Answer:
Third option is correct.
Step-by-step explanation:
Take a closer look at the box plot given in the question. The range of the values represented in the box plot is starts from where the whiskers begins from our left, and where the whiskers to our right ends. The range of values of the points awarded ranges from 0 - 100, as represented on the box plox. Also,the median is indicated by the vertical line that divides the rectangular box into two. The median point = 70.
Now, examine all the dot plots given as options. The dot plot that has a range of 0 - 100, and a median of 70, is the dot plot that best represents the box plot.
Thus, the third option among the answer choices given would be out answer. The third option shows a dot plot with range of values of points from 0 - 100, and also a median of 70 points.
Destiny draws the lagrest circle she can inside of a square. The circle has a diamater of 12 in. The square is 12 in. By 12in. What is the area of the square Not covered by the circle
Answer:
30.96 [tex]in^2[/tex]
Step-by-step explanation:
Given that
Side of square = 12 in
Diameter of circle = 12 in
We know that, radius is half of diameter,
So, r = 6 cm
We have to find the area of square which is not covered by the circle.
i.e. Required Area = Area of Square - Area of Circle
Please refer to the attached to have a better understanding of the given situation.
Formula:
Area of square = [tex](side)^2[/tex]
Area of circle = [tex]\pi r^2[/tex]
Required Area = [tex]12^2[/tex] - [tex]\pi \times 6^{2}[/tex]
[tex]\Rightarrow 144 - 3.14 \times 36\\\Rightarrow 144 - 113.04\\\Rightarrow 30.96\ in^2[/tex]
So, the answer is 30.96 [tex]in^2[/tex].
PLEASE HELP ASAP!:
Solve for a and b
6a-b=-5
4a-3b = -8
Answer:
a = -1/2
b = 2
Step-by-step explanation:
Step 1: Rewrite 1st equation
-b = -5 - 6a
b = 5 + 6a
Step 2: Substitution
4a - 3(5 + 6a) = -8
Step 3: Solve
4a - 15 - 18a = -8
-14a - 15 = -8
-14a = 7
a = -1/2
Step 4: Plug in a to find b
6(-1/2) - b = -5
-3 - b = -5
-b = -2
b = 2
Please help me get the right answer
Answer:
A
Step-by-step explanation:
When multiplying numbers with exponents, the exponents add together. This means that the correct answer is letter A.
Derive the equation of the parabola with a focus at (6, 2) and a directrix of y = 1. f(x) = −one half(x − 6)2 + three halves f(x) = one half(x − 6)2 + three halves f(x) = −one half(x + three halves)2 + 6 f(x) = one half(x + three halves)2 + 6
Answer:
Second choice.
f(x) = 1/2(x - 6)^2 + 3/2.
Step-by-step explanation:
The distance of a point (x, y) from the focus = the distance of the point from the directrix, so:
(x - 6)^2 + (y - 2)^2 = (y - 1)^2
x^2 - 12x + 36 + y^2 - 4y + 4 = y^2 - 2y + 1
x^2 -12x + 39 = 2y
y = f(x) = 1/2 (x^2 - 12x + 39)
I see you want the answer in vertex for so it is:
f(x) = 1/2 [ (x - 6)^2 - 36) + 39)
f(x) = 1/2(x - 6)^2 + 3)
f(x) = 1/2(x - 6)^2 + 3/2.
A parabola is a plane that is approximately U-shaped.
