Please need help Please

Please Need Help Please

Answers

Answer 1

Answer: 14/11

Step-by-step explanation:

When 14/11 is multiplied by 1/4, you get a repeating decimal.  All repeating decimals are rational.

Hope it helps <3


Related Questions

A half marathon is 13.1 miles long. Leah is running a half marathon and has completed 7.75 miles. How many miles to
the finish line?

Answers

Answer:

5.35 more miles

Answer:

5.35 miles to the finish line

Step-by-step explanation:

Step one

13.1-7.75=

5.35

Suppose a random variable x is best described by a uniform probability distribution with range 22 to 55. Find the value of a that makes the following probability statements true.

a. P(X <= a) =0.95
b. P(X < a)= 0.49
c. P(X >= a)= 0.85
d. P(X >a )= 0.89
e. P(1.83 <= x <=a)= 0.31

Answers

Answer:

(a) The value of a is 53.35.

(b) The value of a is 38.17.

(c) The value of a is 26.95.

(d) The value of a is 25.63.

(e) The value of a is 12.06.

Step-by-step explanation:

The probability density function of X is:

[tex]f_{X}(x)=\frac{1}{55-22}=\frac{1}{33}[/tex]

Here, 22 < X < 55.

(a)

Compute the value of a as follows:

[tex]P(X\leq a)=\int\limits^{a}_{22} {\frac{1}{33}} \, dx \\\\0.95=\frac{1}{33}\cdot \int\limits^{a}_{22} {1} \, dx \\\\0.95\times 33=[x]^{a}_{22}\\\\31.35=a-22\\\\a=31.35+22\\\\a=53.35[/tex]

Thus, the value of a is 53.35.

(b)

Compute the value of a as follows:

[tex]P(X< a)=\int\limits^{a}_{22} {\frac{1}{33}} \, dx \\\\0.95=\frac{1}{33}\cdot \int\limits^{a}_{22} {1} \, dx \\\\0.49\times 33=[x]^{a}_{22}\\\\16.17=a-22\\\\a=16.17+22\\\\a=38.17[/tex]

Thus, the value of a is 38.17.

(c)

Compute the value of a as follows:

[tex]P(X\geq a)=\int\limits^{55}_{a} {\frac{1}{33}} \, dx \\\\0.85=\frac{1}{33}\cdot \int\limits^{55}_{a} {1} \, dx \\\\0.85\times 33=[x]^{55}_{a}\\\\28.05=55-a\\\\a=55-28.05\\\\a=26.95[/tex]

Thus, the value of a is 26.95.

(d)

Compute the value of a as follows:

[tex]P(X\geq a)=\int\limits^{55}_{a} {\frac{1}{33}} \, dx \\\\0.89=\frac{1}{33}\cdot \int\limits^{55}_{a} {1} \, dx \\\\0.89\times 33=[x]^{55}_{a}\\\\29.37=55-a\\\\a=55-29.37\\\\a=25.63[/tex]

Thus, the value of a is 25.63.

(e)

Compute the value of a as follows:

[tex]P(1.83\leq X\leq a)=\int\limits^{a}_{1.83} {\frac{1}{33}} \, dx \\\\0.31=\frac{1}{33}\cdot \int\limits^{a}_{1.83} {1} \, dx \\\\0.31\times 33=[x]^{a}_{1.83}\\\\10.23=a-1.83\\\\a=10.23+1.83\\\\a=12.06[/tex]

Thus, the value of a is 12.06.

The average life a manufacturer's blender is 5 years, with a standard deviation of 1 year. Assuming that the lives of these blenders follow approximately a normal distribution, find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Answers

Answer:

55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question:

[tex]\mu = 5, \sigma = 1, n = 9, s = \frac{1}{\sqrt{9}} = 0.3333[/tex]

Find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

This is the pvalue of Z when X = 5.1 subtracted by the pvalue of Z when X = 4.5. So

X = 5.1

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{5.1 - 5}{0.3333}[/tex]

[tex]Z = 0.3[/tex]

[tex]Z = 0.3[/tex] has a pvalue of 0.6179

X = 4.5

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{4.5 - 5}{0.3333}[/tex]

[tex]Z = -1.5[/tex]

