PLease help, will give brainliest

In △HJK, m∠H=52∘, m∠K=73∘, and JK=14 yards.What is HK? Enter your answer as a decimal in the box. Round only your final answer to the nearest tenth.

Answers

Answer 1

Answer:

14.6

Step-by-step explanation:


Related Questions

Determine if the following sequences are convergent or divergent. If it is convergent, to what does it converge? (a) n=nen cos(n) (b) an n3 5.

Answers

(a) To determine the convergence or divergence of the sequence given by n = n * e^n * cos(n), we can apply the Limit Test. We'll find the limit as n approaches infinity:
lim (n→∞) [n * e^n * cos(n)]
As n becomes very large, e^n grows faster than any polynomial term (n, in this case), making the product n * e^n very large as well. Since cos(n) oscillates between -1 and 1, the product of these terms also oscillates and does not settle down to a specific value.
Therefore, the limit does not exist, and the sequence is divergent.
(b) To analyze the convergence of the sequence given by a_n = n^3 / 5, we again apply the Limit Test:
lim (n→∞) [n^3 / 5]
As n approaches infinity, the numerator (n^3) grows much faster than the constant denominator (5). This means the ratio becomes larger and larger without settling down to a specific value.
Thus, the limit does not exist, and the sequence is divergent.

To know more about limit visit:

https://brainly.com/question/8533149

#SPJ11

AWNSER THESE ALL PLS

Answers

The area of the trapezoid with parallel sides of 2 and 8 and a height of 8 is 30 square units.

How to Solve Trapezoid Problem

[IMAGE 1]

To find the area of a trapezoid, we recall the formula:

Area = (1/2) * (a + b) * h

where a and b are the lengths of the parallel sides,  

h is the height of the trapezoid.

From the graph, the parallel sides have lengths of 2 and 8, and the height is 8. i.e:

a = point(y₁, y₂)

a = point(0, -2) = 2 (that is length covered by side a)

b = point(y₁, y₂)

b = point(-4, 4) = 8

h = point(x₁, x₂)

h = point(-2, -8) = 6

Substituting the values into the formula:

Area = (1/2) * (2 + 8) * 6

    = (1/2) * 10 * 6

    = 5 * 6

    = 30

[IMAGE 2]

Since XW is parallel to YZ, then:

∠XWY = ∠WYZ = 2x

Recall that, the sum of angles in a triangle is equal 180°, then

∠YXW + ∠XWY + ∠XYW = 180°

From the image, we can see that ∠XYW is a right-angle, that means

∠XYW = 90°

Substitute the values into the equation above:

Recall:

∠YXW + ∠XWY + ∠XYW = 180

3x - 5° + 2x + 90 = 180

5x + 85 = 180

5x = 180 - 85

5x = 95

x = 95/5

x = 19

Learn more about trapezoid here:

https://brainly.com/question/1410008

#SPJ1

(8)Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x = t2 + 15 , y = ln(t2 + 15), z = t; (4, ln(16), 1) x(t), y(t), z(t) =

Answers

To find the parametric equations for the tangent line, we need to find the derivative of the given parametric equations and evaluate it at the specified point:

x'(t) = 2t, y'(t) = 1/(t^2 + 15), z'(t) = 1

x'(4) = 8, y'(4) = 1/31, z'(4) = 1

So the direction vector of the tangent line is <8, 1/31, 1>.

To find a point on the tangent line, we can use the given point (4, ln(16), 1) as it lies on the curve.

Therefore, the parametric equations for the tangent line are:

x(t) = 4 + 8t
y(t) = ln(16) + (1/31)t
z(t) = 1 + t

Note that we can also write the parametric equations in vector form as:

r(t) = <4, ln(16), 1> + t<8, 1/31, 1>
To find the parametric equations for the tangent line to the curve at the specified point (4, ln(16), 1), we need to find the derivative of x(t), y(t), and z(t) with respect to the parameter t, and then evaluate these derivatives at the point corresponding to the given parameter value.

Given parametric equations:
x(t) = t^2 + 15
y(t) = ln(t^2 + 15)
z(t) = t

First, find the derivatives:
dx/dt = 2t
dy/dt = (1/(t^2 + 15)) * (2t)
dz/dt = 1

Now, find the value of t at the specified point. Since x = 4 and x(t) = t^2 + 15, we can solve for t:
4 = t^2 + 15
t^2 = -11
Since there's no real value of t that satisfies this equation, it seems there's an error in the given point or equations. Please verify the given information and try again.

Learn more about curve here : brainly.com/question/28793630

#SPJ11

PLS HURRY Triangle ABC is dilated about the origin to create triangle A′B′C′.

triangle ABC with vertices at A negative 14 comma negative 4, B negative 6 comma negative 4, and C negative 6 comma 4 and triangle A prime B prime C prime with vertices at A prime negative 21 comma negative 6, B prime negative 9 comma negative 6, and C prime negative 9 comma 6

Determine the scale factor used to create the image.

three fourths
2
one half
1.5

Answers

The scale factor used to create the image is given as follows:

k = 1.5.

What is a dilation?

