Answer:
(6, ....... ) ( -3, .........) ( 1, .......)
x,y values therefore = (6, 29) ( -3, -34) (1, -6)
as x = 0 when y = -13
we simply x 6 into equation to find 30
y = 7 x 6 -13
y = 42 - 13
y = 29
Then for -3 we simply x by -3 to find y
y = 7 x -3 -13
y = -21 - 13
y = -34
then for 1 we simply x by 1 to find y
y = 7 x 1 -13
y = 7 - 13
y = -6
y = 7x - 13
Step 1) Set above equation equal to 0 by remembering the methods;
Solve y-7x+13 = 0
Step 2) Calculate the y intercept;
Notice that when x = 0 the value of y is -13/1 so this line "cuts" the y axis at y=-13.00000 see attached to help memorize.
Step 3) Calculate the X-Intercept :
When y = 0 the value of x is 13/7 Our line therefore "cuts" the x axis at x= 1.85714
Step 4) Calculate the Slope :
Slope is defined as the change in y divided by the change in x. We note that for x=0, the value of y is -13.000 and for x=2.000, the value of y is 1.000. So, for a change of 2.000 in x (The change in x is sometimes referred to as "RUN") we get a change of 1.000 - (-13.000) = 14.000 in y. (The change in y is sometimes referred to as "RISE" and the Slope is m = RISE / RUN)
Slope = 14.000/2.000 = 7.000
As seen below.
x-intercept = 13/7 = 1.85714
slope = 14000/2000 = 7000
x intercept = 13/7 = 1.85714
y intercept = 13/1 = 13.00000
Rhombus J K L M is shown. The length of J K is 2 x + 4 and the length of J M is 3 x. What is the length of a side of rhombus JKLM? 4 units 8 units 12 units 16 units
Answer:
12 units
Step-by-step explanation:
Since all of the sides of a rhombus are congruent, JK = JM which means:
2x + 4 = 3x
-x = -4
x = 4 so 3x = 3 * 4 = 12
The work shows how to use long division to find?
Answer:
remainder = [tex]\frac{1}{x-2}[/tex]
Step-by-step explanation:
The remainder is the value of the subtraction of the last 2 lines in the procedure.
5x - 9
- (5x - 10)
That is
5x - 5x = 0 and - 9 - (- 10) = - 9 + 10 = 1
over the divisor x- 2 , gives
remainder = [tex]\frac{1}{x-2}[/tex]
If the weight (in grams) of cereal in a box of Lucky Charms is N(470,5), what is the probability that the box will contain less than the advertised weight of 453 g?
Answer:
The probability that the box will contain less than the advertised weight of 453 g is 0.00034.
Step-by-step explanation:
Let X represent the weight (in grams) of cereal in a box of Lucky Charms.
It is provided that X follows a Normal distribution with parameters, μ = 470 and σ = 5.
Compute the probability that the box will contain less than the advertised weight of 453 g as follows:
[tex]P(X<453)=P(\frac{X-\mu}{\sigma}<\frac{453-470}{5})[/tex]
[tex]=P(Z<-3.4)\\=0.00034[/tex]
*Use the z-table.
Thus, the probability that the box will contain less than the advertised weight of 453 g is 0.00034.
1. In the past, Sam cashed his paycheck each month at Ready Cash, a check cashing service that
charges a 5% fee. He recently opened a checking account at Bank of America so he can now
deposit and/or cash his paycheck without a fee. If Sam is making $28,500 per year, how much will
he save by not going to Ready Cash anymore?
Step-by-step explanation:
28000 ÷ 100
=280
280 × 5
=1400
Start with the number 2380.
Divide by 10,
The 8 will end up in the _____ place.
The 8 will end up in the "ones place".
How can we interpret the division?When 'a' is divided by 'b', then the result we get from the division is the part of 'a' that each one of 'b' items will get. Division can be interpreted as equally dividing the number that is being divided into total x parts, where x is the number of parts the given number is divided.
We need to find the 8 will end up in which place
A negative divided by a negative is positive, then;
2380/ 10 = 238
Therefore, The 8 will end up in the _ ones_ place.
Learn more about division here:
brainly.com/question/26411682
#SPJ2
For the functions f(x)=4x+5 and g(x)=6x+4, find (f∘g)(0) and (g∘f)(0).
Answer:
Step-by-step explanation:
f(g(0))=
g(0)= 6(0) + 4 = 0 + 4 = 4
f(4)= 4(4)+5 = 16 + 5 = 21
g(f(0))=
f(0)= 4(0)+5 = 0+5 = 5
g(5)= 6(5)+4 = 30+4= 34
Let f(x)=x^3-6x+3 i. find the domain of the function and f’(x) in the domain.
