please help! the number of candies consumed varies inversely with the number of children present

Please Help! The Number Of Candies Consumed Varies Inversely With The Number Of Children Present

Answers

Answer 1

Answer:

The answer is

210 candies

Step-by-step explanation:

Let n represent the number of children

Let c represent the number of candies

The above variation is written as

[tex]c = \frac{k}{n} [/tex]

when n = 12 c = 140

So we have

[tex]140 = \frac{k}{12} [/tex]

Cross multiply

That's

k = 1680

So the formula for the variation is

[tex]c = \frac{1680}{n} [/tex]

when n = 8

[tex]c = \frac{1680}{8} [/tex]

c = 210

Therefore there are 210 candies consumed when there are 8 children

Hope this helps you


Related Questions

I NEED HELP PLEASE, THANKS! :)
A rock is tossed from a height of 2 meters at an initial velocity of 30 m/s at an angle of 20° with the ground. Write parametric equations to represent the path of the rock. (Show work)

Answers

Answer:

x = 28.01t,

y = 10.26t - 4.9t^2 + 2

Step-by-step explanation:

If we are given that an object is thrown with an initial velocity of say, v1 m / s at a height of h meters, at an angle of theta ( θ ), these parametric equations would be in the following format -

x = ( 30 cos 20° )( time ),

y = - 4.9t^2 + ( 30 cos 20° )( time ) + 2

To determine " ( 30 cos 20° )( time ) " you would do the following calculations -

( x = 30 * 0.93... = ( About ) 28.01t

This represents our horizontal distance, respectively the vertical distance should be the following -

y = 30 * 0.34 - 4.9t^2,

( y = ( About ) 10.26t - 4.9t^2 + 2

In other words, our solution should be,

x = 28.01t,

y = 10.26t - 4.9t^2 + 2

These are are parametric equations

The width of a casing for a door is normally distributed with a mean of 24 inches and a standard deviation of 1/8 inch. The width of a door is normally distributed with a mean of 23 7/8 inches and a standard deviation of 1/16 inch. Assume independence. a. Determine the mean and standard deviation of the difference between the width of the casing and the width of the door. b. What is the probability that the width of the casing minus the width of the door exceeds 1/4 inch? c. What is the probability that the door does not fit in the casing?

Answers

Answer:

a) Mean = 0.125 inch

Standard deviation = 0.13975 inch

b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25) = 0.18673

c) Probability that the door does not fit in the casing = P(X < 0) = 0.18673

Step-by-step explanation:

Let the distribution of the width of the casing be X₁ (μ₁, σ₁²)

Let the distribution of the width of the door be X₂ (μ₂, σ₂²)

The distribution of the difference between the width of the casing and the width of the door = X = X₁ - X₂

when two independent normal distributions are combined in any manner, the resulting distribution is also a normal distribution with

Mean = Σλᵢμᵢ

λᵢ = coefficient of each disteibution in the manner that they are combined

μᵢ = Mean of each distribution

Combined variance = σ² = Σλᵢ²σᵢ²

λ₁ = 1, λ₂ = -1

μ₁ = 24 inches

μ₂ = 23 7/8 inches = 23.875 inches

σ₁² = (1/8)² = (1/64) = 0.015625

σ₂ ² = (1/16)² = (1/256) = 0.00390625

Combined mean = μ = 24 - 23.875 = 0.125 inch

Combined variance = σ² = (1² × 0.015625) + [(-1)² × 0.00390625] = 0.01953125

Standard deviation = √(Variance) = √(0.01953125) = 0.1397542486 = 0.13975 inch

b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25)

This is a normal distribution problem

Mean = μ = 0.125 inch

Standard deviation = σ = 0.13975 inch

We first normalize/standardize 0.25 inch

The standardized score of any value is that value minus the mean divided by the standard deviation.

z = (x - μ)/σ = (0.25 - 0.125)/0.13975 = 0.89

P(X > 0.25) = P(z > 0.89)

Checking the tables

P(x > 0.25) = P(z > 0.89) = 1 - P(z ≤ 0.89) = 1 - 0.81327 = 0.18673

c) Probability that the door does not fit in the casing

If X₂ > X₁, X < 0

P(X < 0)

We first normalize/standardize 0 inch

z = (x - μ)/σ = (0 - 0.125)/0.13975 = -0.89

P(X < 0) = P(z < -0.89)

Checking the tables

P(X < 0) = P(z < -0.89) = 0.18673

Hope this Helps!!!

