position, respectively, measured in meters.

[tex]F(x)[/tex] - Force as a function of position, measured in newtons.

Given that [tex]F = k\cdot x[/tex] and the fact that [tex]F = 25\,N[/tex] when [tex]x = 0.3\,m - 0.2\,m[/tex], the spring constant ([tex]k[/tex]), measured in newtons per meter, is:

[tex]k = \frac{F}{x}[/tex]

[tex]k = \frac{25\,N}{0.3\,m-0.2\,m}[/tex]

[tex]k = 250\,\frac{N}{m}[/tex]

Now, the work function is obtained:

[tex]W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx[/tex]

[tex]W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}][/tex]

[tex]W = 0.313\,J[/tex]

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.

b) Let be [tex]r(\theta) = 2\cdot \sin 5\theta[/tex]. The area of the region enclosed by one loop of the curve is given by the following integral:

[tex]A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta[/tex]

[tex]A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta[/tex]

By using trigonometrical identities, the integral is further simplified:

[tex]A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta[/tex]

[tex]A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta[/tex]

[tex]A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta[/tex]

[tex]A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)[/tex]

[tex]A = 4\pi[/tex]

The area of the region enclosed by one loop of the curve [tex]r(\theta) = 2\cdot \sin 5\theta[/tex] is [tex]4\pi[/tex].

A loop of wire with cross-sectional area 1 m2 is inserted into a uniform magnetic field with initial strength 1 T. The field is parallel to the axis of the loop. The field begins to grow with time at a rate of 2 Teslas per hour. What is the magnitude of the induced EMF in the loop of wire

Answers

Answer:

The magnitude of the EMF is 0.00055  volts

Explanation:

The induced EMF is proportional to the change in magnetic flux based on Faraday's law:

[tex]emf\,=-\,N\, \frac{d\Phi}{dt}[/tex]

Since in our case there is only one loop of wire, then N=1 and we get:

[tex]emf\,=-\,N\, \frac{d\Phi}{dt}[/tex]

We need to express the magnetic flux given the geometry of the problem;

[tex]\Phi=B\,\,A[/tex]where A is the area of the coil that remains unchanged with time, and B is the magnetic field that does change with time. Therefore the equation for the EMF becomes:

[tex]emf\,=-\,N\, \frac{d\Phi}{dt} = \frac{d\Phi}{dt} =-\frac{d\,(B\,A)}{dt} =-\,A\,\frac{d\,(B)}{dt}=- 1\,m^2(2\,\,T/h})= -2\,\,m^2\,T/(3600\,\,s)= -0.00055\,Volts[/tex]

A proton with an initial speed of 400000 m/s is brought to rest by an electric field.
Part A- Did the proton move into a region of higher potential or lower potential?
Part B - What was the potential difference that stopped the proton?
?U = ________V
Part C - What was the initial kinetic energy of the proton, in electron volts?
Ki =_________eV

Answers

Answer:

moves into a region of higher potential

Potential difference = 835   V

Ki = 835 eV

Explanation:

given data

initial speed = 400000 m/s

solution

when proton moves against a electric field  so that it will move into higher potential  region

and

we know Work done by electricfield  W is express as

W = KE of proton   K

so

q × V   =  0.5 × m × v²     ......................1

put here va lue

1.6 × [tex]10^{-19}[/tex] × V   =   0.5 × 1.67 × [tex]10^{-27}[/tex] × 400000²

Potential difference V = 1.336 × 10-16 / 1.6  × 10-19      

Potential difference = 835   V

and

KE of proton in eV is express as

Ki  =   V numerical

Ki = 835 eV

An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm .
a. If the slits are very narrow, what would be the angular position of the second- order, two-slit interference maxima?
b. Let the slits have a width 0.300 mm. In terms of the intensity lo at the center of the central maximum, what is the intensity at the angular position in part "a"?