Domain of a any cubic function [tex]f(x)=ax^3+bx^2+cx+d[/tex] is defined to be always [tex]\mathbb{R}[/tex].
The derivative with respect to x of your cubic function is,
[tex]\dfrac{d}{dx}f(x)=f'(x)[/tex]
to find the derivative of a polynomial function, simply take a derivative of each factor and sum them up,
[tex]\dfrac{d}{dx}x^3=3x^2[/tex] by the rule [tex]\dfrac{d}{dx}x^m=mx^{m-1}[/tex] where [tex]m\in\mathbb{R}[/tex]
[tex]\dfrac{d}{dx}-6x=-6[/tex]
[tex]\dfrac{d}{dx}3=0[/tex]
So the derivative is,
[tex]f'(x)=3x^2-6[/tex]
both derivative and the original function have equal domain.
Hope this helps :)
Step-by-step explanation:
[tex]thank \: you[/tex]
13
R
S
12
What's the length of QR?
A) 1
B) 17.7
C) 6.7
OD) 5
Answer:
5
Step-by-step explanation:
This is a right triangle, so we can use the Pythagorean theorem
a^2+b^2 = c^2
where a and b are the legs and c is the hypotenuse
QR^2 + 12^2 = 13^2
QR^2 +144 =169
QR^2 = 169-144
QR^2 =25
Take the square root of each side
QR = sqrt(25)
QR =5
the image is located below
Answer:
288 ft³
Step-by-step explanation:
Volume of the pyramid,
base area × height × (1/3)
= (9×8)×12/3
= 72×4
= 288 ft³
Solve the right triangle.
a = 3.3 cm, b = 1.7 cm, C = 90°
Round values to one decimal place.
Answer:
A = 62.7°B = 27.3°c = 3.7Step-by-step explanation:
tan(A) = a/b = 3.3/1.7
A = arctan(33/17) ≈ 62.7°
B = 90° -A = 27.3°
c = √(a²+b²) = √(3.3² +1.7²) = √13.78
c ≈ 3.7
Estimate the mean exam score for the 50 students in Prof. Burke's class.
Score
f
40 but less than 50
21
50 but less than 60
39
60 but less than 70
40
70 but less than 80
34
80 but less than 90
28
Total
162
Group of answer choices
65.56
63.78
64.89
62.34
The mean of the exam score is 65.56
The given exam data is as follows;
Possible Score range ----------- frequency (f) -------- score (x) -----------(fx)
40 - 50 ------------------------- 21 ------------------- -----45 -------------- 945
50 - 60 --------------------------- 39------------------------55 ---------------2145
60 - 70 ----------------------------- 40---------------------- 65 ---------------- 2600
70 - 80 ------------------------------ 34 --------------------- 75 ----------------- 2550
80 - 90 ------------------------------ 28 --------------------- 85 ---------------- 2380
Note:[tex]score (x) = \frac{sum \ of \ the \ range }{2} , \ example \ \frac{40+49.99}{2} \approx 45[/tex]
The sum of the frequency (f) = 162
The sum of fx, ∑fx = 10620
The mean of the exam score:
[tex]\bar x = \frac{\Sigma fx }{\Sigma f} = \frac{10620}{162} = 65.56[/tex]
Therefore, the mean of the exam score is 65.56
To learn more about grouped mean calculation please visit: https://brainly.in/question/20735794
I am performing a before and after evaluation on 30 students who have taken a keyboarding class. I want to see if the course improved their words per minute keyed.
Required:
a. State the Null and Alternate Hypothesis.
b. The statistic that I would use is:_________
c. What would my t critical be for this calculation at a 0.10 level of significance?
d. If my t calculated = 1.62, would I reject or fail to reject the null hypothesis?
Answer:
a)
H₀ : µd = 0
H₁ : µd < 0
b)
The test statistic is
tₙ₋₁ = α / s√n
c)
at 0.10 level of significance,
tₙ₋₁ , ₐ
t₃₀₋₁ , ₀.₁₀ = t₂₉, ₀.₁₀ = 1.311
d)
given that T(critical) = 1.62
∴ T(critical) = 1.62 > t₂₉, ₀.₁₀ = 1.311
at 10% level of significance,
REJECT H₀
Since 1.62 > 1.311, we can reject the null hypothesis.
find the circle through (-4,sqrt(5) with center (0,0)
Answer:
Circle Equation : x² + y² = 21
Step-by-step explanation:
So we know that this circle goes through the point ( - 4, √5 ), with a center being the origin. Therefore, this makes the circle equation a bit simpler.