The number of people arriving for treatment at an emergency room can be modeled by a Poisson process with a rate parameter of six per hour.
(a) What is the probability that exactly three arrivals occur during a particular hour? (Round your answer to three decimal places.)
(b) What Is the probability that at least three people arrive during a particular hour? (Round your answer to three decimal places.)
(c) How many people do you expect to arrive during a 15-min period?

Answers

Answer:

a) P(x=3)=0.089

b) P(x≥3)=0.938

c) 1.5 arrivals

Step-by-step explanation:

Let t be the time (in hours), then random variable X is the number of people arriving for treatment at an emergency room.

The variable X is modeled by a Poisson process with a rate parameter of λ=6.

The probability of exactly k arrivals in a particular hour can be written as:

[tex]P(x=k)=\lambda^{k} \cdot e^{-\lambda}/k!\\\\P(x=k)=6^k\cdot e^{-6}/k![/tex]

a) The probability that exactly 3 arrivals occur during a particular hour is:

[tex]P(x=3)=6^{3} \cdot e^{-6}/3!=216*0.0025/6=0.089\\\\[/tex]

b) The probability that at least 3 people arrive during a particular hour is:

[tex]P(x\geq3)=1-[P(x=0)+P(x=1)+P(x=2)]\\\\\\P(0)=6^{0} \cdot e^{-6}/0!=1*0.0025/1=0.002\\\\P(1)=6^{1} \cdot e^{-6}/1!=6*0.0025/1=0.015\\\\P(2)=6^{2} \cdot e^{-6}/2!=36*0.0025/2=0.045\\\\\\P(x\geq3)=1-[0.002+0.015+0.045]=1-0.062=0.938[/tex]

c) In this case, t=0.25, so we recalculate the parameter as:

[tex]\lambda =r\cdot t=6\;h^{-1}\cdot 0.25 h=1.5[/tex]

The expected value for a Poisson distribution is equal to its parameter λ, so in this case we expect 1.5 arrivals in a period of 15 minutes.

[tex]E(x)=\lambda=1.5[/tex]

will give brainliest Evaluate 15/k when k is 3

Answers

Answer:

Hey there!

15/k, when k=3

15/3=5

Answer:

5

Step-by-step explanation:

its a simple as 15/3 = 5

have fun

Five thousand tickets are sold at​ $1 each for a charity raffle. Tickets are to be drawn at random and monetary prizes awarded as​ follows: 1 prize of ​$800​, 3 prizes of ​$200​, 5 prizes of ​$50​, and 20 prizes of​ $5. What is the expected value of this raffle if you buy 1​ ticket?

Answers

Answer:

The expected value of this raffle if you buy 1​ ticket is $0.41.

Step-by-step explanation:

The expected value of the raffle if we buy one ticket is the sum of the prizes multiplied by each of its probabilities.

This can be written as:

[tex]E(X)=\sum p_iX_i[/tex]

For example, the first prize is $800 and we have only 1 prize, that divided by the number of tickets gives us a probability of 1/5000.

If we do this with all the prizes, we can calculate the expected value of a ticket.

[tex]E(X)=\sum p_iX_i\\\\\\E(X)=\dfrac{1\cdot800+3\cdot200+5\cdot50+20\cdot20}{5000}\\\\\\E(X)=\dfrac{800+600+250+400}{5000}=\dfrac{2050}{5000}=0.41[/tex]

7. The mean age at first marriage for respondents in a survey is 23.33,
with a standard deviation of 6.13. For an age at first marriage of 33.44,
the proportion of area beyond the Z score associated with this age is
.05. What is the percentile rank for this score?