Answers

Answer:

a

 [tex]\theta = 0.0022 rad[/tex]

b

 [tex]I = 0.000304 I_o[/tex]

Explanation:

From the question we are told that  

   The  wavelength of the light is [tex]\lambda = 550 \ nm = 550 *10^{-9} \ m[/tex]

    The  distance of the slit separation is  [tex]d = 0.500 \ mm = 5.0 *10^{-4} \ m[/tex]

 

Generally the condition for two slit interference  is  

     [tex]dsin \theta = m \lambda[/tex]

Where m is the order which is given from the question as  m = 2

=>    [tex]\theta = sin ^{-1} [\frac{m \lambda}{d} ][/tex]

 substituting values  

      [tex]\theta = 0.0022 rad[/tex]

Now on the second question  

   The distance of separation of the slit is  

       [tex]d = 0.300 \ mm = 3.0 *10^{-4} \ m[/tex]

The  intensity at the  the angular position in part "a" is mathematically evaluated as

      [tex]I = I_o [\frac{sin \beta}{\beta} ]^2[/tex]

Where  [tex]\beta[/tex] is mathematically evaluated as

       [tex]\beta = \frac{\pi * d * sin(\theta )}{\lambda }[/tex]

  substituting values

     [tex]\beta = \frac{3.142 * 3*10^{-4} * sin(0.0022 )}{550 *10^{-9} }[/tex]

    [tex]\beta = 0.06581[/tex]

So the intensity is  

    [tex]I = I_o [\frac{sin (0.06581)}{0.06581} ]^2[/tex]

   [tex]I = 0.000304 I_o[/tex]

A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of
8 m/s to the east. What is the recoil velocity of the launcher?

Answers

Answer:

1.6 m/s west

Explanation:

The recoil velocity of the launcher is 1.6 m/s west.

What is conservation of momentum principle?

When two bodies of different masses move together each other and have head on collision, they travel to same or different direction after collision.

A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of 8 m/s to the east.

Final momentum will be zero, so

m₁u₁ +m₂u₂ =0

Substitute the values for m₁ = 5kg, m₂ =1kg and u₂ =8 m/s, then the recoil velocity will be

5 x v +1x8 = 0

v = - 1.6 m/s

Thus, the recoil velocity of the launcher is  1.6 m/s (West)

Learn more about conservation of momentum principle

https://brainly.com/question/14033058

#SPJ2

A 1.20 kg water balloon will break if it experiences more than 530 N of force. Your 'friend' whips the water balloon toward you at 13.0 m/s. The maximum force you apply in catching the water balloon is twice the average force. How long must the interaction time of your catch be to make sure the water balloon doesn't soak you

Answers

Answer:

t = 0.029s

Explanation:

In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:

[tex]F=\frac{\Delta p}{\Delta t}=m\frac{\Delta v}{\Delta t}[/tex]       (1)

m: mass of the water balloon = 1.20kg

Δv: change in the speed of the balloon = v2 - v1

v2: final speed = 0m/s (the balloon stops in my hands)

v1: initial speed = 13.0m/s

Δt: interaction time = ?

The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

[tex]|F|=|530N|= |m\frac{v_2-v_1}{\Delta t}|\\\\|530N|=| (1.20kg)\frac{0m/s-13.0m/s}{\Delta t}|\\\\\Delta t=0.029s[/tex]

The interaction time to avoid that the water balloon breaks is 0.029s

at the temperature at which we live, earth's core is solid or liquid?

Answers

Explanation:

The Earth has a solid inner core

What direct current will produce the same amount of thermal energy, in a particular resistor, as an alternating current that has a maximum value of 2.59 A?