[tex]Z = -1.5[/tex] has a pvalue of 0.0668

0.6179 - 0.0668 = 0.5511

55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

An instructor asks students to rate their anxiety level on a scale of 1 to 100 (1 being low anxiety and 100 being high anxiety) just before the students take their final exam. The responses are shown below. Construct a relative frequency table for the instructor using five classes. Use the minimum value from the data set as the lower class limit for the first row, and use the lowest possible whole-number class width that will allow the table to account for all of the responses. Use integers or decimals for all answers.
48,50,71,58,56,55,53,70,63,74,64,33,34,39,49,60,65,84,54,58
Provide your answer below:
Lower Class Limit Upper Class Limit Relative Frequency

Answers

Answer:

The frequency table is shown below.

Step-by-step explanation:

The data set arranged ascending order is:

S = {33 , 34 , 39 , 48 , 49 , 50 , 53 , 54 , 55 , 56 , 58 , 58,  60 , 63 , 64 , 65 , 70 , 71 , 74 , 84}

It is asked to use the minimum value from the data set as the lower class limit for the first row.

So, the lower class limit for the first class interval is 33.

To determine the class width compute the range as follows:

[tex]\text{Range}=\text{Maximum}-\text{Minimum}[/tex]

          [tex]=84-33\\=51[/tex]

The number of classes requires is 5.

The class width is:

[tex]\text{Class width}=\frac{Range}{5}=\frac{51}{2}=10.2\approx 10[/tex]

So, the class width is 10.

The classes are:

33 - 42

43 - 52

53 - 62

63 - 72

73 - 82

83 - 92

Compute the frequencies of each class as follows:

Class Interval                  Values                        Frequency

   33 - 42                      33 , 34 , 39                             3

   43 - 52                      48 , 49 , 50                            3

   53 - 62          53 , 54 , 55 , 56 , 58 , 58,  60              7

   63 - 72                 63 , 64 , 65 , 70 , 71                      5

   73 - 82                              74                                  1

   83 - 92                             84                                   1

   TOTAL                                                                   20

Compute the relative frequencies as follows:

Class Interval          Frequency        Relative Frequency

   33 - 42                        3                   [tex]\frac{3}{20}\times 100\%=15\%[/tex]

   43 - 52                        3                   [tex]\frac{3}{20}\times 100\%=15\%[/tex]

   53 - 62                        7                   [tex]\frac{7}{20}\times 100\%=35\%[/tex]

   63 - 72                        5                   [tex]\frac{5}{20}\times 100\%=25\%[/tex]

   73 - 82                         1                   [tex]\frac{1}{20}\times 100\%=5\%[/tex]

   83 - 92                         1                   [tex]\frac{1}{20}\times 100\%=5\%[/tex]

   TOTAL                        20                          100%

CAN SOMEONEHELP PLS ASAP

Answers

Answer:

a ≈ 2.2

Step-by-step explanation:

Using the Cosine rule in Δ ABC

a² = b² + c² - 2bc cos A

Here b = 3, c = 4 and A = 32° , thus

a² = 3² + 4² - (2 × 3 × 4 × cos32° )

    = 9 + 16 - 24cos32°

    = 25 - 24cos32° ( take the square root of both sides )

a = [tex]\sqrt{25-24cos32}[/tex] ≈ 2.2

Can Someone help me!!! I need this ASAP! What number? Increased by 130% is 69? FYI: the answer is less than 69

Answers

Answer:

Hey there!

There are a few ways you could solve this problem, but the easiest would to be writing an equation.

You could say-

2.3x=69

Divide by 2.3

x=30

Hope this helps :)

Answer:

30

Step-by-step explanation:

the answer is 30 bc increasing something by 130% is multiplying it by 2.3 so technically you have to divide 69 by 2.3 which equals to 30

In a study of the accuracy of fast food​ drive-through orders, one restaurant had 40 orders that were not accurate among 307 orders observed. Use a 0.05 significance level to test the claim that the rate of inaccurate orders is greater than ​10%. State the test result in terms of the claim. Identify the null and alternative hypotheses for this test The test statistic for this hypothesis test is? The​ P-value for this hypothesis test is? Identify the conclusion for this hypothesis test. State the test result in terms of the claim.