Answers

Answer:

[tex] \mu = 23.33, \sigma =6.13[/tex]

And for this case we are analyzing the value os 33.44 and we can use the z score formula given by:

[tex] z=\frac{X -\mu}{\sigma}[/tex]

And replacing we got:

[tex] z=\frac{33.44 -23.33}{6.13}= 1.649[/tex]

We know that the proportion of area beyond the Z score associated with this age is  .05 so then the percentile would be: 95

Step-by-step explanation:

For this case we have the following parameters:

[tex] \mu = 23.33, \sigma =6.13[/tex]

And for this case we are analyzing the value os 33.44 and we can use the z score formula given by:

[tex] z=\frac{X -\mu}{\sigma}[/tex]

And replacing we got:

[tex] z=\frac{33.44 -23.33}{6.13}= 1.649[/tex]

We know that the proportion of area beyond the Z score associated with this age is  .05 so then the percentile would be: 95

HELP ASAP WILL MARK BRAINIEST IF YOU ARE RIGHT !Which of the following represents a function?

Answers

Answer:

Option C.

Step-by-step explanation:

This is a function because all of the numbers have a partner, and none of them have more than one.

                                    Example of Not a Function

Function                                Not a Function

-4 to 5                                       -4 to 5                             <

9 to 7                                       -4 to 3                              <

13 to 3                                       13 to 3                              ^

-7 to 5                                        9 to 7                               ^

                                                 -7 to 5                               ^

                                           Not a Function because of this

A cardboard box without a lid is to have a volume of 8,788 cm3. Find the dimensions that minimize the amount of cardboard used.

Answers

Answer:

x = y = 26 cm; z = 13 cm

Step-by-step explanation:

We can calculate the dimensions of the square base as

∛(2·8788) = 26 cm

the height of the box will be half of 26/2 which is 13 cm.

x = y = 26 cm; z = 13 cm

then the minimum area for the given volume can be calculated using what we call Lagrange multipliers, this makes it easier

area = xy +2(xz +yz)

But we were given the volume as 8788

Now we will make the partial derivatives of L to be in respect to the cordinates x, y, z, as well as λ to be equal to zero, then

L = xy +2(xz +yz) +λ(xyz -8788)

For x: we have

y+2z +λyz=0

For y we have

y: x +2z +λxz=0

For z we have 2x+2y +λxy=0............eqn(*)

For we have xyz -8788=0

If we simplify the partial derivative equation of y and x above then we have

λ = (y +2z)/(yz).

= 1/z +2/y............eqn(1)

λ = (x +2z)/(xz)

= 1/z +2/x.............eqn(2)

Set eqn(1 and 2) to equate we have

1/z +2/y = 1/z +2/x

x = y

From eqn(*) we can get z

λ = (2x +2y)/(xy) = 2/y +2/x

If we simplify we have

1/z +2y = 2/x +2/y

Then z = x/2

26/2 =13

Therefore,

x = y = 2z = ∛(2·8788)

X= 26

y = 26 cm

z = 13 cm

What is a15 of the sequence −7,2,11,…
?

Answers

Step-by-step explanation:

a=-7

d=9

n=15

we have to find a15

a(n)= a+(n-1)d

a(15)= -7+(15-1)9

a(15)= -7+126

a(15)=119

so 15 term of the sequence is 119

The 15th term in the given sequence is 119.

The given sequence is −7,2,11,…

Here, a=-7, d=9

What is the formula to find the nth term of the sequence?

The formula to find the nth term of the sequence is [tex]a_{n} =a+(n-1)d[/tex].

Now, [tex]a_{15} =-7+(15-1) \times9=119[/tex].

Therefore, the 15th term in the sequence is 119.

To learn more about the arithmetic sequence visit:

https://brainly.com/question/15412619.

#SPJ5

Find the length and width of a rectangle that has the given perimeter and a maximum area. Perimeter: 116 meters

Answers

Answer:

Length = 29 m

Width = 29 m

Step-by-step explanation:

Let x and y be the length and width of the rectangle, respectively.