Answers

Answer:

The direct current that will produce the same amount of thermal energy is 1.83 A

Explanation:

Given;

maximum current, I₀ = 2.59 A

The average power dissipated in a resistor connected in an AC source is given as;

[tex]P_{avg} = I_{rms} ^2R[/tex]

Where;

[tex]I_{rms} = \frac{I_o}{\sqrt{2} }[/tex]

[tex]P_{avg} = (\frac{I_o}{\sqrt{2} } )^2R\\\\P_{avg} = \frac{I_o^2R}{2} ----equation(1)[/tex]

The average power dissipated in a resistor connected in a DC source is given as;

[tex]P_{avg} = I_d^2R --------equation(2)[/tex]

where;

[tex]I_d[/tex] is direct current

Solve equation (1) and (2) together;

[tex]I_d^2R = \frac{I_o^2R}{2} \\\\I_d^2 = \frac{I_o^2}{2} \\\\I_d=\sqrt{\frac{I_o^2}{2} } \\\\I_d = \frac{I_o}{\sqrt{2}} \\\\I_d = \frac{2.59}{\sqrt{2} } \\\\I_d = 1.83 \ A[/tex]

Therefore, the direct current that will produce the same amount of thermal energy is 1.83 A

Use Kepler's third law to determine how many days it takes a spacecraft to travel in an elliptical orbit from a point 6 590 km from the Earth's center to the Moon, 385 000 km from the Earth's center.

Answers

Answer:

1.363×10^15 seconds

Explanation:

The spaceship travels an elliptical orbit from a point of 6590km from the earth center to the moon and 38500km from the earth center.

To calculate the time taken from Kepler's third Law :

T^2 = ( 4π^2/GMe ) r^3

Where Me is the mass of the earth

r is the average distance travel

G is the universal gravitational constant. = 6.67×10-11 m3 kg-1 s-2

π = 3.14

Me = mass of earth = 5.972×10^24kg

r =( r minimum + r maximum)/2 ......1

rmin = 6590km

rmax = 385000km

From equation 1

r = (6590+385000)/2

r = 391590/2

r = 195795km

From T^2 = ( 4π^2/GMe ) r^3

T^2 = (4 × 3.14^2/ 6.67×10-11 × 5.972×10^24) × 195795^3

= ( 4×9.8596/ 3.983×10^14 ) × 7.5059×10^15

= 39.4384/ 3.983×10^14 ) × 7.5059×10^15

= (9.901×10^14) × 7.5059×10^15

T^2 = 7.4321× 10^30

T =√7.4321× 10^30

T = 2.726×10^15 seconds

The time for one way trip from Earth to the moon is :

∆T = T/2

= 2.726×10^15 /2

= 1.363×10^15 secs

The average density of the body of a fish is 1080kg/m^3 . To keep from sinking, the fish increases its volume by inflating an internal air bladder, known as a swim bladder, with air.
By what percent must the fish increase its volume to be neutrally buoyant in fresh water? Use 1.28kg/m^3 for the density of air at 20 degrees Celsius. (change in V/V)

Answers

Answer:

Increase of volume (F)  = 8.01%

Explanation:

Given:

Density of fish = 1,080 kg/m³

Density of water = 1,000 kg/m³

density of air = 1.28 kg/m³

Find:

Increase of volume (F)

Computation:

1,080 kg/m³  + [F × 1.28 kg/m³ ] = (1+F) × 1,000 kg/m³  

1,080 + 1.28 F =1,000 F + 1,000

80 = 998.72 F

F = 0.0801 (Approx)

F = 8.01%  (Approx)

PLS HELP ILL MARK U BRAINLIEST I DONT HAVE MUCH TIME!!


A football player of mass 103 kg running with a velocity of 2.0 m/s [E] collides head-
on with a 110 kg player on the opposing team travelling with a velocity of 3.2 m/s
[W]. Immediately after the collision the two players move in the same direction.
Calculate the final velocity of the two players.

Answers

Answer:

The final velocity of the two players is 0.69 m/s in the direction of the opposing player.

Explanation:

Since the players are moving in opposite directions, from the principle of conservation of linear momentum;

[tex]m_{1} u_{1}[/tex] - [tex]m_{2}u_{2}[/tex] = [tex](m_{1} + m_{2} )[/tex] v

Where: [tex]m_{1}[/tex] is the mass of the first player, [tex]u_{1}[/tex] is the initial velocity of the first player, [tex]m_{2}[/tex] is the mass of the second player, [tex]u_{2}[/tex] is the initial velocity of the second player and v is the final common velocity of the two players after collision.