Answers

Answer:

We conclude that the rate of inaccurate orders is greater than ​10%.

Step-by-step explanation:

We are given that in a study of the accuracy of fast food​ drive-through orders, one restaurant had 40 orders that were not accurate among 307 orders observed.

Let p = population proportion rate of inaccurate orders

So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 10%     {means that the rate of inaccurate orders is less than or equal to ​10%}

Alternate Hypothesis, [tex]H_A[/tex] : p > 10%      {means that the rate of inaccurate orders is greater than ​10%}

The test statistics that will be used here is One-sample z-test for proportions;

                          T.S.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of inaccurate orders = [tex]\frac{40}{307}[/tex] = 0.13

           n = sample of orders = 307

So, the test statistics =  [tex]\frac{0.13-0.10}{\sqrt{\frac{0.10(1-0.10)}{307} } }[/tex]  

                                    =  1.75

The value of z-test statistics is 1.75.

Also, the P-value of the test statistics is given by;

            P-value = P(Z > 1.75) = 1 - P(Z [tex]\leq[/tex] 1.75)

                          = 1 - 0.95994 = 0.04006

Now, at 0.05 level of significance, the z table gives a critical value of 1.645  for the right-tailed test.

Since the value of our test statistics is more than the critical value of z as 1.75 > 1.645, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region.

Therefore, we conclude that the rate of inaccurate orders is greater than ​10%.

Simplify the expression (5j+5) – (5j+5)

Answers

Answer:

0

Step-by-step explanation:

multiply the negative thru the right part of the equation so, 5j+5-5j-5. The 5j and the 5 than cancel out with each other. Hope this helps!

Answer:

0

Explanation:

step 1 - remove the parenthesis from the expression

(5j + 5) - (5j + 5)

5j + 5 - 5j - 5

step 2 - combine like terms

5j + 5 - 5j - 5

5j - 5j + 5 - 5

0 + 0

0

therefore, the simplified form of the given expression is 0.

solve the proportion for y 11/8=y/13

Answers

Answer:

We can use the cross products property.

11/8 = y / 13

8y = 11 * 13

y = 11 * 13 / 8 = 17.875

Answer:

y=17.875

Step-by-step explanation:

[tex]\frac{11}{8} = \frac{y}{13}[/tex]

11(13)=8y

143=8y

y=17.875

A rectangular playground is to be fenced off and divided in two by another fence parallel to one side of the playground. Three hundred feet of fencing is used

dimensions of the playground that maximize the total enclosed area. What is the maximum area?

The smaller dimension is

feet

Answers

Answer:

50 ft by 75 ft3750 square feet

Step-by-step explanation:

Let x represent the length of the side not parallel to the partition. Then the length of the side parallel to the partition is ...

  y = (300 -2x)/3

And the enclosed area is ...

  A = xy = x(300 -2x)/3 = (2/3)(x)(150 -x)

This is the equation of a parabola with x-intercepts at x=0 and x=150. The line of symmetry, hence the vertex, is located halfway between these values, at x=75.

The maximum area is enclosed when the dimensions are ...

  50 ft by 75 ft

That maximum area is 3750 square feet.

_____

Comment on the solution

The generic solution to problems of this sort is that half the fence (cost) is used in each of the orthogonal directions. Here, half the fence is 150 ft, so the long side measures 150'/2 = 75', and the short side measures 150'/3 = 50'. This remains true regardless of the number of partitions, and regardless if part or all of one side is missing (e.g. bounded by a barn or river).

At a DBE lecture of 100 students, there are 29 women and 23 men. Out of these students, 4 are teachers and 24 are either men nor teachers. Find the number of women teachers attending the lecture

Answers

Answer:

20 teachers

Step-by-step explanation:

Because if you take 100 and minus it by 29, 23, 4 and 24 you get 20.

Find the value of s(t(-3)):
s(x) = - 3x-2
t(x) = 5x - 4
Please helppp!

Answers

Step-by-step explanation:

(-3x-2/x) multiply by (-15x+12/x)

The first steps in writing f(x) = 4x2 + 48x + 10 in vertex form are shown. f(x) = 4(x2 + 12x) + 10 (twelve-halves) squared = 36 What is the function written in vertex form?

