Answer:
6.591
explanation
mass of weight is 1.092 , and mass of weight boat and sample = 7.683
mass of the solid sample= (mass of weight boat and sample) - (weight of the boat) = (1.092-7683) = 6.591 g
hence, the mass of the solid sample is 6.591 g
How many grams are in 2.49 x 10^24 atoms of Hg?
Answer:
[tex]m_{Hg}=829.4gHg[/tex]
Explanation:
Hello there!
In this case, considering the Avogadro's number, which helps us to realize that 1 mole of mercury atoms contains 6.022x10²³ atoms and at the same time 1 mole of mercury weights 200.59 g, we obtain:
[tex]m_{Hg}=2.49x10^{24}atoms*\frac{1mol}{6.022x10^{23}atoms} *\frac{200.59g}{1molHg}\\\\m_{Hg}=829.4gHg[/tex]
Best regards!
(trying this again because this test is due at 3 and paimon has to get this done or she will fail!! paimon will try to give brainlist if brainly lets her!!)
The _________________molecules in the food we eat are_____________.
A. Enzyme, water
B. Small, insoluble
C. Large, insoluble
D. Enzyme, insoluble
Gold's natural state has a definite shape and a definite volume. What is gold's natural state(s)?
Answer:
If your asking what golds natural state of matter is it's solid.
Explanation:
Answer:
the answer is soild
Explanation:
i did it on edge :)
Compare the reactivity of magnesium and calcium explain the difference
Answer:
Calcium is more reactive than magnesium because calcium atom is larger than magnesium atom and it has one more energy level. ... Thus Ca is more reactive than Mg.
Given the following balanced chemical equation:
N2(g) + 3H2(g) + 2NH3(8)
What is the maximum amount of NH3(g) that can be produced from 2.0 mol H2(g)? Assume that N2(g) is the excess reactant.
Answer:
22 g
Explanation:
Step 1: Write the balanced equation
N₂(g) + 3 H₂(g) ⇒ 2 NH₃(g)
Step 2: Calculate the moles of NH₃ produced from 2.0 moles of H₂
The molar ratio of H₂ to NH₃ is 3:2.
2.0 mol H₂ × 2 mol NH₃/3 mol H₂ = 1.3 mol NH₃
Step 3: Calculate the mass corresponding to 1.3 moles of NH₃
The molar mass of NH₃ is 17.03 g/mol.
1.3 mol × 17.03 g/mol = 22 g