The area and perimeter are given by:

[tex]A=xy\\p=116=2x+2y\\y=58-x[/tex]

Rewriting the area as a function of x:

[tex]A(x) = x(58-x)\\A(x) = 58x-x^2[/tex]

The value of x for which the derivate of the area function is zero, is the length that maximizes the area:

[tex]A(x) = 58x-x^2\\\frac{dA}{dx}=0=58-2x\\ x=29\ m[/tex]

The value of y is:

[tex]y = 58-29\\y=29\ m[/tex]

Length = 29 m

Width = 29 m

Which of the following statements about feasible solutions to a linear programming problem is true?A. Min 4x + 3y + (2/3)z
B. Max 5x2 + 6y2
C. Max 5xy
D. Min (x1+x2)/3

Answers

Answer:

The answer is "Option A"

Step-by-step explanation:

The valid linear programming language equation can be defined as follows:

Equation:

[tex]\Rightarrow \ Min\ 4x + 3y + (\frac{2}{3})z[/tex]

The description of a linear equation can be defined as follows:

It is an algebraic expression whereby each term contains a single exponent, and a single direction consists in the linear interpolation of the equation.

Formula:

[tex]\to \boxed{y= mx+c}[/tex]

Determine the logarithmic regression of the data below using either a calculator or spreadsheet program. Then, estimate the x−value when the y−value is 5.2. Round your answer to one decimal place. (4.7,10.7),(7.8,20.6),(10.5,30.2),(15.6,41),(20.8,56.1),(22,65.1). Please help right away! Thank you so much!

Answers

Answer:

y ≈ 33.7·ln(x) -45.94.6

Step-by-step explanation:

A graphing calculator can perform logarithmic regression, as can a spreadsheet. The least-squares best fit log curve is about ...

  y ≈ 33.7·ln(x) -45.9

The value of x estimated to make y = 5.2 is about 4.6.

[!] Urgent [!] Find the domain of the graphed function.

Answers

There is no way I can answer this without the graph

The problem is: On a Map, 3 inches represents 40 miles, How many inches represents 480 miles?

Answers

Answer: 36

480/40=12
12x3=36

how many solution does this equation have LOOK AT SCREENSHOT ATTACHED

Answers

Answer:

One solution

Step-by-step explanation:

99% of the time, linear equations (equations that have the first degree) have only one solution. However, it's always good to check.

6 - 3x = 12 - 6x

6 = 12 - 3x

-3x = -6

x = 2

As you can see, only one solution. Hope this helps!

Jeremy makes $57,852 per year at his accounting firm. How much is Jeremy’s monthly salary? (There are 12 months in a year.) How much is Jeremy’s weekly salary? (There are 52 weeks in a year.)

Answers

Answer:

Monthly: $4,821

Weekly: $1112.54

Step-by-step explanation:

Monthly

A monthly salary can be found by dividing the yearly salary by the number of months.

salary / months

His salary is $57,852 and there are 12 months in a year.

$57,852/ 12 months

Divide

$4,821 / month

Jeremy makes $4,821 per month.

Weekly

To find the weekly salary, divide the yearly salary by the number of weeks.

salary / weeks

He makes $57,852 each year and there are 52 weeks in one year.

$57,852 / 52 weeks

Divide

$1112.53846 / week

Round to the nearest cent. The 8 in the thousandth place tells use to round the 3 up to a 4 in the hundredth place.

$1112.54 / week

Jeremy makes $1112.54 per week

An auto race consists of 15 laps. Jon Kimm completes the first 3 laps at an average speed of 195 mph, and the remaining laps at an average speed of 205 miles per hour. Let d represent the length of one lap. Choose the time in terms of d that it takes the driver to complete the race.

Answers

Answer:

equation is inconclusive

Step-by-step explanation:

you average the two speeds getting 200 mph. then you need to know the time is took to fully complete the race to get the unit rate which you would multiply to find yiur time.