The equation of the parabola is: [tex]\mathbf{y = \frac{1}{2}(x - 6)^2 + \frac 32}[/tex]
The given parameters are:
[tex]\mathbf{Focus = (6,2)}[/tex]
[tex]\mathbf{Directrix: y = 1}[/tex]
First, equate the directrix to 0
[tex]\mathbf{y - 1 = 0}[/tex]
The equation is then calculated as:
[tex]\mathbf{(x - a)^2 + (y - b)^2 = (y- 1)^2}[/tex]
Where:
[tex]\mathbf{(a,b) = (6,2)}[/tex]
So, we have:
[tex]\mathbf{(x - 6)^2 + (y - 2)^2 = (y- 1)^2}[/tex]
Expand
[tex]\mathbf{x^2 - 12x +36 + y^2 - 4y + 4 = y^2 - 2y + 1}[/tex]
Subtract y^2 from both sides
[tex]\mathbf{x^2 - 12x +36 - 4y + 4 =- 2y + 1}[/tex]
Collect like terms
[tex]\mathbf{x^2 - 12x +36 + 4 - 1 =4y - 2y}[/tex]
[tex]\mathbf{x^2 - 12x +39 =2y}[/tex]
Divide through by 2
[tex]\mathbf{y = \frac{1}{2}(x^2 - 12x +39)}[/tex]
Express 39 as 36 + 3
[tex]\mathbf{y = \frac{1}{2}(x^2 - 12x +36 + 3)}[/tex]
Factor out 3/2
[tex]\mathbf{y = \frac{1}{2}(x^2 - 12x +36) + \frac 32}[/tex]
Expand the bracket
[tex]\mathbf{y = \frac{1}{2}(x^2 - 6x - 6x +36) + \frac 32}[/tex]
Factorize
[tex]\mathbf{y = \frac{1}{2}(x(x - 6) - 6(x -6)) + \frac 32}[/tex]
Factor out x - 6
[tex]\mathbf{y = \frac{1}{2}((x - 6) (x -6)) + \frac 32}[/tex]
Express as squares
[tex]\mathbf{y = \frac{1}{2}(x - 6)^2 + \frac 32}[/tex]
Hence, the equation of the parabola is: [tex]\mathbf{y = \frac{1}{2}(x - 6)^2 + \frac 32}[/tex]
Read more about equations of parabola at:
https://brainly.com/question/4074088
I need this ASAP! When David was asked how old he was, he said: "I'm three times younger than my dad, but twice as old as Rebecca." Then little Rebecca ran up to him and declared "I am 30 years younger than my dad." How old is David?
Answer:
David is 12 years old.
Step-by-step explanation:
Let r = Rebecca's age
Let d = David's age
let p = Dad's age
David is 3 times as younger than his dad:
d = [tex]\frac{p}{3}[/tex]
David is 2 times older than Rebecca:
d = 2r
Rebecca is 30 years younger than the dad:
r = p-30
All three equations can be solved by a system
2r = [tex]\frac{p}{3}[/tex]
r = p-30
multiplying r = p-30 by negative 2 and adding it to 2r = [tex]\frac{p}{3}[/tex]
0 = (-2p + p/3) + 60
multiplying new equation by 3
0 = (-6p + p) + 180
5p = 180
p = 36
d = 36/3 = 12
Can someone help me out with this please
Answer:
143.81
Step-by-step explanation:
Trapezoid Area
A = 2b/2 * h
A = 9 + 23/2 * 7
A = 32/2 * 7
A = 16 * 7
A = 112
Semi-circle Area
A = πr²/2
A = π4.5²/2
A = π20.25/2
A = 63.62/2
A = 38.81
Total Area
112 + 38.81
143.81
PLEASE HELP!!!
What is the third quartile for this data set?
Answer:
38
Step-by-step explanation:
Using the five number summary it is 38 since it is 75 percent of the sample
You have the correct answer. Nice work
==========================================================
Explanation:
If the values aren't sorted, then list them from smallest to largest. The values are already sorted for us, so we move onto the next step.
That next step is to find the median. The median is 29 because four values are smaller than it, and four values are larger than it. The value 29 is right in the middle. This value is in slot 5.
Next, split the data into two halves where L = {21,24,25,28} is the lower half and U = {35,37,39,42} is the upper half. As you can see, any value in set L is smaller than the median. While any value in set U is larger than the median.