A dilation can be defined as a transformation that multiplies the distance between every point in an object and a fixed point, called the center of dilation, by a constant factor called the scale factor.

The length of segment AB is given as follows:

AB = -6 - (-14) = 14 - 6 = 8.

The length of segment A'B' is given as follows:

A'B' = -9 - (-21) = 21 - 9 =12.

Hence the scale factor is given as follows:

k = 12/8

k = 1.5.

More can be learned about dilation at brainly.com/question/3457976

#SPJ1

Answer:

1.5

Step-by-step explanation:

If Fx=Frac X23 Is An Antiderivative Of Fx , Find ∈ T 4fx-5x3dx.

Answers

We can substitute the value of T to get the final answer: [4Frac (pi/2)^2/3 - 5((pi/2)^4/4)]


To solve this problem, we need to use the fundamental theorem of calculus, which states that the definite integral of a function f(x) over an interval [a, b] can be evaluated by finding an antiderivative F(x) of f(x) and then subtracting F(a) from F(b).

In this case, we are given that Fx = Frac X23 is an antiderivative of fx. Therefore, we can write:
∫T 4fx - 5x^3 dx = [4F(x) - 5(x^4/4)]T

To evaluate this expression, we need to substitute T for x in the above expression and then subtract the result of substituting 0 for x. We get:
[4F(T) - 5(T^4/4)] - [4F(0) - 5(0^4/4)]

Since Fx = Frac X23, we have:
F(T) = Frac T23 and F(0) = Frac 023 = 0

Therefore, the expression simplifies to:
[4Frac T23 - 5(T^4/4)]

Finally, we can substitute the value of T to get the final answer:
[4Frac (pi/2)^2/3 - 5((pi/2)^4/4)]

Know more about calculus here:

https://brainly.com/question/24430269

#SPJ11

Can anyone help me please?

Answers

The middle line of the wave is 1.

The amplitude of the wave is 3.

The period of the wave is  180⁰.

What is the midline, amplitude and period of the wave?

The middle line a wave is the equilibrium or zero line, represents the average value or baseline of the wave.

From the wave graph, midline = 1

The amplitude of the wave is the maximum displacement of the wave;

amplitude = 3

The period of a wave is the tike taken for the wave to make one complete oscillation.

One complete oscillation = ( 225⁰ - 45⁰ )

One complete oscillation = 180⁰

Learn more about amplitude of a wave here: https://brainly.com/question/3613222

#SPJ1

Describe a real-world scenario that can be represented by the expression -4 1/2(2/5)

Answers

A real-world scenario that can be represented by the expression -4 1/2(2/5) is when it comes to calculating how much money one owes after applying discounts.

Lets consider that you're purchasing something worth $4.50 from your favorite store that has just announced on offering a big sale with a discount of about 40% (represented by the numeric fraction  2/5).

How calculate the final amount the person would owe after discount?

Let convert -4 1/2 which is a mixed number to an improper fraction:

-9/2

Multiply the improper fraction by the discount:

[tex]\frac{-9}{2} * \frac{2}{5}[/tex]

[tex]= \frac{-9}{10}[/tex]

Convert back to mixed number:

-0.9

Therefore, you'll owe $0.90 after applying the 40% discount to the $4.50 item.

Learn about mixed numbers here https://brainly.com/question/21446512

#SPJ1

Find all values of theta that satisfy the equation over the interval [0, 2pi]. sin theta = sin(-2/3 pi) theta = rad (smaller value) theta = rad (larger value)

Answers

According to the statement the values of θ that satisfy sinθ = sin(-2/3π) over the interval [0, 2π] are θ = 2π/3 and θ = 5π/3.

To solve this equation, we need to use the periodicity of the sine function. The sine function has a period of 2π, which means that the values of sinθ repeat every 2π radians.
Given sinθ = sin(-2/3π), we can use the identity that sin(-x) = -sin(x) to rewrite the equation as sinθ = -sin(2/3π).
We can now use the unit circle or a calculator to find the values of sin(2/3π), which is equal to √3/2.
So, we have sinθ = -√3/2. To find the values of θ that satisfy this equation over the interval [0, 2π], we need to look at the unit circle or the sine graph and find where the sine function takes on the value of -√3/2.
We can see that the sine function is negative in the second and third quadrants, and it equals -√3/2 at two points in these quadrants: π/3 + 2πn and 2π/3 + 2πn, where n is an integer.
Since we are only interested in the values of θ over the interval [0, 2π], we need to eliminate any values of θ that fall outside of this interval.
The smaller value of θ that satisfies sinθ = -√3/2 is π - π/3 = 2π/3. The larger value of θ is 2π - π/3 = 5π/3. Both of these values fall within the interval [0, 2π].
Therefore, the values of θ that satisfy sinθ = sin(-2/3π) over the interval [0, 2π] are θ = 2π/3 and θ = 5π/3.

To know more about theta visit :

https://brainly.com/question/1581518

#SPJ11

\find the solution of the differential equation ′()=5() with the initial condition (0)=⟨4,4,4⟩, where () is a vector‑valued function in three‑space.