Answers

Answer:

[tex]f(x)=4(x+6)^2-134[/tex]

Step-by-step explanation:

We are required to write the function[tex]f(x) = 4x^2 + 48x + 10[/tex] in vertex form.

First, bring the constant to the left-hand side.

[tex]f(x) -10= 4x^2 + 48x[/tex]

Factorize the right hand side.

[tex]f(x) -10= 4(x^2 + 12x)[/tex]

Take note of the factored term(4) and write it in the form below.

[tex]f(x) -10+4\Box= 4(x^2 + 12x+\Box)[/tex]

[tex]\Box = (\frac{\text{Coefficient of x}}{2} )^2\\\\\text{Coefficient of x}=12\\\\\Box = (\frac{12}{2} )^2 =6^2=36[/tex]

Substitute 36 for the boxes.

[tex]f(x) -10+4\boxed{36}= 4(x^2 + 12x+\boxed{36})[/tex]

[tex]f(x) -10+144= 4(x^2 + 12x+6^2)[/tex]

[tex]f(x) +134= 4(x+6)^2\\f(x)=4(x+6)^2-134[/tex]

The function written in vertex form is [tex]f(x)=4(x+6)^2-134[/tex]

Answer:

C

Step-by-step explanation:

I just finished the unit test on Edge. and got a 100% and I selected "c" as my answer.

Suppose you were given the function F(x)=x^4-2x^3+3x^2-10x+3 and the factor (x-2). What is the value of a?

Answers

Answer:

Hope it helps..........

The given the function F(x)=x^4-2x^3+3x^2-10x+3 and the factor (x-2). Hence, the value of x is 7.5.

What is a function?

Function is a type of relation, or rule, that maps one input to specific single output.

The given the function F(x)=x^4-2x^3+3x^2-10x+3 and the factor (x-2).

here x = 2

Substitute in the function;

F(x)=x^4-2x^3+3x^2 - ax+3

F(2) = 2^4-2(2)^3+3(2)^2 - a(2) +3

F(2) = 16 - 16 + 12 - 2a +3

F(2) = 15 - 2a

15 - 2a = 0

15 = 2a

a = 7.5

Hence, the value of x is 7.5

Learn more about function here:

https://brainly.com/question/2253924

#SPJ2

a) Al usar un microscopio el microscopio se amplía una célula 400 veces. Escribe el factor de ampliación como cociente o como escala.
b) La imagen de una célula usando dicho microscopio mide 1,5 mm ¿ Cuánto mide la célula en la realidad?

Answers

Answer:

x = 0,00375 mm

Step-by-step explanation:

a) El factor de ampliación es 400/1   es decir el tamaño real se verá ampliado 400 veces mediante el uso del microscopio

b) De acuerdo a lo establecido en la respuesta a la pregunta referida en a (anterior) podemos establecer una regla de tres, según:

Si al microscopio el tamaño de la célula es 1,5 mm, cual será el tamaño verdadero ( que es reducido 400 en relación al que veo en el microscopio)

Es decir     1,5 mm      ⇒    400

                    x (mm)    ⇒       1 (tamaño real de la célula)

Entonces

x  =  1,5 /400

x = 0,00375 mm

What is the standard form for 80000 + 200+ 2

Answers

Answer:

80202

Step-by-step explanation:

Simply add according to number value:

200 - 2 goes into hundreds place

2 - 2 goes into ones place

80000 - 8 goes into ten-thousands place

A cardboard box without a lid is to have a volume of 8,788 cm3. Find the dimensions that minimize the amount of cardboard used.

Answers

Answer:

x = y = 26 cm; z = 13 cm

Step-by-step explanation:

We can calculate the dimensions of the square base as

∛(2·8788) = 26 cm

the height of the box will be half of 26/2 which is 13 cm.

x = y = 26 cm; z = 13 cm

then the minimum area for the given volume can be calculated using what we call Lagrange multipliers, this makes it easier

area = xy +2(xz +yz)

But we were given the volume as 8788

Now we will make the partial derivatives of L to be in respect to the cordinates x, y, z, as well as λ to be equal to zero, then

L = xy +2(xz +yz) +λ(xyz -8788)

For x: we have

y+2z +λyz=0

For y we have

y: x +2z +λxz=0

For z we have 2x+2y +λxy=0............eqn(*)

For we have xyz -8788=0

If we simplify the partial derivative equation of y and x above then we have

λ = (y +2z)/(yz).