[tex]m_{1}[/tex] = 103 kg, [tex]u_{1}[/tex] = 2.0 m/s, [tex]m_{2}[/tex] = 110 kg, [tex]u_{2}[/tex] = 3.2 m/s. Thus;

103 × 2.0 - 110 × 3.2 = (103 + 110)v

206 - 352 = 213 v

-146 = 213 v

v = [tex]\frac{-146}{213}[/tex]

v = -0.69 m/s

The final velocity of the two players is 0.69 m/s in the direction of the opposing player.

1. A ski-plane with a total mass of 1200 kg lands towards the west on a frozen lake at 30.0
m/s. The coefficient of kinetic friction between the skis and the ice is 0.200. How far does
the plane slide before coming to a stop?

Answers

Answer:

d = 229.5 m

Explanation:

It is given that,

Total mass of a ski-plane is 1200 kg

It lands towards the west on a frozen lake at 30.0  m/s.

The coefficient of kinetic friction between the skis and the ice is 0.200.

We need to find the distance covered by the plane before coming to rest. In this case,

[tex]\mu mg=ma\\\\a=\mu g\\\\a=0.2\times 9.8\\\\a=1.96\ m/s^2[/tex]

It is decelerating, a = -1.96 m/s²

Now using the third equation of motion to find the distance covered by the plane such that :

[tex]v^2-u^2=2ad\\\\d=\dfrac{-u^2}{2a}\\\\d=\dfrac{-(30)^2}{2\times -1.96}\\\\d=229.59\ m[/tex]

So, the plane slide a distance of 229.5 m.  

Two identical pendulums have the same period when measured in the factory. While one pendulum swings on earth, the other is taken on a spaceship traveling at 95%% the speed of light. Assume that both pendulums operate under the influence of the same net force and swing through the same angle.
When observed from earth, how many oscillations does the pendulum on the spaceship undergo compared to the pendulum on earth in a given time interval?
a. more oscillations
b. fewer oscillations
c. the same number of oscillations

Answers

Answer:

Explanation:

As a result of impact of time widening, a clock moving as for an observer seems to run all the more gradually than a clock that is very still in the observer's casing.  

At the point when observed from earth, the pendulum on the spaceship takes more time to finish one oscillation.  

Hence, the clock related with that pendulum will run more slow (gives fewer oscillations as observed from the earth)  than the clock related with the pendulum on earth.

Ans => B fewer oscillations

2. A 2.0-kg block slides down an incline surface from point A to point B. Points A and B are 2.0 m apart. If the coefficient of kinetic friction is 0.26 and the block is starting at rest from point A. What is the work done by friction force

Answers

Answer:a

Explanation:

What is the work done in stretching a spring by a distance of 0.5 m if the restoring force is 24N?

Answers

Answer:

3Nm

Explanation:

work = 0.5 x 12 x 0.5 = 3

The work done in stretching the spring by a distance of 0.5 m, with a restoring force of 24 N, is 6 joules.

To calculate the work done in stretching a spring, we can use the formula for work done by a spring:

Work = (1/2) * k *[tex]x^2[/tex]

where:

k = spring constant

x = distance the spring is stretched

Given that the restoring force (F) acting on the spring is 24 N, and the distance the spring is stretched (x) is 0.5 m, we can find the spring constant (k) using Hooke's law:

F = k * x

k = F / x

k = 24 N / 0.5 m

k = 48 N/m

Now, we can calculate the work:

Work = (1/2) * 48 N/m * [tex](0.5 m)^2[/tex]

Work = (1/2) * 48 N/m * [tex]0.25 m^2[/tex]

Work = 6 joules

Therefore, the work done in stretching the spring by a distance of 0.5 m, with a restoring force of 24 N, is 6 joules.

To know more about work done, here

brainly.com/question/2750803

#SPJ2

A coil has resistance of 20 W and inductance of 0.35 H. Compute its reactance and its impedance to an alternating current of 25 cycles/s.