Answers

Thus, the solution to the differential equation ′()=5() with the initial condition (0)=⟨4,4,4⟩ is ()=⟨4,4,4⟩.

To solve the differential equation ′()=5(), we first need to recognize that it is a first-order linear homogeneous equation. This means that we can solve it using separation of variables and integration.

Let's start by separating the variables:
′() = 5()
′()/() = 5

Now we can integrate both sides:
ln() = 5 + C

where C is the constant of integration. To find C, we need to use the initial condition (0)=⟨4,4,4⟩:
ln(4) = 5 + C
C = ln(4) - 5

Substituting this back into our equation, we get:
ln() = 5 + ln(4) - 5
ln() = ln(4)

Taking the exponential of both sides, we get:
() = 4

So the solution to the differential equation ′()=5() with the initial condition (0)=⟨4,4,4⟩ is ()=⟨4,4,4⟩.

Know more about the differential equation

https://brainly.com/question/1164377

#SPJ11

find the radius of convergence, r, of the series. [infinity] xn 3 5n! n = 2

Answers

The limit of the ratio is infinity, the series diverges for all values of x except x = 0 and the radius of convergence is r = 0.

To find the radius of convergence of the series, we can use the ratio test.

The ratio of the (n+1)th and the nth term of the series is:

|(x(n+1)) / (x(n))| = ((n+1)^3) / (5(n+1))

We take the limit of this ratio as n approaches infinity:

lim |(x(n+1)) / (x(n))| = lim (((n+1)^3) / (5(n+1))) = lim ((n^3 + 3n^2 + 3n + 1) / (5n)) = ∞

Since the limit of the ratio is infinity, the series diverges for all values of x except x = 0. Hence, the radius of convergence is r = 0.

Learn more about convergence here

https://brainly.com/question/28209832

#SPJ11

Unit 2 Assignment: Using Radical Equations - Speed Racer

If someone could please help me out with this assignment, my brain isnt braining rn
thanks so much !

Answers

[tex]t=5.825\sqrt[3]{\cfrac{w}{p}} ~~ \begin{cases} w=3,590\\ t=13.4 \end{cases}\implies 13.4=5.825\sqrt[3]{\cfrac{3590}{p}} \\\\\\ \cfrac{13.4}{5.825}=\sqrt[3]{\cfrac{3590}{p}}\implies \left( \cfrac{13.4}{5.825} \right)^3=\cfrac{3590}{p}\implies \cfrac{13.4^3}{5.825^3}=\cfrac{3590}{p} \\\\\\ 13.4^3p=(3590)5.825^3\implies p=\cfrac{(3590)5.825^3}{13.4^3}\implies p\approx 290~hp[/tex]

well, clearly Natasha rules!!

now 3) is simply asking on getting a couple of "w" and "p" and getting their time or "t".

Final answer:

In your assignment related to 'Radical Equations', you are dealing with equations that contain radicals with variables in the radicand. You solve them by isolating the radical on one side and then squaring both sides of the equation. Finally, you need to check the solution(s) by substituting back into the original equation.

Explanation:

In the given assignment, the topic is Radical Equations, which is an essential area of study in high school mathematics. Radical equations are equations that contain radicals with variables in the radicand. Solving such equations involves isolating the radical on one side of the equation and then squaring both sides.

Solving Radical Equations

Here are general steps to solve radical equations:

Isolate the radical term on one side of the equation.Square both sides of the equation to eliminate the radical.If another radical exists, repeat the steps.Once all radicals are removed, solve for the variable.

   Check your solution(s) by substituting them into the original equation to ensure they work.

Learn more about Radical Equations here:

https://brainly.com/question/32445235

#SPJ11

8
T
6
8
S
U
What is the length of SU?

Answers

After calculation, it can be seen that the length of SU is a) 4√7.

In this question, we have to find out the length of the side SU of the triangle. We can see that there is a line passing through Angle T making a perpendicular to SU, which divides the triangle into two parts.

From this, it can also be concluded that the perpendicular T divides the side SU into half, so we will just find the length of one part of side SU and multiply it by 2.

We will look into the right triangle. This is a right angled triangle and the length of perpendicular is given as 6 and of hypotenuse is given as 8, so we will apply the Pythagoras theorem to find the side SU.

Base² = Hypotenuse² - Perpendicular²

Base² = 8² - 6²

Base² = 64 - 36

Base² = 28

Base = [tex]\sqrt{28}[/tex]

Base = 2√7

Now, the length of SU = base × 2

= 2√7 × 2

= 4√7

To know more about length of side of triangle:

https://brainly.com/question/17307037

#SPJ1

For the following function, find the Taylor series centered at x= 2π​and then give the first 5 nonzero terms of the Taylor series and the open interval of convergence. f(x)=cos(x) .f(x)=∑ n=0[infinity]​f(x)=? The open interval of convergence is: (Give your answer in interval notation.)

Answers

The open interval of convergence for the function f(x) = cos(x) with Taylor series centered at x = 2π is equal to (-∞, ∞).

To find the Taylor series centered at x = 2π for the function f(x) = cos(x),

Use the Maclaurin series expansion of the cosine function.