= 1/z +2/y............eqn(1)

λ = (x +2z)/(xz)

= 1/z +2/x.............eqn(2)

Set eqn(1 and 2) to equate we have

1/z +2/y = 1/z +2/x

x = y

From eqn(*) we can get z

λ = (2x +2y)/(xy) = 2/y +2/x

If we simplify we have

1/z +2y = 2/x +2/y

Then z = x/2

26/2 =13

Therefore,

x = y = 2z = ∛(2·8788)

X= 26

y = 26 cm

z = 13 cm

A 37 bag sample had a mean of 421 grams. Assume the population standard deviation is known to be 29. A level of significance of 0.05 will be used. State the null and alternative hypothesis.

Answers

Answer:  [tex]H_0:\mu=421[/tex]

[tex]H_a : \mu\neq421[/tex]

Step-by-step explanation:

A null hypothesis is a type of hypothesis that is used in statistics that assumes there is no difference between particular characteristics of a population wheres the alternative hypothesis shows that there is a difference.

Given: A 37 bag sample had a mean of 421 grams.

Let [tex]\mu[/tex] be the population mean.

Then, the null hypothesis would be:

[tex]H_0:\mu=421[/tex]

whereas the alternative hypothesis would be:

[tex]H_a : \mu\neq421[/tex]

find the circumference of a circle with a diameter of 6 cm

Answers

Circumference = πd

~substitute (π)(6 cm)

~simplify → 6π cm.

So the circumference of the circle shown here is 6π cm.

Answer:

18.85 cm

Step-by-step explanation:

The circumference of a circle has a formula.

Circumference = π × diameter

The diameter is 6 centimeters.

Circumference = π × 6

Circumference ≈ 18.85

The circumference of the circle is 18.85 centimeters.

Which of the following best describes the algebraic expression 5(x + 2) - 3 ?
bre

Answers

Answer:

D

Step-by-step explanation:

Silver Lake has a population of 114,000. The population is decreasing at a rate of 1.5% each year. Which of the following choices is the correct function? a p(s) = 114000• 0.985x b p(s) = 114000x c p(s) = 114000x + 0.985 d None of these choices are correct.

Answers

Answer: D

Step-by-step explanation:

According to the question, Silver Lake has a population of 114,000. The population is decreasing at a rate of 1.5% each year

The initial population Po = 114000

Rate = 1.5% = 0.015

The declining population formula will be:

P = Po( 1 - R%)x^2

The decay formula

Since the population is decreasing, take away 0.015 from 1

1 - 0.015 = 0.985

Substitutes all the parameters into the formula

P(s) = 114000(0.985)x^2

P(s) = 114000× 0985x^2

The correct answer is written above.

Since option A does not have square of x, we can therefore conclude that the answer is D - non of the choices is correct.

Which proportion would convert 18 ounces into pounds?

Answers

Answer:

16 ounces = 1 pound

Step-by-step explanation:

You would just do 18/16 = 1.125 pounds. There are always 16 ounces in a pound, so it always works like this

16 ounces to 1 pound

I NEED HELP PLEASE, THANKS! :)
A rock is tossed from a height of 2 meters at an initial velocity of 30 m/s at an angle of 20° with the ground. Write parametric equations to represent the path of the rock. (Show work)

Answers

Answer:

x = 28.01t,

y = 10.26t - 4.9t^2 + 2

Step-by-step explanation:

If we are given that an object is thrown with an initial velocity of say, v1 m / s at a height of h meters, at an angle of theta ( θ ), these parametric equations would be in the following format -

x = ( 30 cos 20° )( time ),

y = - 4.9t^2 + ( 30 cos 20° )( time ) + 2

To determine " ( 30 cos 20° )( time ) " you would do the following calculations -

( x = 30 * 0.93... = ( About ) 28.01t

This represents our horizontal distance, respectively the vertical distance should be the following -

y = 30 * 0.34 - 4.9t^2,

( y = ( About ) 10.26t - 4.9t^2 + 2

In other words, our solution should be,

x = 28.01t,

y = 10.26t - 4.9t^2 + 2

These are are parametric equations

M/J Grade 8 Pre-Algebra-PT-FL-1205070-003

Answers

Answer:

Following are the description of the given course code:

Step-by-step explanation:

The given course code is Pre-Algebra, which is just an introduction arithmetic course programs to train high school in the Algebra 1. This course aims to strengthen required problem solving skills, datatypes, equations, as well as graphing.