Kylie and miranda began arguing about who did better on their tests, but they couln't decide who did better given that they took different tests, kylie took a test in Art History and earned a 77.3, and Tan took a test in English and earned a 62.9. Use the fact that all the students' test grades in the Art History class had a mean of 73 and a standard deviation of 10.7, and all the students' test grades in English had a mean of 66.8 and a standard deviation of 10.8 to answer the following questions.
a) Calculate the Z-score for Isaac's test grade.
b) Calculate the 2-score for lan's test grade.
c) Which person did relatively better?
A. Kylie
B. miranda
C. They did equally well.

Answers

Answer:

a) 77.3-73/10.7= 0.40187

b) 62.9-66.8/10.8= -0.36111

c) Kylie did relatively better

Step-by-step explanation:

The average life a manufacturer's blender is 5 years, with a standard deviation of 1 year. Assuming that the lives of these blenders follow approximately a normal distribution, find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Answers

Answer:

55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question:

[tex]\mu = 5, \sigma = 1, n = 9, s = \frac{1}{\sqrt{9}} = 0.3333[/tex]

Find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

This is the pvalue of Z when X = 5.1 subtracted by the pvalue of Z when X = 4.5. So

X = 5.1

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{5.1 - 5}{0.3333}[/tex]

[tex]Z = 0.3[/tex]

[tex]Z = 0.3[/tex] has a pvalue of 0.6179

X = 4.5

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{4.5 - 5}{0.3333}[/tex]

[tex]Z = -1.5[/tex]

[tex]Z = -1.5[/tex] has a pvalue of 0.0668

0.6179 - 0.0668 = 0.5511

55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

I need help pls pls pls pls​

Answers

Answer:

D.  4

Step-by-step explanation:

If he leaves the science assignments for the next day, he will spend zero hours on science assignments.  This means that y is equal to 0.  Plug this into the given equation and solve for x.

2x + y = 8

2x + 0 = 8

2x = 8

x = 4

Gerald can complete 4 math assignments.

Given a right triangle with a hypotenuse length of radical 26 and base length of 3. Find the length of the other leg (which is also the height).

Answers

Answer:

  √17

Step-by-step explanation:

The Pythagorean theorem can be used for the purpose.

  hypotenuse² = base² +height²

  (√26)² = 3² +height²

  26 -9 = height²

  height = √17

The length of the other leg is √17.

In a survey, 205 people indicated they prefer cats, 160 indicated they prefer dots, and 40 indicated they don’t enjoy either pet. Find the probability that if a person is chosen at random, they prefer cats

Answers

Answer: probability =  0.506

Step-by-step explanation:

The data we have is:

Total people: 205 + 160 + 40 = 405

prefer cats: 205

prefer dogs: 160

neither: 40

The probability that a person chosen at random prefers cats is equal to the number of people that prefer cats divided the total number of people:

p = 205/405 = 0.506

in percent form, this is 50.6%

Fill in the table using this function rule.

Answers

Answer:

1, 2.2, 5.5, 10.2.

Step-by-step explanation: these are simplified to the nearest tenth

The picture isn’t loading for me

A pen in the shape of an isosceles right triangle with legs of length x ft and hypotenuse of length h ft is to be built. If fencing costs $ 2 divided by ft for the legs and $ 4 divided by ft for the​ hypotenuse, write the total cost C of construction as a function of h.

Answers

Answer

(4h/√2)+4h

Explanation:

the side length as a function of h will be needed, so we will compute it first,

Let x be the side length of the right isosceles triangle, then using Pythagorean theorem.

CHECK THE ATTACHMENT FOR DETAILED EXPLANATION

The graphs below are the same shape what is the equation of the blue graph

Answers

Answer:

B. g(x) = (x-2)^2 +1

Step-by-step explanation:

When you see this type of equation your get the variables H and K in a quadratic equation. In this case the (x-2)^2 +1  is your H. The (x-2)^2 +1 is your K.