The Maclaurin series expansion for cos(x) is,

cos(x) = Σ (-1)ⁿ × (x²ⁿ) / (2n)!

Let us find the first five nonzero terms of the Taylor series expansion,

n = 0

(-1)⁰ × (x²⁰) / (20)!

= 1 / 0!

= 1

n = 1

(-1)¹ × (x²¹) / (21)!

= -x² / 2!

n = 2

(-1)² × (x²²) / (22)!

= x⁴ / 4!

n = 3

(-1)³ × (x²³) / (23)!

= -x⁶ / 6!

n = 4

(-1)⁴ × (x²⁴) / (24)!

= x⁸ / 8!

So, the first five nonzero terms of the Taylor series centered at x = 2π for f(x) = cos(x) are,

f(x) = 1 - (x - 2π)² / 2! + (x - 2π)⁴ / 4! - (x - 2π)⁶ / 6! + (x - 2π)⁸ / 8!

Now let us determine the open interval of convergence for this Taylor series.

The Maclaurin series expansion of cos(x) converges for all values of x.

Therefore, the open interval of convergence for the given Taylor series centered at x = 2π is equal to (-∞, ∞).

learn more about Taylor series here

brainly.com/question/14182136

#SPJ4

find the acute angle between the lines. use degrees rounded to one decimal place. 9x − y = 7, x +5y = 25

Answers

The acute angle between the two lines is approximately 81.87 degrees.

To find the acute angle between two lines, we first need to find the slopes of the two lines.

The given lines are:

9x - y = 7 ----(1)

x + 5y = 25 ----(2)

Solving equation (1) for y, we get:

y = 9x - 7

So the slope of the first line is 9.

Solving equation (2) for y, we get:

y = (25 - x)/5

So the slope of the second line is -1/5.

Now we can find the acute angle θ between the two lines using the formula:

θ = |arctan((m2 - m1)/(1 + m1m2))|

where m1 and m2 are the slopes of the two lines.

Plugging in the values, we get:

θ = |arctan((-1/5 - 9)/(1 + (9)(-1/5)))|

= |arctan((-46/5)/(-8/5))|

= |arctan(23/4)|

Using a calculator, we get:

θ ≈ 81.87 degrees

Therefore, the acute angle between the two lines is approximately 81.87 degrees.

Learn more about acute angle here

https://brainly.com/question/6979153

#SPJ11

[please answer for brainlist
The table shows the number of runs earned by two baseball players.


Player A Player B
2, 1, 3, 8, 2, 3, 4, 3, 2 2, 3, 1, 4, 2, 2, 1, 4, 6


Find the best measure of variability for the data and determine which player was more consistent.
Player A is the most consistent, with an IQR of 1.5.
Player B is the most consistent, with an IQR of 2.5.
Player A is the most consistent, with a range of 7.
Player B is the most consistent, with a range of 5.

Answers

The correct option is: Player B is the most consistent, with an IQR of 2.5.

To determine the best measure of variability for the data, we need to consider the type of data we are dealing with. Since we are looking at the number of runs earned by each player, which is numerical data, the best measure of variability would be either the interquartile range (IQR) or the range.

To calculate the IQR for each player, we need to first find the median (middle number) of the data. Then we find the median of the lower half (Q1) and the median of the upper half (Q3) of the data. The IQR is the difference between Q3 and Q1.

For Player A:

Median = 3

Q1 = median of {1, 2, 2, 2, 3} = 2

Q3 = median of {3, 3, 4, 8} = 3.5

IQR = Q3 - Q1 = 3.5 - 2 = 1.5

For Player B:

Median = 2

Q1 = median of {1, 1, 2, 2} = 1.5

Q3 = median of {2, 4, 6} = 4

IQR = Q3 - Q1 = 4 - 1.5 = 2.5

for such more question on variability

https://brainly.com/question/30033462

#SPJ11

The width of a rectangle is 55 cm less than three times its length. The area of the
rectangle is 100 cm². Find the dimensions of the rectangle. Only an algebraic solution is
acceptable.
JUSTIFY:

Answers

The length and width of the rectangle are 20 cm and 5 cm respectively.

Dimensions of rectangles

Let's assume the length of the rectangle is x cm.

According to the given information, the width of the rectangle is 55 cm less than three times its length. So, the width can be expressed as:

Width = 3x - 55

Area = Length x Width.

Thus: Area = x * (3x - 55) = 100

[tex]3x^2 - 55x - 100 = 0[/tex]

Using the quadratic formula

x = (-b ± √(b^2 - 4ac)) / (2a)

For our equation, a = 3, b = -55, and c = -100.

x = (-(-55) ± √((-55)^2 - 4 * 3 * -100)) / (2 * 3)

= (55 ± √(3025 + 1200)) / 6

= (55 ± √4225) / 6

= (55 ± 65) / 6

x = (55 + 65) / 6 = 120 / 6 = 20 OR

x = (55 - 65) / 6 = -10 / 6 = -5/3

Therefore, the length of the rectangle is 20 cm.

Width = 3x - 55

= 3 x 20 - 55

= 60 - 55

= 5

Therefore, the dimensions of the rectangle are length = 20 cm and width = 5 cm.