The third quartile is the median of set U. We have four values in this set, so the median will be between slots 3 and 4 (between 37 and 39)
Average 37 and 39 to get (37+39)/2 = 38. We see that 38 is the midpoint of 37 and 39.
Therefore, the third quartile is 38.
A zoo has a menagerie containing four pairs of different animals, one male and one female for each. The zookeeper wishes to feed the animals in a specific pattern: each time he feeds a single animal, the next one he feeds must be a different gender. If he starts by feeding the male giraffe, how many ways can he feed all the animals?
Answer:
144
Step-by-step explanation:
We will use permutations to solve this problem
There are 4 pairs each having a male and a female.
The total number of sample points is 4! = 4*3*2*1= 24
He chooses the male first then the number of sample space he is left with are 3! = 3*2*1=6
The total number of ways he can select is 4! 3! = 24 * 6= 144
Another way of finding it out is
he has 4 pairs each having a male and a female so he chooses 1st male then he would choose from this
4 female choices*3 male choices * 3 female choices *2 male choices *2 female choices *1 male choices *1 female choices *= 4*3*3*2*2*1*1= 144
The zookeeper can feed all the animals in 144 ways
The number of different animals is given as:
[tex]n = 4[/tex]
The number of ways to feed any of the 4 male animals is:
[tex]Ways = 4![/tex]
Expand
[tex]Ways = 4 \times 3 \times 2 \times 1[/tex]
[tex]Ways = 24[/tex]
From the question, we understand that the female of the particular animal cannot be selected (yet).
So, there are 3 female animals left.
The number of ways to feed any of the 3 female animals is:
[tex]Ways = 3![/tex]
Expand
[tex]Ways = 3 \times 2 \times 1[/tex]
[tex]Ways = 6[/tex]
So, the number (n) of ways to feed all the animals is:
[tex]n = 24 \times 6[/tex]
[tex]n = 144[/tex]
Hence, he can feed all the animals in 144 ways
Read more about permutation at:
https://brainly.com/question/11706738
What is the explicit formula for this sequence?
5, 10, 20, 40, 80, 160,...
O A. an = 5 + 5(n-1)
O B. an = 2(5)(n-1)
O c. an = 5(2)"
D. an = 5(2)(n = 1)
Step-by-step explanation:
The above sequence is a geometric sequence
For an nth term in a geometric sequence
[tex] a(n) = a ({r})^{n - 1} [/tex]
where
n is the number of terms
a is the first term
r is the common ratio
From the question
a = 5
r = 10/5 = 2
Therefore the explicit formula for this sequence is
[tex]a(n) = 5( {2})^{n - 1} [/tex]
Hope this helps you
is 0.14 rational and irrational
Answer:
Rational.
Step-by-step explanation:
Irrational numbers are real numbers that can't be written as fractions.
One clue is that the decimal goes on forever (doesn't terminate) without repeating. (pi)
.14 can be written as a fraction: 14/100
Answer:
It's rational
Step-by-step explanation:
Because irrational numbers cannot be written s a fraction and rational numbers can
A rectangle has an area of 524.4m2. One of the sides is 6.9m in length. Work out the perimeter of the rectangle. PLEASE ANSWER!!! SOON ASAP
Answer:
165.8 mSolution,
Area of rectangle= 524.4 m^2
Length(L)= 6.9 m
Breadth(B)=?
Now,
[tex]area = length \times breadth \\ or \: 524.4 = 6.9 \times b \\ or \: 524.4 = 6.9b \\ or \: b = \frac{524.4}{6.9} \\ b = 76 \: m[/tex]
Again,
Perimeter of rectangle:
[tex]2(l + b) \\ = 2(6.9 + 76) \\ = 2 \times 82.9 \\ = 165.8 \: m[/tex]
Hope this helps...
Good luck on your assignment.....