For the H you always do the opposite so in this case instead of going to the left 2 times you go to the right 2 times (affects your x)

For the K you go up or down which in this case you go up one (affects your y)

And that's how you got your (2,1) as the center of the parabola

-Hope this helps :)

Evaluate the expression (image provided). A.) 1.5 B.) 6 C.) 6^15 D.) 1.5^6

Answers

Answer:

1.5

Step-by-step explanation:

6 to the log base of 6 will be one (they essentially cancel each other out, log is the opposite of exponents) and we are left with 1.5.

Please answer this correctly without making mistakes

Answers

Answer:

Question 2

Step-by-step explanation:

2) The time when she woke up was -  3° C

During nature walk, temperature got 3° C warmer than when she woke up.

So, temperature during nature walk = - 3 + 3 = 0° C

Suppose you pay a dollar to roll two dice. if you roll 5 or a 6 you Get your dollar back +2 more just like it the goal will be to find the amount of money you can expect to win or lose if you play this game 100 times. How many times would you win? how many times would you lose?

Answers

Answer:

(a)$67

(b)You are expected to win 56 Times

(c)You are expected to lose 44 Times

Step-by-step explanation:

The sample space for the event of rolling two dice is presented below

[tex](1,1), (2,1), (3,1), (4,1), (5,1), (6,1)\\(1,2), (2,2), (3,2), (4,2), (5,2), (6,2)\\(1,3), (2,3), (3,3), (4,3), (5,3), (6,3)\\(1,4), (2,4), (3,4), (4,4), (5,4), (6,4)\\(1,5), (2,5), (3,5), (4,5), (5,5), (6,5)\\(1,6), (2,6), (3,6), (4,6), (5,6), (6,6)[/tex]

Total number of outcomes =36

The event of rolling a 5 or a 6 are:

[tex](5,1), (6,1)\\ (5,2), (6,2)\\( (5,3), (6,3)\\ (5,4), (6,4)\\(1,5), (2,5), (3,5), (4,5), (5,5), (6,5)\\(1,6), (2,6), (3,6), (4,6), (5,6), (6,6)[/tex]

Number of outcomes =20

Therefore:

P(rolling a 5 or a 6)  [tex]=\dfrac{20}{36}[/tex]

The probability distribution of this event is given as follows.

[tex]\left|\begin{array}{c|c|c}$Amount Won(x)&-\$1&\$2\\&\\P(x)&\dfrac{16}{36}&\dfrac{20}{36}\end{array}\right|[/tex]

First, we determine the expected Value of this event.

Expected Value

[tex]=(-\$1\times \frac{16}{36})+ (\$2\times \frac{20}{36})\\=\$0.67[/tex]

Therefore, if the game is played 100 times,

Expected Profit =$0.67 X 100 =$67

If you play the game 100 times, you can expect to win $67.

(b)

Probability of Winning  [tex]=\dfrac{20}{36}[/tex]

If the game is played 100 times

Number of times expected to win

[tex]=\dfrac{20}{36} \times 100\\=56$ times[/tex]

Therefore, number of times expected to loose

= 100-56

=44 times

The following data represent the miles per gallon for a particular make and model car for six randomly selected vehicles. Compute the mean, median, and mode miles per gallon 24.2. 22.2. 37.8, 22.7. 35 4. 31.61. Compute the mean miles per gallon. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The mean mileage per gallon is _______B. The mean does not exist 2. Compute the median miles per gallon. Select the correct choice below and, if necessary, fill in the answer box to complete your choice A. The median mileage per gallon is __________B. The median does not exist. 3. Compute the mode miles per gallon. Select the correct choice below and, if necessary,fill in the answer box to complete your choice. A. The mode is _________B. The mode does not exist.

Answers

Answer:

A. The mean mileage per gallon is _____ 28.99__

A. The median mileage per gallon is _____27.905_____

B. The mode does not exist.

Step-by-step explanation:

Mean= Sum of values/ No of Values

            Mean =  24.2 + 22.2+  37.8+ 22.7 + 35.4 +31.61/ 6

           Mean = 173.91/6= 28.985 ≅ 28.99

The median is the middle value of an ordered data which divides the data into two equal halves. For an even data the median is  the average of n/2 and n+1/2 value where n is the number of values.