More on rectangles can be found here: https://brainly.com/question/15019502

#SPJ1

if the level of significance of a hypothesis test is raised from 0.05 to 0.1, the probability of a type ii error will

Answers

As the level of significance increases, the probability of making a type II error decreases.

What is probability?

Probability is a measure of the likelihood or chance of an event occurring. It is a number between 0 and 1, with 0 representing an impossible event and 1 representing a certain event. The probability of an event is calculated by dividing the number of ways the event can occur by the total number of possible outcomes.

If the level of significance of a hypothesis test is raised from 0.05 to 0.1, the probability of a type II error will decrease.

Type II error occurs when we fail to reject a null hypothesis that is actually false. It is the probability of accepting a false null hypothesis. By increasing the level of significance, we are making it easier to reject the null hypothesis, which in turn decreases the probability of accepting a false null hypothesis.

Hence, as the level of significance increases, the probability of making a type II error decreases.

To know more about probability visit :

https://brainly.com/question/13604758

#SPJ4

Find the equation of the line perpendicular to y= -1/2x-5
that passes through the point (2,7)
. Write this line in slope-intercept form.

Answers

The required equation of the line perpendicular to line y= -1/2x-5 that passes through the given point (2,7) is y = 2x + 3.

The given line has a slope of -1/2 when we compare it standard equation of line y =mx+c.

Since we want a line that is perpendicular to this line, we need to find the negative reciprocal of the slope of the given line y= -1/2x-5.
The negative reciprocal of -1/2 is 2.
So, the slope of the line we want is 2.

Using the point-slope form of a line, we can write the equation of the line as:

y - y₁ = m(x - x₁)

where m is the slope and (x₁, y₁) is the given point of the line.

substitute the values, we get:

y - 7 = 2(x - 2)

y = 2x + 3

Therefore, the equation of the line perpendicular to y= -1/2x-5 that passes through the point (2,7) is y = 2x + 3.

Learn more about the equation of line here:

https://brainly.com/question/21511618

#SPJ1

let a be a 2 × 2 matrix. (a) prove that the characteristic polynomial of a is given by λ 2 − tr(a)λ det(a).

Answers

The characteristic polynomial of a 2×2 matrix a is λ^2 - tr(a)λ + det(a), where tr(a) is the trace and det(a) is the determinant of a.

To prove the given statement, let's consider a 2×2 matrix a with entries a11, a12, a21, and a22. The characteristic polynomial is defined as det(a - λI), where I is the identity matrix.
Expanding the determinant, we have:

det(a - λI) = (a11 - λ)(a22 - λ) - a21a12
= λ^2 - (a11 + a22)λ + a11a22 - a21a12

Comparing this with λ^2 - tr(a)λ + det(a), we observe that the term (a11 + a22) is the trace of a, tr(a), and the term a11a22 - a21a12 is the determinant of a, det(a). Thus, the characteristic polynomial is given by λ^2 - tr(a)λ + det(a).

In summary, the characteristic polynomial of a 2×2 matrix a is λ^2 - tr(a)λ + det(a), where tr(a) is the trace and det(a) is the determinant of a.


Learn more about Matrix click here :brainly.com/question/24079385

#SPJ11

what is gross national income? how is it calculated? illustrate your answer with a specific example.

Answers

Gross National Income (GNI) is the total income earned by a country's residents, including income earned abroad.

It is a measure of a country's economic performance and is used to compare the wealth of different countries. GNI is calculated by adding up all the income earned by residents, including wages, profits, and investment income, and adding in any income earned by residents from abroad, while subtracting any income earned by foreigners in the country.

To calculate GNI, a country's statistical agency collects data on the income earned by its residents and income earned abroad. For example, if a country's residents earn a total of $1 billion in wages, $500 million in profits, and $200 million in investment income, while earning an additional $300 million from abroad, the country's GNI would be $2 billion ($1 billion + $500 million + $200 million + $300 million).

GNI is an important measure of a country's economic performance, as it reflects the overall wealth of a country and its residents. It is often used in conjunction with other economic indicators, such as Gross Domestic Product (GDP), to evaluate a country's economic development and standard of living. However, it is important to note that GNI may not reflect the distribution of income within a country, as it measures total income rather than individual incomes.

Learn more about Gross National Income here: brainly.com/question/32066277

#SPJ11

For any two variables X and Y. the correlation coefficient rho = Corr(2X + 1, 3Y + 4) is the same as a. Corr(X, Y) b. None of the given statements is true c. 6 Corr(X + 1, Y + 4) d. 5 Corr(X, Y) + 5 e. 5 Corr(X, Y) + 4

Answers

The correlation coefficient between two variables measures the strength and direction of the linear relationship between them. In this case, we are given that the correlation coefficient between 2X + 1 and 3Y + 4 is to be determined.

To solve this problem, we can use the following formula for the correlation coefficient:

rho = Cov(X,Y) / (SD(X) * SD(Y))

where Cov(X,Y) is the covariance between X and Y, and SD(X) and SD(Y) are the standard deviations of X and Y, respectively.