Answers

Answer:

Reactance of the coil is 55 WImpedance of the coil is 59 W

Explanation:

Given;

Resistance of the coil, R = 20 W

Inductance of the coil, L = 0.35 H

Frequency of the alternating current, F = 25 cycle/s

Reactance of the coil is calculated as;

[tex]X_L=[/tex] 2πFL

Substitute in the given values and calculate the reactance [tex](X_L)[/tex]

[tex]X_L =[/tex] 2π(25)(0.35)

[tex]X_L[/tex] = 55 W

Impedance of the coil is calculated as;

[tex]Z = \sqrt{R^2 + X_L^2} \\\\Z = \sqrt{20^2 + 55^2} \\\\Z = 59 \ W[/tex]

Therefore, the reactance of the coil is 55 W and Impedance of the coil is 59 W

In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with:_________.
1. yellow light.
2. red light.
3. blue light.
4. green light.
5. The separation is the same for all wavelengths.

Answers

Answer:

Red light

Explanation:

This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)

5) What is the weight of a body in earth. if its weight is 5Newton
in moon?​

Answers

Answer:

8.167

Explanation:

Given small samples of three liquids, you are asked to determine their refractive indexes. However, you do not have enough of each liquid to measure the angle of refraction for light retracting from air into the liquid. Instead, for each liquid, you take a rectangular block of glass (n= 1.52) and Place a drop of the liquid on the top surface f the block. you shine a laser beam with wavelength 638 nm in vacuum at one Side of the block and measure the largest angle of incidence for which there is total internal reflection at the interface between the glass and the liquid. Your results are given in the table.

Liquid A B C
θ 52.0 44.3 36.3

Required:
a. What is the refractive index of liquid A at this wavelength?
b. What is the refractive index of liquid B at this wavelength?
c. What is the refractive index of liquid C at this wavelength?

Answers

Answer:

A — 1.198B — 1.062C — 0.900

Explanation:

The index of refraction of the liquid can be computed from ...

  [tex]n_i\sin{(\theta_t)}=n_t[/tex]

where ni is the index of refraction of the glass block (1.52) and θt is the angle at which there is total internal refraction. nt is the index of refraction of the liquid.

For the given incidence angles, the computed indices of refraction are ...

  A: n = 1.52sin(52.0°) = 1.198

  B: n = 1.52sin(44.3°) = 1.062

  C: n = 1.52sin(36.3°) = 0.900

Which statement describes one feature of a mineral's definite chemical composition?
It always occurs in pure form.
It always contains certain elements.
It cannot form from living or once-living materials.
It cannot contain atoms from more than one element.
N

Answers

Answer:

It always contains certain elements

Explanation:

Minerals can be defined as natural inorganic substances which possess an orderly internal structural arrangement as well as a particular, well known chemical composition, crystal structures and physical properties. Minerals include; quartz, dolomite, basalt, etc. Minerals may occur in isolation or in rock formations.

Minerals contain specific, well known chemical elements in certain ratios that can only vary within narrow limits. This is what we mean by a mineral's definite chemical composition. The structure of these minerals are all well known as well as their atom to atom connectivity.

The statement describes one feature of a mineral's definite chemical composition - It always contains certain elements.

A mineral is a naturally occurring chemical compound, usually of a crystalline form.

A mineral has one specific chemical composition.chemical composition that varies within a specific limited range and the atoms that make up the mineral must occur in specific ratiosthe proportions of the different elements and groups of elements in the mineral.

Thus, The statement describes one feature of a mineral's definite chemical composition - It always contains certain elements.

Learn more:

https://brainly.com/question/690965

Consider the Earth and the Moon as a two-particle system.

Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon. Assume the Moon lies on the +r-axis. Give the scalar component of the gravitational field. Do not substitute numerical values; use variables only. Use the following as necessary: G, Mm, Me, r, and d for the distance from the center of Earth to the center of the Moon.)"