The first step in determining the circle equation is the length of the radius. Applying the distance formula, the radius would be the length between the given points. Another approach would be creating a right triangle such that the radius is the hypotenuse. Knowing the length of the legs as √5 and 4, we can calculate the radius,
( √5 )² + ( 4 )² = r²,
5 + 16 = r²,
r = √21
In general, a circle equation is represented by the formula ( x - a )² + ( y - b )² = r², with radius r centered at point ( a, b ). Therefore our circle equation will be represented by the following -
( x - 0 )² + ( y - 0 )² = (√21 )²
Circle Equation : x² + y² = 21
At the end of March, Jerry bought a plant that was $16.2 inches tall. During April, the plant grew 2] inches,
and during May, the plant grew another 2 inches. How tall was the plant at the beginning of June?
O 18.2 inches
O 19 inches
0 21 inches
21 inches
Answer:
20.2 inches
Step-by-step explanation:
The plant starts at 16.2 inches
The first month it grows 2 inches
16.2+2 =18.2 inches
Then the next month it grows 2 inches
18.2+2 = 20.2 inches
A system of equations consists of the two equations shown.
{4x+5y=18
6x−5y=20
Which procedure will produce a single equation in one variable? Select all the procedures that apply.
A. Subtract the first equation from the second equation.
B. Subtract the second equation from the first equation.
C. Multiply the first equation by 18; multiply the second equation by 18; add the equations.
D. Multiply the first equation by − 6; multiply the second equation by 4; add the two equations.
E. Multiply the first equation by 3; multiply the second equation by − 2; add the two equations.
F. Multiply the first equation by 3; multiply the second equation by 2; subtract the equations in any order.
Answer:
C, D, E and F
Step-by-step explanation:
Given
4x+5y=18
6x−5y=20
Required
Determine which procedure will result in a single equation in one variable
To do this; we'll test each of the options
A. Subtract the first equation from the second equation.
[tex](6x - 5y=20) - (4x+5y=18)[/tex]
[tex]6x - 4x - 5y - 5y = 20 - 18[/tex]
[tex]2x - 10y = 2[/tex] --- This didn't produce the desired result
B. Subtract the second equation from the first equation.
[tex](4x+5y=18) - (6x - 5y=20)[/tex]
[tex]4x - 6x + 5y + 5y =18 - 20[/tex]
[tex]-2x + 10y = -2[/tex] --- This didn't produce the desired result
C. Multiply the first equation by 18; multiply the second equation by 18; add the equations.
First Equation
[tex]18 * (4x+5y=18)[/tex]
[tex]72x + 90y = 324[/tex]
Second Equation
[tex]18 * (6x - 5y=20)[/tex]
[tex]108x - 90y = 360[/tex]
Add Resulting Equations
[tex](72x + 90y = 324) + (108x - 90y = 360)[/tex]
[tex]72x + 108x + 90y - 90y = 324 + 360[/tex]
[tex]72x + 108x = 324 + 360[/tex]
[tex]180x = 684[/tex] --- This procedure is valid
D. Multiply the first equation by − 6; multiply the second equation by 4; add the two equations.
First Equation
[tex]-6 * (4x+5y=18)[/tex]
[tex]-24x - 30y = -108[/tex]
Second Equation
[tex]4 * (6x - 5y=20)[/tex]
[tex]24x - 20y = 80[/tex]
Add Resulting Equations
[tex](-24x - 30y = -108) + (24x - 20y = 80)[/tex]
[tex]-24x + 24x - 30y -20y = -108+ 80[/tex]
[tex]-50y = -28[/tex]
[tex]50y = 28[/tex] --- This procedure is valid
E. Multiply the first equation by 3; multiply the second equation by − 2; add the two equations.
First Equation
[tex]3 * (4x+5y=18)[/tex]
[tex]12x + 15y = 54[/tex]
Second Equation
[tex]-2 * (6x - 5y=20)[/tex]
[tex]-12x + 10y = -40[/tex]
Add Resulting Equations
[tex](12x + 15y = 54) + (-12x + 10y = -40)[/tex]
[tex]12x - 12x + 15y - 10y =54 - 40[/tex]
[tex]5y = 14[/tex] --- This procedure is valid
F. Multiply the first equation by 3; multiply the second equation by 2; subtract the equations in any order
First Equation
[tex]3 * (4x+5y=18)[/tex]
[tex]12x + 15y = 54[/tex]
Second Equation
[tex]2 * (6x - 5y=20)[/tex]
[tex]12x - 10y = 40[/tex]
Subtract equation 1 from 2 or 2 from 1 will eliminate x;
Hence, the procedure is also valid;
What value does the 2 in the number 0.826?