Now, let's apply this formula to 2X + 1 and 3Y + 4.

Cov(2X+1, 3Y+4) = Cov(2X, 3Y) = 6Cov(X,Y)

because the constants 1 and 4 do not affect the covariance.

SD(2X+1) = 2SD(X), and SD(3Y+4) = 3SD(Y), so

SD(2X+1) * SD(3Y+4) = 6SD(X) * SD(Y)

Putting these results together, we get:

rho = Cov(2X+1, 3Y+4) / (SD(2X+1) * SD(3Y+4))
= (6Cov(X,Y)) / (2SD(X) * 3SD(Y))
= (2Cov(X,Y)) / (SD(X) * SD(Y))

Thus, we see that the correlation coefficient between 2X+1 and 3Y+4 is two times the correlation coefficient between X and Y.

Therefore, the correct answer is (c) 6 Corr(X+1, Y+4).

To know more about correlation visit :-

https://brainly.com/question/28175782

#SPJ11

if x = 6, y = 9, and z = 0, what values are in x, y, and z after code corresponding to the following pseudocode is executed? set z = x set x = y set y = z

Answers

After executing the pseudocode, the values of x, y, and z will be: x = 9, y = 0, and z = 6.

The first line of the pseudocode sets z equal to the current value of x, which is 6. So z now has the value 6.

The second line of the pseudocode sets x equal to the current value of y, which is 9. So x now has the value 9.

The third line of the pseudocode sets y equal to the current value of z, which is 6. So y now has the value 6.

Therefore, after executing the pseudocode, the values of x, y, and z are: x = 9, y = 6, and z = 6. However, we can simplify this further by noticing that the third line of the pseudocode sets y equal to the value of z, which is now equal to x. So we can rewrite the values as: x = 9, y = 6, and z = x. And since x is now equal to 9, the final values are: x = 9, y = 6, and z = 9.

Learn more about pseudocode here: brainly.com/question/14849531

#SPJ11

if z = x2 − xy 4y2 and (x, y) changes from (1, −1) to (1.03, −0.95), compare the values of δz and dz. (round your answers to four decimal places.)

Answers

If function "z = x² - xy + 4y²" and (x, y) changes from interval (1, -1) to (1.03, -0.95), then the value of dz is 11.46, and Δz is 0.46.

The "multi-variable" function z = f(x,y) is given to be : x² - xy + 4y²;

Differentiating the function "z" with respect to "x",

We get,

dz/dx = 2x - y + 0

dz/dx = 2x - y,     ...equation(1)

Differentiating the function "z" with respect to "y",

We get,

dz/dy = 0 - x.1 + 8y,

dz/dy = 8y - x,      ...equation(2)

So, the "total-derivative" of "z" can be written as :

dz = (2x - y)dx + (8y - x)dy,

Given that "z" changes from (1, -1) to (1.03, -0.95);

So, we substitute, (x,y) as (1, -1), and (dx,dy) = (1.03, -0.95),

We get,

dz = (2(-1)-1)(1.03 + 1) + (8(-9) -1)(-0.95 -1),

dz = (-3)(2.03) + (-9)(-1.95),

dz = -6.09 + 17.55,

dz = 11.46.

Now, we compute Δz,

The z-value corresponding to (1,-1),

z₁ = (1)² - (1)(-1) + 4(-1)² = -2, and

The z-value corresponding to (1.03, -0.95),

z₂ = (1.03)² - (1.03)(-0.95) + 4(-0.95)² = -1.57.

So, Δz = z₂ - z₁ = -1.57 -(-2) = 0.46.

Therefore, the value of dz is 11.46, and Δz is 0.46.

Learn more about Differentiation here

https://brainly.com/question/1969004

#SPJ4

The given question is incomplete, the complete question is

If the function z = x² - xy + 4y² and (x, y) changes from (1, -1) to (1.03, -0.95), Compare the values of dz and Δz.

identify the similar triangles in the diagram. Complete the similarity statement in the order: Large, medium, small. The order for the statement is established with the large triangle.

Answers

Answer: 11.9

Step-by-step explanation:you have to corss multiply

I'm a bit stuck on this question, can someone help me please? Thanks if you do!

Answers

SolutioN:-

We have given that, The sum of interior angles formed by the sides of a of pentagon is 540°.

According To The Question:-

[tex] \sf \longrightarrow \: Sum \: of \: all \: angles = 540 \\ [/tex]

[tex] \sf \longrightarrow \: \angle A + \angle B + \angle C + \angle D +\angle E \: = 540 \\ [/tex]

[tex] \sf \longrightarrow \: (130) + (x - 5) + (x + 30) +75 +(x - 35) \: = 540 \\ [/tex]

[tex] \sf \longrightarrow \: 130 + x - 5 + x + 30 +75 +x - 35 \: = 540 \\ [/tex]

[tex] \sf \longrightarrow \: 130 - 5+ 30+75 - 35+x + x +x \: = 540 \\ [/tex]

[tex] \sf \longrightarrow \: 130 - 5+ 30+75 - 35+3x \: = 540 \\ [/tex]