Answers

sorry but I don't understand

Find the terminal velocity (in m/s) of a spherical bacterium (diameter 1.81 µm) falling in water. You will first need to note that the drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.10 ✕ 103 kg/m3. (Assume the viscosity of water is 1.002 ✕ 10−3 kg/(m · s).)

Answers

Answer:

The terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.

Explanation:

The terminal velocity of the bacterium can be calculated using the following equation:

[tex] F = 6\pi*\eta*rv [/tex]    (1)

Where:

F: is drag force equal to the weight

η: is the viscosity = 1.002x10⁻³ kg/(m*s)

r: is the radium of the bacterium = d/2 = 1.81 μm/2 = 0.905 μm

v: is the terminal velocity

Since that F = mg and by solving equation (1) for v we have:

[tex] v = \frac{mg}{6\pi*\eta*r} [/tex]  

We can find the mass as follows:

[tex] \rho = \frac{m}{V} \rightarrow m = \rho*V [/tex]

Where:

ρ: is the density of the bacterium = 1.10x10³ kg/m³

V: is the volume of the spherical bacterium

[tex] m = \rho*V = \rho*\frac{4}{3}\pi*r^{3} = 1.10 \cdot 10^{3} kg/m^{3}*\frac{4}{3}\pi*(0.905 \cdot 10^{-6} m)^{3} = 3.42 \cdot 10^{-15} kg [/tex]

Now, the terminal velocity of the bacterium is:

[tex] v = \frac{mg}{6\pi*\eta*r} = \frac{3.42 \cdot 10^{-15} kg*9.81 m/s^{2}}{6\pi*1.002 \cdot 10^{-3} kg/(m*s)*0.905 \cdot 10^{-6} m} = 1.96 \cdot 10^{-6} m/s [/tex]

Therefore, the terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.

I hope it helps you!

The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that we can still apply Gauss's law to a Gaussian surface that is entirely within an insulator by replacing the right-hand side of Gauss's law, Qin/eo, with Qin/e, where ε is the permittivity of the material. (Technically, Eo is called the vacuum permittivity.) Suppose that a 70 nC point charge is surrounded by a thin, 32-cm-diameter spherical rubber shell and that the electric field strength inside the rubber shell is 2500 N/C.
What is the permittivity of rubber?

Answers

Answer:

The permittivity of rubber is  [tex]\epsilon = 8.703 *10^{-11}[/tex]

Explanation:

From the question we are told that

     The  magnitude of the point charge is  [tex]q_1 = 70 \ nC = 70 *10^{-9} \ C[/tex]

      The diameter of the rubber shell is  [tex]d = 32 \ cm = 0.32 \ m[/tex]

       The Electric field inside the rubber shell is  [tex]E = 2500 \ N/ C[/tex]

The radius of the rubber is  mathematically evaluated as

              [tex]r = \frac{d}{2} = \frac{0.32}{2} = 0.16 \ m[/tex]

Generally the electric field for a point  is in an insulator(rubber) is mathematically represented as

         [tex]E = \frac{Q}{ \epsilon } * \frac{1}{4 * \pi r^2}[/tex]

Where [tex]\epsilon[/tex] is the permittivity of rubber

    =>     [tex]E * \epsilon * 4 * \pi * r^2 = Q[/tex]

   =>      [tex]\epsilon = \frac{Q}{E * 4 * \pi * r^2}[/tex]

substituting values

            [tex]\epsilon = \frac{70 *10^{-9}}{2500 * 4 * 3.142 * (0.16)^2}[/tex]

            [tex]\epsilon = 8.703 *10^{-11}[/tex]