Answer:
The perimeter of the rectangle is 165.8cm
Step-by-step explanation:
Area of a rectangle = length × width
Area = 524.4m²
length = 6.9m
524.4 = 6.9 × width
width = 524.4 / 6.9
width = 76m
Perimeter of a rectangle =
2(length ) + 2(width)
length = 6.9m
width = 76m
Perimeter = 2( 6.9) + 2(76)
= 13.8 + 152
The final answer is
= 165.8cm
Hope this helps you
PLEASE HELP! ! ! PLEASEEE!!
Answer:
4^2
Step-by-step explanation:
4^4 times 4^3 is equal to 4^7 since you just add the exponents. Then, when dividing, you subtract the exponents, so 4^7/4^5 is 4^2. I hope this is helpful!
Answer:
the answer is
Step-by-step explanation:
4 to the power of 2
you add 4 and 3 which is 7
and 7 subtract 5 which is
4 to the power of 2
Find the measure of angle b.
your answer_____
Answer:
b = 131
Step-by-step explanation:
The two angles form a straight line so they add to 180 degrees
b+49 = 180
Subtract 49 from each side
b = 180-49
b =131
Answer:
Angle b is 131°
Step-by-step explanation:
Angles on a straight line add up to 180°
To find b add 49 and b and equate it to 180°
That's
b + 49 = 180
b= 180 - 49
b = 131°
Hope this helps you
Please help with this 3a² = 27. Find a
Answer:
[tex]a = 3[/tex]
Step-by-step explanation:
[tex]3 {a}^{2} = 27 \\ \frac{3 {a}^{2} }{3} = \frac{27}{3} \\ {a}^{2} = 9 \\ a = \sqrt{9} \\ a = 3[/tex]
Answer: 9
Step-by-step explanation:
First divide both sides by 3
[tex]a^2=9[/tex]
Then root both sides([tex]\sqrt{a^2}=\sqrt{9}[/tex])
a = 9
Hope it helps <3
Edit: :o this is my 250th answer
1)How many pinches of salt would be in 24 servings?
2) How many eggs would be needed to serve 18 people?
3) If you only had 33g of flour, how much of the other
ingredients would you need?
4) If 2 eggs were used, how many grams of flour would be
needed?
5) How much flour would be needed if 900ml milk is used?
HELP!!
Answer:
1. 2 pinch of salt
2. 3/2 egg =1.5 eggs
3. 33g of flour=1/3 pinch of salt
33g of flour=1/3 tbsp of oil
33g of flour=1/3 egg
33g of flour=100ml of milk
4. 24 servings
5. 300g of flour
Step-by-step explanation:
12 servings
Plain flour=100g
Salt=a pinch
Oil= 1 tbsp
Egg=1
Milk=300 ml
1. Pinches of salt in 24 servings
24
12 servings=1 pinch of salt
24 servings=24/12*1 pinch of salt
=2*1 pinch of salt
=2 pinch of salt
2. Egg needed for 18 servings
12 servings=1 egg
18 servings=18/12 * 1 egg
=3/2* 1 egg
=3/2 egg
3. If there are 33 grams of flour,
The other ingredients will be
33g/100g=1/3
The other ingredients will be 1/3 of the original measurement
Salt=a pinch
33g of flour=1/3 pinch of salt
Oil= 1 tbsp
33g of flour=1/3 tbsp of oil
Egg=1
33g of flour=1/3 egg
Milk=300 ml
33g of flour=1/3 of 300ml
=1/3*300
=300/3
=100ml of milk
4. If two eggs were used, grams of flour needed is
1 egg =12 servings
2 eggs=2* 12 servings
=24 servings
5. Flour needed if 900ml milk is used
100g flour=300ml of milk
900ml of milk=300ml * 3
Therefore,
900ml of milk=100g of flour *3
900ml of milk=300g of flour
There are 2 Senators from each of 50 states. We wish to make a 3-Senator committee in which no two members are from the same state. b How many ways can we choose a Senator from a chosen state? HELP AS SOON AS POSSIBLE
Answer:
i dont get it, can you please rephrase it?