Answer:
.02
Step-by-step explanation:
2 is in "Hundredths' place in .826
So, the number is multiplied with 1/100 or .01
=> 2 x 1/100
=> 2/100
=> .02
=> 2 x .01
=> .02
The value of 2 in .826 is .02
When all possible differences between pairs of population means are evaluated not with an F test, but with a series of regular t tests, the probability of at least one:
Answer:
When all possible differences between pairs of population means are evaluated not with an F test, but with a series of regular t tests, the probability of at least one:
A. type I error is larger than the specified level of significance.
B. type II error is larger than the specified level of significance.
C. type I error is smaller than the specified level of significance.
D. type II error is smaller than the specified level of significance.
Answer : Type I error is larger than the specified level of significance.( A )
Step-by-step explanation:
An F test is a test that is used to test whether the variances between pairs of populations are equal while a T test is a test used to check if a pair of population are equal not considering the fact that the variances of the population are different .
When a T test is used to evaluate all possible differences between pairs of population instead of F test there is a probability of atleast one type 1 error larger than the specified level of significance.
1/3 is part of which set of numbers?
Answer:
[tex] \frac{1}{3} [/tex]Rational number as denominator is not equal to zero and numerator is a integer.
Rational numbers. denoted by [tex] \mathbb Q[/tex]
1/3 is clearly not a natural number or integer.
it is a fraction, =0.333 , it fits the definition of rational number ([tex] \frac pq [/tex]).
What is 2/6 times 1/6
Answer:
1/9
Step-by-step explanation:
2/6*1/6=2*1/6*6 or 1/9.
Answer:
1/18
Step-by-step explanation:
1. multiply across
2*1 and 6*6
2/36
2. divide by 2 to simplify
2/2 and 36/2
1/18
The sum of the product of a number x and 14, and 13
Answer:
ax+182
Step-by-step explanation:
a*x+14*13
ax+182
Sharon tried to solve an equation step by step.
9
9
15
5
=−3(e−2)
=−3e+6
=3e
=e
Step 1
Step 2
Step 3
Find Sharon's mistake.
Choose 1 answer:
Choose 1 answer:
Answer:
step 2
Step-by-step explanation:
9 = -3(e - 2)
9 = -3e + 6
9-6 = -3e
3 = -3e
divide both sides by -3
-1 = e
The given line segment has a midpoint at (−1, −2). On a coordinate plane, a line goes through (negative 5, negative 3), (negative 1, negative 2), and (3, negative 1). What is the equation, in slope-intercept form, of the perpendicular bisector of the given line segment? y = −4x − 4 y = −4x − 6 y = One-fourthx – 4 y = One-fourthx – 6
Answer:
y = -4x - 6.
Step-by-step explanation:
We are given (-5, -3), (-1, -2), and (3, -1) for points of a line. First, we need to find the slope.
(-2 - -3) / (-1 - -5) = (-2 + 3) / (-1 + 5) = 1 / 4.
A perpendicular bisector would have a slope of -4, which is the negative reciprocal of 1/4.
Now that we have the slope, we can say that the equation is y = -4x + b. To find what is b, we can say that y = -2 and x = -1.
-2 = -4(-1) + b
-2 = 4 + b
b + 4 = -2
b = -6
So, the equation of the perpendicular bisector is y = -4x - 6.
Hope this helps!
Answer:
y = -4x - 6.
Step-by-step explanation:
Just took the test and got it right
PLEASE HELP ASAP, I WILL GIVE BRAINLIEST!
9. What is another name for BD?
10. What is another name for AC?
11. What is another name for ray AÉ?
12. Name all rays with endpoint E.
13. Name two pairs of opposite rays.
14. Name one pair of rays that are not opposite rays.
Answer:
#9. Segment DB
#10 Segment CA
#11. Ray EA
#12. Ray EB, Ray EC, Ray ED, Ray EA
#13 Ray EA & Ray EC
#14. Ray EB and Ray EC
Step-by-step explanation:
For future reference, if you are asked to give another name for a segment, just flip the letters around (same for rays.).
Opposite Rays are rays that share 1 common endpoint, but extend in opposite directions ( together they make a 180 degree angle). Ray EB & EC share an endpoint, but they do not extend in opposite directions.
Hope this helps!
If Discriminant > 0 :
What is "m" in ( 2x^2 + 4x + 1 - 3m=0) ?
The given equation is in the form ax^2+bx+c = 0 with
a = 2b = 4c = 1-3mD = discriminant
D = b^2 - 4ac
D = 4^2 - 4(2)(1-3m)
D = 16 - 8(1-3m)
D = 16 - 8 + 24m
D = 24m + 8
D > 0
24m + 8 > 0
24m > -8
m > -8/24
m > -1/3
As long as m is larger than -1/3, then the discriminant is positive. There are infinitely many solutions to pick from.