[tex] \sf \longrightarrow \: 125+ 30+75 - 35+3x \: = 540 \\ [/tex]

[tex] \sf \longrightarrow \: 155+75 - 35+3x \: = 540 \\ [/tex]

[tex] \sf \longrightarrow \: 230 - 35+3x \: = 540 \\ [/tex]

[tex] \sf \longrightarrow \: 195+3x \: = 540 \\ [/tex]

[tex] \sf \longrightarrow \: 3x \: = 540 - 195\\ [/tex]

[tex] \sf \longrightarrow \: 3x \: = 345\\ [/tex]

[tex] \sf \longrightarrow \: x \: = \frac{ 345}{3}\\ [/tex]

[tex] \sf \longrightarrow \: x \: = 115 \degree\\ [/tex]

________________________________________

Angle B :-

→ x - 5 °

→ 115 - 5

→ 115 - 5

→ 110°

Therefore Measure of angle B is 110°

find the eigenvalues of a , given that a=[1−61287−446−7]

Answers

Therefore, the eigenvalue of matrix A is λ = 1.64615.

To find the eigenvalues of matrix A = [1 -6; 12 -7], we need to solve the characteristic equation det(A - λI) = 0, where λ is the eigenvalue and I is the identity matrix.

Let's calculate the determinant of A - λI:

A - λI = [1 - 6; 12 - 7] - λ[1 0; 0 1]

= [1 - λ -6; 12 - λ -7]

Now, calculate the determinant:

det(A - λI) = (1 - λ)(-7 - (-6*12)) - (-6)(-7)

= (1 - λ)(-7 + 72) + 42

= (1 - λ)(65) + 42

= 65 - 65λ + 42

= 107 - 65λ

Setting the determinant equal to zero and solving for λ:

107 - 65λ = 0

-65λ = -107

λ = -107 / -65

λ = 1.64615

To know more about eigenvalues,

https://brainly.com/question/31503742

#SPJ11

THE ORDERES PAIR REPRESENTS THE COST OF 20 POUNDS OF BEANS

Answers

The value of ordered pair which represent the 20 pounds of beans is,

⇒  (20, 16).

Since, The question is for which ordered pair represents the cost of 20 pounds of beans.

since our x-axis represents pounds of beans.

When we find 20, we can trace up to see which point corresponds with an x-value of 20.

It is like a y-value of 16 is the answer

Hence, this represents the cost of 20 pounds of beans.

So, The value of ordered pair which represent the 20 pounds of beans is,

⇒  (20, 16).

Learn more about the coordinate visit:

https://brainly.com/question/24394007

#SPJ1

for each of the following, set up the integral of an arbitrary function f(x,y) over the region in whichever of rectangular or polar coordinates is most appropriate. (use t for θ in your expressions.)

Answers

a) The region enclosed by the circle is x^2 + y^2 = 4 in the first  quadrant.

In polar coordinates, the equation of the circle becomes r^2 = 4, and the region is bounded by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ π/2. Therefore, the integral of an arbitrary function f(x,y) over this region is:

∫∫ f(x,y) dA = ∫₀^(π/2) ∫₀² f(r cos θ, r sin θ) r dr dθ

b) The region bounded by the curves y = x^2 and y = 2x - x^2.

In rectangular coordinates, the region is bounded by x^2 ≤ y ≤ 2x - x^2 and 0 ≤ x ≤ 2. Therefore, the integral of an arbitrary function f(x,y) over this region is:

∫∫ f(x,y) dA = ∫₀² ∫x²^(2x - x²) f(x, y) dy dx

Alternatively, we can use polar coordinates to express the  region as the region enclosed by the curves r sin θ = (r cos θ)^2 and r sin θ = 2r cos θ - (r cos θ)^2 in the first quadrant. Solving for r in terms of θ, we get:

r = sin θ / cos^2 θ and r = 2 cos θ - sin θ / cos^2 θ

Therefore, the integral of an arbitrary function f(x,y) over this region is:

∫∫ f(x,y) dA = ∫₀^(π/4) ∫sin θ / cos^2 θ^(2 cos θ - sin θ / cos^2 θ) f(r cos θ, r sin θ) r dr dθ

Learn more about Calculus here -: brainly.com/question/24430269

#SPJ11

NEED ANSWER ASAP OFFERING 100 POINTS

Which properties justify the steps taken to solve the system?


{2a+7b=03a−5b=31


Drag the answers into the boxes to match each step.




Put responses in the correct input to answer the question. Select a response, navigate to the desired input and insert the response. Responses can be selected and inserted using the space bar, enter key, left mouse button or touchpad. Responses can also be moved by dragging with a mouse.

10a+35b=0; 21a−35b=217

​31a = 217

a = 7

2(7)+7b=0

14 + 7b = 0

7b=−14

b=−2

Answers

The properties used in the given steps include the multiplication property of equality, addition property of equality, subtraction property of equality, and division property of equality.

What are the properties used in the steps taken to solve the system?

The steps taken to solve the system of equations and the properties used are as follows:

1.Step 1: 2a + 7b = 0; 3a − 5b = 31

No specific property is used.