I am between 8 o clock in the morning and 3:00 in the afternoon .My number of minutes is odd i am more than half an hour away from the next o clock i am closer to 5pm than to 5am what time am i ?
Answer:
1:00 PM
Step-by-step explanation:
According to the conditions given in the question, i confirm that the time time asked here is 1:00 PM.
at 1:00 PM, its 5 minutes (odd), clearly, more than half an hour away from the next o clock. It is closer to 5 PM than 5 AM.
find the length asap
Answer:
[tex]\boxed{BC = 11.62}[/tex]
Step-by-step explanation:
Tan 54 = [tex]\frac{opposite}{adjacent}[/tex]
Where opposite = 16, Adjacent = BC
1.376 = [tex]\frac{16}{BC}[/tex]
BC = 16/1.376
BC = 11.62
Answer:
11.62468045 or 11.6 to 1 decimal place
Step-by-step explanation:
→ We need to utilise trigonometry. The first step would be to list out the formula triangles
Tan = Opposite ÷ Adjacent
Sin = Opposite ÷ Hypotenuse
Cos = Adjacent ÷ Hypotenuse
→ Now we need to know which triangle to use, we do that by identifying the side or length we are not given in the triangle and then finding a formula without the name of the given side. First let's identify all the sides.
Opposite = AC = 16
Adjacent = BC = We need to find this out
Hypotenuse = AB = No given value
→ Now we look for a formula with hypotenuse
Tan = Opposite ÷ Adjacent
→ The (Tan = Opposite ÷ Adjacent) is the formula we are going to be using. Since we want to find out the adjacent, we have to rearrange to get adjacent as the subject
Adjacent = Opposite ÷ Tan
→ Now we identify the Opposite and the Tan
Opposite = 16
Tan = 54°
Side note ⇒ Sin, cos and tan will always be the angles
→ Substitute in the values in the formula
Adjacent = Opposite ÷ Tan ⇔ Adjacent = 16 ÷ Tan (54) ⇔ Adjacent = 11.6
→ The adjacent is 11.6 to 1 decimal place
A SQUARE CARPET IS LAID IN ONE CORNER OF A RECTANGULAR ROOM, LEAVING STRIPS OF UNCOVERED FLOOR 2M WIDE ALONG ONE SIDE AND 1M ALONG OTHER . THE AREA OF THE ROOM IS 56m SQUARED .FIND THE DIMENSIONS OF THE CARPET
Answer:
Step-by-step explanation:
A square has equal sides. Let x represent the length of each side of the square carpet. The diagram representing the room and the carpet is shown in the attached photo. Therefore, the length of the room would be (x + 2)m while the width of the room would be (x + 1)m
Since the area of the room is 56m², it means that
(x + 2)(x + 1) = 56
x² + x + 2x + 2 = 56
x² + 3x + 2 - 56 = 0
x² + 3x - 54 = 0
x² + 9x - 6x - 54 = 0
x(x + 9) - 6(x + 9) = 0
x - 6 = 0 or x + 9 = 0
x = 6 or x = - 9
Since the dimension of the carpet cannot be negative, then x = 6
The dimension of the carpet is 6m × 6m
help me answer this question please with full working
Answer:
A y=1/2x(powerof)2+5
B 17.5
C x=√42 or x=−√42
Step-by-step explanation:
Answer:
a. y = x^2 + 10
b. when x=5, y = 35
c. when y = 26, x = +4 or -4
Step-by-step explanation:
Given
y = k (x^2/2 + 5), and
(2,14) is on the curve.
Solution:
Substitute x=2 and y=14 in the above equation
14 = k (2^2/2 + 5)
14 = k (2+5)
14 = 7k
k = 14/7 = 2
a. equation connecting x and y is
y = 2 (x^2/2 + 5), or
y = x^2 + 10
b. when x=5
y = 5^2 + 10 = 25 + 10 = 35
c. when y = 26
26 = x^2 + 10
x^2 = 26-10 = 16
x= sqrt(16) = +4 or -4
Which binomial is a factor of 9x2 - 64?