Rearranging the above data

22.2 , 22.7 , 24.2 , 31.61 , 35.4, 37.8

Third and fourth values are =24.2 + 31.61 = 55.81

Average of third and fourth values is = 55.81/2= 27.905

Mode is the values which is occurs repeatedly.

In this data there is no mode.

If -5(x+8) =-25, then x=-3

Answers

Answer:

Correct!

Step-by-step explanation:

-5(x+8)=-25

x+8=5

x=-3

Answer:

here, -5(x+8)=-25

or, -5x +(-40)= -25

or, -5x=-25+40

or, x= 15/-5

therefore the value of x is -3....ans..

hope u understood..

Other Questions
The mean age of 8 women in an office is 20 years old. The mean age of 12 men in an office is 32 years old. What is the mean age (nearest year) of all the people in the office? Answer it please because it would be helpfull alot Laura wants to buy a car, so she is attempting to solve the problems of getting money for a down payment and establishing credit. She realizes there are multiple steps she must follow to achieve her goal. The problem-solving technique that involves accomplishing one step at a time to move closer to a goal is called _____ analysis, and the individual steps are called _____. Henry David Thoreau - "Civil Disobedience"Literary Analysis Grade 11ActivePromptTranscendentalists believe that society and its institutions particularly organized religion and political parties-corrupt thepurity of the individual. They have faith that people are at their best when truly self-reliant and independent. These themesare expolored in the works of the authors that you have read in this unit. Write an essay to analyze the themes in two ormore works from this unit. Discuss how the themes reflect transcendentalist views. Be sure to cite evidence from the text tosupport your analysis compare tropical rainforests and mangroves in theiradaptations to environment Q10. Calcium fluoride can be made from the reaction of calcium metal with fluorine gas. The image shows this reaction. Explain how the product is formed in terms of electron movement and what the final electron configurations are Assume that all triangles have interior angles less than 90.A surveyor sights on a survey marker that is 132.3m distant. She needed to turn her transit (her survey instrument) 75 to sight on a second survey marker. She knows that from the second marker, the angle between the line of site from her own position and the first marker is 68. How far is she from the second marker? Implanting an electrode that supplies a weak electrical current to specific brain areas is called _____. It is useful in the treatment of _____ why were the ottoman and mughal empires able to coexist in the same region? A. Both tolerated religious diversity. B. Both conquered portions of Europe. C. Both required the population to obey Islamic law. D. Both required foreign warriors to keep the peace Google Docs, MS Word, Google Slides, MS PowerPoint, Google Sheets, MS Excel In your opinion which software in each category is easier to use? 20% of city employees ride the bus to work. This is up 10% from last year. What percent of employees rode the bus to work last year? Need help ASAP!!!! what is the value (angle) for the C=C=O bond in Ketene i.e. CH2=C=O What is the value of the rational expression when x=-2?-7-997 In a well-written paragraph, explain how the governments of two different countries are similar and different. Use at least two of the following terms in your response: autocracy, oligarchy, democracy, unitary, federation, confederation, parliamentary. What do these characteristics all have in common? Which of the following defines bias? A. supporting a topic so strongly that negative information is not presented B. the attitudes or beliefs that prevent a writer from giving a subject objective consideration C. a statement that is based on feelings, judgments, and predictions D. a statement that can be proved true through experimentation, records, or personal observation -82+12x9-4x656 + 7x2 An election ballot asks voters to select six city commissioners from a group of 24 candidates in how many ways can this be done? Six city commissioners can be selected from a group of 24 candidates in blank different ways What transformations were applied to ABC to obtain A'B'C'?A. rotate 180 degrees counterclockwise, then shift 3 units downB. rotate 270 degrees counterclockwise, then shift 3 units downc. rotate 180 degrees counterclockwise, then shift 3 units upD. rotate 270 degrees counterclockwise, then shift 3 units upO In a championship basketball game, Paula Zimmerman scored twice as many points as Maria Kaminsky. If the total number of points made by both women was 51, find how many points Paula scored. The graph is of a function in the form p(t) = a b ^t What is the function?