In this course students start to see the "big picture" of maths but also understand that mathematical, algorithmic, and angular principles are intertwined to form a basis for higher mathematics education.The duration of this code is in year and it is divided into two levels. In this, code it includes PreK to 12 Education Courses , with the general mathematics .

Answer:

A

Step-by-step explanation:

the ellipse is centered at the origin, has axes of lengths 8 and 4, its major axis is horizontal. how do you write an equation for this ellipse?​

Answers

Answer:

The equation for this ellipse is [tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex].

Step-by-step explanation:

The standard equation of the ellipse is described by the following expression:

[tex]\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} = 1[/tex]

Where [tex]a[/tex] and [tex]b[/tex] are the horizontal and vertical semi-axes, respectively. Given that major semi-axis is horizontal, [tex]a > b[/tex]. Then, the equation for this ellipse is written in this way: (a = 8, b = 4)

[tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex]

The equation for this ellipse is [tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex].

Please answer this correctly without making mistakes

Answers

Answer:

Question 2

Step-by-step explanation:

2) The time when she woke up was -  3° C

During nature walk, temperature got 3° C warmer than when she woke up.

So, temperature during nature walk = - 3 + 3 = 0° C

which of the following equations is equal to 2x^2+8 A. (2x-4i)(x-2i) B. (2x+4i)(x+2i) C. (2x-2i)(x+6i) D. (2x-4i)(x+2i)

Answers

Answer:

(2x-4i) (x+2i)

Step-by-step explanation:

2x^2+8

Factor out 2

2 ( x^2+4)

Writing as the difference of squares  a^2 -b^2 = (a-b) (a+b)

2 ( x^2 -(2i)^2)

2 ( x-2i) (x+2i)

Multiplying the 2 into the first term

(2x-4i) (x+2i)

Which of the following relations is a function?
A{(3,-1), (2, 3), (3, 4), (1,7)}

B{(1, 2), (2, 3), (3, 4), (4, 5)}.

C{(3, 0), (4, -3), (6, 7), (4,4)}

D{(1, 2), (1, 3), (2, 8), (3, 9)}​

Answers

Answer:

B

Step-by-step explanation:

A is not a function because the same x value is repeated twice with different y values. The same goes for C and D so the answer is C.

Answer:

B.

Step-by-step explanation:

Well a relation is a set of points and a function is a relation where every x value corresponds to only 1 y value.

So lets see which x values in these relations have only 1 y value.

A. Well a isn’t a function because the number 3 which is a x value had two y values which are -1 and 4.

B. This relation is a function because there are no similar x values.

C. This is not a function because the x value 4 has two y values which are 4 and -3.

D. This is not a function because the number 1 has 2 and 3 as y values.

A triangular plot of land has one side along a straight road measuring 147147 feet. A second side makes a 2323degrees° angle with the​ road, and the third side makes a 2222degrees° angle with the road. How long are the other two​ sides?

Answers

Answer:

81.23 ft and 77.88 ft long

Step-by-step explanation:

The sum of the internal angles of a triangle is 180 degrees, the missing angle is:

[tex]a+b+c=180\\a+23+22=180\\a=135^o[/tex]

According to the Law of Sines:

[tex]\frac{A}{sin(a)}= \frac{B}{sin(b)}= \frac{C}{sin(c)}[/tex]

Let A be the side that is 147 feet long, the length of the other two sides are:

[tex]\frac{A}{sin(a)}= \frac{B}{sin(b)}\\B=\frac{sin(23)*147}{sin(135)}\\B=81.23\ ft\\\\\frac{A}{sin(a)}= \frac{C}{sin(c)}\\C=\frac{sin(22)*147}{sin(135)}\\C=77.88\ ft[/tex]

The other two sides are 81.23 ft and 77.88 ft long

A contractor is setting up new accounts for the local cable company. She earns $75 for each customer account she sets up. Which expression models this situation, and how much will she profit if she sets up 8 customers? (The variable c represents the number of customers.) Question 4 options: A) c – 75; $9.78 B) 75c; $600 C) c + 75; $600 D) 75/c; $9.78

Answers

Answer:

B

Step-by-step explanation:

The contractor gets $75 for every single customer she sets up. Okay, so if she sets up 1 customer, she gets $75, if she sets up 2, she gets $150 and so on.