COM
3x - 8
9x - 32
3x + 32
9x + 8
Answer:
3x - 8
Step-by-step explanation:
9x² - 64 is a perfect square binomial
3x - 8 and 3x + 8 are the factors
First factor the 2nd degree polynomial.
[tex]9x^2-64=(3x-8)(3x+8)[/tex]
We find that polynomial is factored to two binomials:
[tex]3x-8[/tex][tex]3x+8[/tex]Hope this helps.
There are 6 women and 9 men eligible to be in a committee of 5. Find the expected number of women on the committee given that at least one woman must be on the committee. Round the probabilities of the distribution to four decimal places or keep them as fractions. Round the answer to two decimal places.
Answer:
P = 0.2517
Step-by-step explanation:
In this case we must calculate the probability of event, which would be the number of specific events (that is, at least one woman and the rest men, 4), then it would be to choose 1 of 6 women by 4 of 9 men divided by the number of total events, which would be to choose 5 (committee size) out of 15 (9 men + 6 women, total number of people)
P (at least one woman) = 6C1 * 9C4 / 15C5
we know that nCr = n! / (r! * (n-r)!)
replacing we have:
6C1 = 6! / (1! * (6-1)!) = 6
9C4 = 9! / (4! * (9-4)!) = 126
15C5 = 15! / (5! * (15-5)!) = 3003
Therefore it would be:
P (at least one woman) = 6 * 126/3003
P = 0.2517
That is, approximately 1 out of 4 women.
PLZ HELP ME!!! I WILL NAME BRAINLIEST! (:
Answer:
Options 2, 4, and 5 are correct (from top to bottom)
Step-by-step explanation:
g(0)=0
g(1)=1
g(-1)=1
g(4)≠-2
g(4)=2
g(1)≠-1
g(1)=1
Options 2, 4, and 5 are correct (from top to bottom)
(1) 10x’y' + 15xy? :
Answer:
factor: 5(2x'y'+3xy)
Step-by-step explanation:
thats for factoring, i didnt know what you needed
Answer:
25xy
Step-by-step explanation:
collect like terms
Grey’s Labs is testing a new growth inhibitor for a certain type of bacteria. The bacteria naturally grows exponentially at a rate of 4.7% each hour. The lab technicians know that the growth inhibitor will make the growth rate of the bacteria less than or equal to its natural growth rate. The current sample contains 90 bacteria. Once a standard tube contains more than 270 bacteria, the sample will stop growing. So, to analyze the effect of the inhibitor over longer spans of time, the lab technicians move the bacteria to larger containers, essentially increasing the container size at a constant rate. This adaptation accommodates 100 more bacteria each hour. The research team wants to track the number of bacteria over time given these two conditions. Select the two inequalities they can use to model this situation.
P ≥ 90e^(0.047t)
P ≤ 270 + 100t
P ≤ 270 – 100t
P ≤ 0.047e^(90t)
P ≤ 90e^(0.047t)
Answer:
The two inequalities are;
P ≤ 90e^(0.047t)
P ≤ 270 + 100·t
Step-by-step explanation:
The parameters given for the testing of the new growth inhibitor are;
The growth rate of the bacteria = 4.7% exponentially
The growth inhibitor lowers the growth rate
The population of bacteria after time, t = P
The increase in the number of bacteria per unit time in the 100
The maximum number of bacteria in the standard tube = 270
Therefore, the number of bacteria after the first filling of the tube is P ≤ 270 + 100·t
The equation for exponential growth is [tex]A_0 e^{kt}[/tex]
Where:
A₀ = Initial population = 90
k = Percentage growth rate as percentage
t = Time
The equation for the population of bacteria under the influence of the inhibitor is therefore;
P ≤ [tex]90 \times e^{0.047 \cdot t}[/tex] which is P ≤ 90e^(0.047t).