Step 2: 10a + 35b = 0; 21a − 35b = 217

Multiplication property of equality: Both sides of the equations are multiplied by 5 and 7 to eliminate coefficients and simplify the expressions.

Step 3: 31a = 217

Addition property of equality

Step 4: a = 7

Division property of equality as both sides are divided by 31 to solve for a.

2. Step 1: 2(7) + 7b = 0

Simplify: the expression is simplified by multiplying 2 and 7 to obtain 14.

Step 2: 14 + 7b = 0

Simplify

Step 3: 7b = −14

Simplify: the equation is simplified by subtracting 14 from both sides.

Step 4: b = −2

Division property of equality: both sides of the equation are divided by the coefficient of 'b' (7) to solve for 'b'.

Learn more about the multiplication property of equality at: https://brainly.com/question/24675477

#SPJ1

in the rescorla-wagner equation, ∆vi = 0.25 (0.00 - 10.00), the value ________ is maximum associative strength

Answers

The value of -2.5 is the maximum associative strength in the given Rescorla-Wagner equation.

In the Rescorla-Wagner model, ∆vi represents the change in associative strength of a particular conditioned stimulus (CS) after a single trial of conditioning. The formula for computing ∆vi involves the learning rate (α) and the prediction error (δ). In the given equation, the prediction error is 10.00 - 0.00 = 10.00. The learning rate is 0.25. When we multiply these two values, we get 2.50. Since the prediction error is negative, the change in associative strength will also be negative. Therefore, the maximum associative strength will be the negative of 2.50, which is -2.5. This means that the CS is maximally associated with the unconditioned stimulus (US) after the conditioning trial.


To learn more about Rescorla-Wagner model click here: brainly.com/question/30627357


#SPJ11

Other Questions
Anuched on : , , Locke argued that ideas seem to us to be innate because ____.A. they were classically conditionedB. they are simple ideasC. they are complex ideasD. we don't recollect having learned themE. we can't identify their component elemental ideas Salina was terrified during the magnitude 7. 2 earthquake that hit where she lived. For a couple of weeks after the event, she did not sleep well or feel comfortable inside a building. However, her fears gradually diminished and were completely gone within a month. Her reaction to the earthquake would most likely be diagnosed as a(n): Determine the critical value or values for a one-mean t-test at the 5% significance level if the hypothesis test is right-tailed (Ha:>0), with a sample size of 28. Select all that apply. df...2627282930t0.101.3151.3141.3131.3111.310t0.051.7061.7031.7011.6991.697t0.0252.0562.0522.0482.0452.042t0.012.4792.4732.4672.4622.457t0.0052.7792.7712.7632.7562.750 a circular carpet has a diameter of 5 dm. what is the area of the circular carpet? mr. hayes plans to pay $100,000 for one of three investment alternatives that have the same risk. the income from investment 1 would be taxed at mr. hayes' 24% regular tax rate, the income from investment 2 would be taxed at a 15% preferential rate, and the income from investment 3 is tax-exempt. the investments offer the following before-tax yields. investment 1: 9.0% investment 2: 7.5% investment 3: 6.0% which investment should mr. hayes select? multiple choice disease condition due to malfunction of the posterior lobe of the pituitary gland is definition of ? Find the volume of the figure. Show your work for the reaction 2c4h10 (g) 13 o2 (g) 8 co2 (g) 10 h2o (g) h is -125 kj/mol and s is 253 j/k mol. this reaction is ________ A. nonspontaneous at all temperatures B. spontaneous at all temperatures C. spontaneous only at low temperature D. spontaneous only at high temperature E. unable to determine without more information based on your preliminary analysis with the 2021 sales data, what would you recommend to the sales manager? Explain the significance of this sentence: "To the world you may be just one person, but to one person you may be the world Which of the following are socially constructed?A) GenderB) Race and EthnicityC) Health and IllnessD) All of the above a circular muscle that can open and close and acts to regulate the flow of materials in one direction is referred to as a. ironb. calcium c. folated. zinc Can someone help me with 6-11. Directions: Find the volume of each figure. Round to the nearest hundredth when necessary. Modeling a Scenario with a TWO-Fiona bought some socks that cost $4. 95 for each pairand some belts that cost $6. 55 each. Fiona spent $27. 95in all. Let a represent the number of pairs of sockspurchased and b the number of belts purchased. A 4.85*10-3 mole sample of HY is dissolved in enough water to form 0.095L of solution. If the pH of the solution is 2.68, what is the Ka of HY? Which of following 802.11 security protocol is backward compatible with WEP?Question 25 options:WPAWPA2802.11iRSN balance the following reaction in your notes, assuming acidic conditions (use the smallest whole number coefficients): no3(aq) cu(s)no2(g) cu2 (aq) A 1.0-cm-tall object is 11cm in front of a converging lens that has a 29cm focal length. Part A Calculate the image position. Express your answer to two significant figures and include the appropriate units. Part B Calculate the image height. Type a positive value if the image is upright and a negative value if it is inverted. Express your answer to two significant figures and include the appropriate units. environmental uncertainty drives organizational structure. in the three elements of environmental uncertainty, capacity refers to what?