This is a multiplication expression since multiplication is just repeated addition, which is what is happening in this case, where the contractor gets $75 added to her account every time she sets another person up.

At this point you can just eliminate the other answer options except for B, so it is B.

But to double check... if you multiply 75 by 8, you would get $600, which is B.

Answer:

d

Step-by-step explanation:

75/c; $9.78

Other Questions
Average rate of change from G from x=1 to x=4 is (06.04 LC) What are the first steps in Hands-Only CPR? Check for safety, see if the person is responsive, look for breathing, and call 911. Call 911, look for breathing, check for safety, and see if the person is responsive. Look for breathing, check for safety, call 911, and see if the person is responsive. See if the person is responsive, check for safety, call 911, and look for breathing. in the given figure angle 1 is equal to angle 2 then the measurements of angle 3 and angle 4 are Where was Gallipoli located?in the Ottoman Empireon the Black Seaon the eastern side of Germanyin the northeast part of France root( x-1 ) = 2 - root (x+3) 8. what force will exert apressure of50000 PA 0.5 meterSquare ? Why is the United Statesimportant to history? NEED HELP FAST FOR BRANLY Read these lines from the prologue of Oedipus the King and answer the question. The breath of incense rises from the city With a sound of prayer and lamentation. Which of the following best describes how the language of the excerpt sets the tone for the play? A) Hyperbole suggests that citizens are overreacting to a temporary inconvenience.B) Sensory imagery completes a description of a city suffering as if it were a living entity. C) Descriptions of daily rituals in an ancient city convey a feeling of strict rule in the midst of chaos. D) Rich details suggest a place where people are accustomed to enjoying the pleasures of life. Which statement describes what is gained or lost during radioactive decay?Atoms gain other atoms.Elements take in energy.Atoms lose smaller particles.Elements gain smaller particles. only one answer Which part of the Constitution establishes the legislative branch of the government?A) Article lB) Article llC) Amendment lD) The Bill of Rights Sufra Corporation is planning to sell 150,000 units for $2.90 per unit and will break even at this level of sales. Fixed expenses will be $93,000. What are the company's variable expenses per unit Factorize: 9(2a b)^2 4(2a b) Assume that there is an autonomous increase in investment spending of $20 billion and the MPC is given as 0.4, and assuming taxes, imports, and savings are all equal and no leakages: An object of mass 2 kg has a speed of 6 m/s and moves a distance of 8 m. What is its kinetic energy in joules? What is the source of energy that drives photosynthesis? A technician is evaluating malware that was found on the enterprise network. After reviewing samples of the malware binaries, the technician finds each has a different hash associated with it. Which of the following types of malware is MOST likely present in the environment?a. Trojanb. Polymorphic wormc. Rootkitd. Logic bombe. Armored virus In the demolition of an old building, a 1,300 kg wrecking ball hits the building at 1.07 m/s2. Calculate the amount of force at which the wrecking ball strikes the building. The wrecking ball strikes the building with a force of N. Suppose that vehicles taking a particular freeway exit can turn right (R), turn left (L), or go straight (S). Consider observing the direction for each of three successive vehicles. A) List all outcomes in the event A that all three vehicles go in the same direction.B) List all outcomes in the event B that all three vehicles take different directions.C) List all outcomes in the event C that exactly two of the three vehicles turn right.D) List all outcomes in the event D that exactly two vehicles go in the same direction.E) List outcomes in D'.F) List outcomes in C D.G) List outcomes in C D. Which of the following is a zero of the quadratic function shown? (-1)\times (-(-2)) \times (-(-(-3))) \times (-(-(-(-4)))