Other Questions
write a short paragraph on my favourite game The partial receipt below shows the money, in dollars, Ryan spent at an online clothing retailer.PRODUCTQTYPRICETOTALSocks32.006.00V-Neck28.0016.00Shorts115.0015.00What does 8.00 mean in this situation?Choose 1 answer:Ryan bought 8.00 V-Necks,The price of each V-Neck Ryan bought was 8.00 dollars. Which sentence should be revised to improve this paragraph sentence fluency? The graph of a line passes through the two points (-2, 1) and (2, 1). What is the equation of the line written in generalform?Oy - 1= 0Ox-y+1 = 0OX+ y - 1= 0 A population consists of 500 elements. We want to draw a simple random sample of 50 elements from this population. On the first selection, the probability of an element being selected is A. 0.100 B. 0.010 C, 0.001 D. 0.002 In a game the average score was 60 time score was 5/2 of the average what was Tims score? ILL MARK YOU BRAINLIEST :))))) if you apply the changes below to the linear parent function, f(x)=|x|, what is the equation of the new function Shift 4 units left Shift 2 units up An electron has an initial velocity of (17.1 + 12.7) km/s, and a constant acceleration of (1.60 1012 m/s2) in the positive x direction in a region in which uniform electric and magnetic fields are present. If = (529 T) find the electric field . A line is defined by the equation 2x + 4y = -8. Determine the equation ofanother line that will creare a linear system with(a) no solution(b) many solucions(c) one solution Which function is graphed below? The following totals for the month of April were taken from the payroll register of Magnum Company. Use this information to answer the question that follow. Salaries $12,000 FICA taxes withheld 900 Income taxes withheld 2,500 Medical insurance deductions 450 Federal unemployment taxes 32 State unemployment taxes 216 The journal entry to record the monthly payroll on April 30 would include a:_______. a. debit to Salaries Payable for $7,902 b. debit to Salaries Expense for $7,902 c. debit to Salaries Payable for $8,150 d. credit to Salaries Payable for $8,150 Is this function linear or nonlinear y=1/2x^{2} will give brainliest Work out x. Give reasons for your answer. Identify each person below as structurally, frictionally, or cyclically unemployed. a. Jake recently lost his job as a dishwasher. Minimum-wage legislation keeps employers from adding more of the low-skill positions for which he qualifies, so he has been unable to find work. b. Rosa is a real estate agent. House sales in her area have declined because the region has been going through a recession. She has no clients and is currently looking for a new full-time job. c. Latasha just graduated from college and is looking for a full-time position with an investment banking firm. (a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Suppose a spring has a natural length of 20 cm. If a 25-N force is required to keep it stretched to a length of 30 cm, how much work is required to stretch it from 20 cm to 25 cm?(b) Find the area of the region enclosed by one loop of the curve r=2sin(5). Dawn is going scuba diving. Which situation would be modeled by a positive number? Given small samples of three liquids, you are asked to determine their refractive indexes. However, you do not have enough of each liquid to measure the angle of refraction for light retracting from air into the liquid. Instead, for each liquid, you take a rectangular block of glass (n= 1.52) and Place a drop of the liquid on the top surface f the block. you shine a laser beam with wavelength 638 nm in vacuum at one Side of the block and measure the largest angle of incidence for which there is total internal reflection at the interface between the glass and the liquid. Your results are given in the table.Liquid A B C 52.0 44.3 36.3Required:a. What is the refractive index of liquid A at this wavelength? b. What is the refractive index of liquid B at this wavelength? c. What is the refractive index of liquid C at this wavelength? The world record for the largest collection of bookmarks is 71 235 bookmarks. Find the closest benchmark for each: a) in thousands _______________ b) in hundreds _______________ c) in tens _______________ LM=9, NR=16, SR=8. Find the perimeter of SMP.HURRY FIRST ANSWER I WILL MARK YOU AS BRAINLILIST PROMISE A researcher was interested in comparing the resting pulse rates of people who exercise regularly and people who do not exercise regularly. Independent simple random samples of 16 people ages 30 dash 40 who do not exercise regularly and 12 people ages 30 dash 40 who do exercise regularly were selected, and the resting pulse rate (in beats per minute) of each person was measured. The summary statistics are to the right. Apply the nonpooled t-interval procedure to obtain a 95% confidence interval for the difference, mu 1 minus mu 2, between the mean pulse rate of people who do not exercise and the mean pulse rate of people who do exercise. Assume that the requirements for using the procedure are satisfied and round to two decimal places.