After a 75% reduction, you purchase a new clothes dryer for $200. What was the original price of the clothes dryer?
Answer:
$800
Step-by-step explanation:
Let the original price be $x.
75% reduction ----- 100% -75%= 25%
25%x= 200
[tex] \frac{25}{100} x = 200 \\ x = 200 \div \frac{25}{100} \\ x = 200 \times \frac{100}{25} \\ x = 800[/tex]
Thus, the original price of the clothes dryer is $800.
Answer:
$800
Step-by-step explanation:
Let the original price be x.
Final price=100%-75%
=25%
x-75%=200
x=200 x 100/75
x=8 x 100
x=800
Thank you!
What is the percentage of 204 over 1015, 1 over 8120, 1 over 5832, and 1 over 6?
Answer:
204/1015 (irreducible) = 20.1%
1/8120 (irreducible) = 0.01232%
1/5832 (irreducible) = 0.01715%
1/6 (irreducible) = 16.67%
Step-by-step explanation:
A city is holding a referendum on increasing property taxes to pay for a new high school. In a survey of 434 likely voters, 202 said that they would vote "yes" on the referendum. Create a 95% confidence interval for the proportion of likely voters who would vote "yes" on the referendum. Use a TI-83, TI-83 plus, or TI-84 calculator, rounding your answers to three decimal places.
Answer: 0.418 < p < 0.512
Step-by-step explanation: A 95% conifdence interval for a population proportion is given by:
[tex]p + z\sqrt{\frac{p(1-p)}{n} }[/tex]
where:
p is the proportion
z is score in z-table
n is sample size
The proportion for people who said "yes" is
[tex]p=\frac{202}{434}[/tex] = 0.465
For a 95% confidence interval, z = 1.96.
Calculating
[tex]0.465 + 1.96*\sqrt{\frac{0.465(0.535)}{434} }[/tex]
[tex]0.465 + 1.96*\sqrt{0.00057}[/tex]
0.465 ± 1.96*0.024
0.465 ± 0.047
Interval is between:
0.465 - 0.047 = 0.418
0.465 + 0.047 = 0.512
The interval with 95% of confidence is between 0.418 and 0.512.
hi plz help ASAP tyyy ^^
Answer:
26.75 units²
Step-by-step explanation:
This shape can be split into 3 triangles and a square. Find the area of each shape then add them all up.
[tex]A(Square)=2(2)=4\\\\A(Triangle)=\frac{1}{2}(2)(2)=2\\\\A(Triangle)=\frac{1}{2}(5)(2)=5\\\\A(Triangle)=\frac{1}{2}(9)(3.5)=15.75\\\\A(Shape)=4+2+5+15.75=26.75[/tex]
Therefore, the area of the shape is 26.75 units².
An integer is eight less than three times another if the product of two integers is 35 then find the integers
Evaluate cosA/2 given cosA=-1/3 and tanA >0
Answer:
[tex]\bold{cos\dfrac{A}{2} = -\dfrac{1}{\sqrt3}}[/tex]
Step-by-step explanation:
Given that:
[tex]cosA=-\dfrac{1}3[/tex]
and
[tex]tanA > 0[/tex]
To find:
[tex]cos\dfrac{A}{2} = ?[/tex]
Solution:
First of all,we have cos value as negative and tan value as positive.
It is possible in the 3rd quadrant only.
[tex]\dfrac{A}{2}[/tex] will lie in the 2nd quadrant so [tex]cos\dfrac{A}{2}[/tex] will be negative again.
Because Cosine is positive in 1st and 4th quadrant.
Formula:
[tex]cos2\theta =2cos^2(\theta) - 1[/tex]
Here [tex]\theta = \frac{A}{2}[/tex]
[tex]cosA =2cos^2(\dfrac{A}{2}) - 1\\\Rightarrow 2cos^2(\dfrac{A}{2}) =cosA+1\\\Rightarrow 2cos^2(\dfrac{A}{2}) =-\dfrac{1}3+1\\\Rightarrow 2cos^2(\dfrac{A}{2}) =\dfrac{2}3\\\Rightarrow cos(\dfrac{A}{2}) = \pm \dfrac{1}{\sqrt3}[/tex]
But as we have discussed, [tex]cos\dfrac{A}{2}[/tex] will be negative.
So, answer is:
[tex]\bold{cos\dfrac{A}{2} = -\dfrac{1}{\sqrt3}}[/tex]