Answer:
P≤270+100t
P≤90e^(0.047t)
Find the slope of the line that passes through (–7, 1) and (7, 8)
Answer:
slope= 1/2x
Step-by-step explanation:
For this line, you can count it going up 7 and to the right 14. Next, to calculate the slope, you take the change in y over the change in x, and you take those numbers (7 and 14) and divide 7 by 14 to get the slope, which simplifies to 1/2x, the slope.
Answer:
1/2
Step-by-step explanation:
The slope formula is:
[tex]m=\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
where (x1,y1) and (x1, y2) are 2 points the line passes through.
We are given the points:
(-7,1) and (7,8). Match the corresponding variables with the points.
x1= -7
y1= 1
x2= 7
y2= 8
Substitute these values into the formula.
[tex]m=\frac{8-1 }{7--7 }[/tex]
Solve the numerator first. Subtract 1 from 8.
[tex]m=\frac{7 }{7--7 }[/tex]
Now solve the denominator. Subtract -7 from 7, or add 7 and 7.
[tex]m=\frac{7}{7+7}[/tex]
[tex]m=\frac{7}{14}[/tex]
This fraction can be simplified. Both 7 and 14 can be divided evenly by 7.
[tex]m= \frac{(7/7)}{(14/7)}[/tex]
[tex]m=\frac{1}{2}[/tex]
The slope of the line is 1/2.
Which of these sets of side lengths are pythagorean triples!
Hey there! :)
Answer:
Choices 1, 4 and 5.
Step-by-step explanation:
To solve, we can go through each answer choice and check if they are Pythagorean Triples using the Pythagorean Theorem:
1) 26² = 10² + 24²
676 = 100 + 576
676 = 676. This is correct.
2) 49² = 14² + 48²
2401 = 196 + 2304
2401 ≠ 2500. This is incorrect.
3)
16² = 12² + 9²
256 = 144 + 81²
256 ≠ 225. This is incorrect.
4)
41² = 40² + 9²
1681 = 1600 + 81
1681 = 1681. This is correct.
5)
25² = 15² + 20²
625 = 225 + 400
625 = 625. This is correct.
Therefore, choices 1, 4 and 5 are correct.
Answer:
A, D, and E.
Step-by-step explanation:
The triangular prism has a volume of 27 cubic units. A triangular prism. What will be the volume of the prism if each side is dilated by a factor One-third? 1 cubic unit 3 cubic units 8 cubic units 9 cubic units
Answer:
Option (2)
Step-by-step explanation:
Volume of a prism A (preimage) = 27 cubic units
Factor of dilation of the sides of this prism (image) = [tex]\frac{1}{3}[/tex]
Volume scale factor of these prisms = [tex]\frac{\text{Volume of image}}{\text{Volume of preimage}}[/tex]
Since, Volume scale factor = (Scale factor of dilation of the sides)³
= [tex](\frac{1}{3})^3[/tex]
= [tex]\frac{1}{9}[/tex]
Now from the formula of volume scale factor,
[tex]\frac{1}{9}=\frac{\text{Volume of image}}{\text{Volume of preimage}}[/tex]
[tex]\frac{1}{9}=\frac{\text{Volume of image}}{27}[/tex]
Volume of the image prism = [tex]\frac{27}{9}[/tex] = 3 cubic units
Therefore, Option (2) will be the answer.
Answer:
1 cubic unit
Step-by-step explanation:
Find the value of x in the following
a) x:2 = 10:4 b) 3:x= 6:8
Answer:
a) x = 5
b) x = 4
Step-by-step explanation:
a) x:2 = 10:4
Product of extremes = Product of means
=> x*4 = 10*2
=> 4x = 20
Dividing both sides by 4
=> x = 5
b) 3:x = 6:8
Product of extremes = Product of Means
=> 3*8 = 6*x
=> 24 = 6x
Dividing both sides by 6
=> x = 4
Answer:
a. X= 5b. X= 4Solution,
[tex]a. \: \: \frac{x}{2} = \frac{10}{4} \\ \: \: or \: x \times 4 = 10 \times 2 \: ( \: cross \: multiplication) \\ \: \: or \: 4x = 20 \\ or \:x = \frac{20}{4} \\ \: \: \: x = 5[/tex]
[tex]b. \: \frac{3}{x} = \frac{6}{8} \\ or \: 6 \times x = 3 \times 8 \: ( \: cross \: multiplication) \\ or \: 6x = 24 \\ \: or \: x = \frac{24}{6} \\ x = 4[/tex]
Hope this helps...
Good luck on your assignment
Complete the table of values below: x -3 -2 -1 0 1 2 3 How the graph relates to y=2x y=2x Answer Answer Answer Answer Answer Answer Answer Not applicable y=-2x Answer Answer Answer Answer Answer Answer Answer multiplied by Answer y=(3)(2x)
Answer:
The values of x are:
x : -3, -2, -1, 0, 1, 2, 3
Let's solve each by putting each value of x into each equation:
a [tex]y = 2^x[/tex]
> x = -3
=> y = 2^(-3) = 1/8
> x = -2
=> y = 2^(-2) = 1/4
> x = -1
=> y = 2^(-1) = 1/2
> x = 0
=> y = 2^0 = 1
> x = 1
=> y = 2^1 = 2
> x = 2
=> y = 2^2 = 4
> x = 3
=> y = 2^3 = 8
b. [tex]y = -2^x[/tex]
> x = -3
=> y = -2^(-3) = -1/8
> x = -2
=> y = -2^(-2) = -1/4
> x = -1
=> y = -2^(-1) = -1/2
> x = 0
=> y = -2^0 = -1
> x = 1
=> y = -2^1 = -2
> x = 2
=> y = -2^2 = -4
> x = 3
=> y = -2^3 = -8
c. [tex]y = (3)(2^x)[/tex]
> x = -3
=> y = 3 * 2^(-3) = 3 * 1/8 = 3/8
> x = -2
=> y = 3 * 2^(-2) = 3 * 1/4 = 3/4
> x = -1
=> y = 3 * 2^(-1) = 3 * 1/2 = 3/2
> x = 0
=> y = 3 * 2^0 = 3 * 1 = 3
> x = 1
=> y = 3 * 2^1 = 3 * 2 = 6
> x = 2
=> y = 3 * 2^2 = 3 * 4 = 12
> x = 3
=> y = 3 * 2^3 = 3 * 8 = 24
Input these values into the table.
Answer:
a y = 2^x
> x = -3
=> y = 2^(-3) = 1/8
> x = -2
=> y = 2^(-2) = 1/4
> x = -1
=> y = 2^(-1) = 1/2
> x = 0
=> y = 2^0 = 1
> x = 1
=> y = 2^1 = 2
> x = 2
=> y = 2^2 = 4
> x = 3
=> y = 2^3 = 8
b. y = -2^x
> x = -3
=> y = -2^(-3) = -1/8
> x = -2
=> y = -2^(-2) = -1/4
> x = -1
=> y = -2^(-1) = -1/2
> x = 0
=> y = -2^0 = -1
> x = 1
=> y = -2^1 = -2
> x = 2
=> y = -2^2 = -4
> x = 3
=> y = -2^3 = -8
c. y = (3)(2^x)
> x = -3
=> y = 3 * 2^(-3) = 3 * 1/8 = 3/8
> x = -2
=> y = 3 * 2^(-2) = 3 * 1/4 = 3/4
> x = -1
=> y = 3 * 2^(-1) = 3 * 1/2 = 3/2
> x = 0
=> y = 3 * 2^0 = 3 * 1 = 3
> x = 1
=> y = 3 * 2^1 = 3 * 2 = 6
> x = 2
=> y = 3 * 2^2 = 3 * 4 = 12
> x = 3
=> y = 3 * 2^3 = 3 * 8 = 24
Step-by-step explanation: