Please help me with a math problem!!!!!!

emma knows that r lx and zt lz. she claims that triangles rst and xyz are congruent. as part of her reasoning, which criterion could she use? select all that apply.

Answers

Answer 1

Hello! Based on Emma's claim that "r lx" and "zt lz," we can see that the corresponding sides of triangles RST and XYZ are congruent. In order to determine which criterion Emma could use to justify her claim, we need to consider the congruence criteria for triangles. The criteria for congruence are as follows:

1. Side-Side-Side (SSS) Criterion: This criterion states that if the three sides of one triangle are congruent to the three sides of another triangle, then the two triangles are congruent.

2. Side-Angle-Side (SAS) Criterion: This criterion states that if two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

3. Angle-Side-Angle (ASA) Criterion: This criterion states that if two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent.

Based on the given information, Emma could use the Side-Side-Side (SSS) criterion to justify her claim. Since the corresponding sides of triangles RST and XYZ are congruent, Emma can conclude that the two triangles are congruent.

I hope this helps! Let me know if you have any other questions.

To know more about corresponding visit:

https://brainly.com/question/12454508

#SPJ11

Answer 2

Congruent triangles have the same shape and size, which means that corresponding sides and angles are equal. By using the SSS or SAS criterion, Emma can demonstrate the congruence between the two triangles.

Emma claims that triangles RST and XYZ are congruent. To support her reasoning, she can use the following criteria:

1. Side-Side-Side (SSS) Criterion: If she can show that all three pairs of corresponding sides in triangles RST and XYZ are congruent, then she can conclude that the triangles are congruent. In this case, she needs to show that RS = XY, ST = YZ, and RT = XZ.

2. Side-Angle-Side (SAS) Criterion: If she can prove that two pairs of corresponding sides and the included angle between them in triangles RST and XYZ are congruent, then she can conclude that the triangles are congruent. In this case, she needs to show that RS = XY, ST = YZ, and angle RST = angle XYZ.

It's important for Emma to provide evidence for both the sides and angles being congruent to establish congruence between the triangles. If she can show that either the SSS criterion or the SAS criterion is satisfied, she can claim that triangles RST and XYZ are congruent.

Learn more about Congruent triangles

https://brainly.com/question/27848509

#SPJ11


Related Questions

Please help me D, E, F, G, H, I, J, K, L.
These arithmetic operations are needed to calculate doses. Reduce if applicable. See Appendix A for answers. Your instructor can provide other practice tests if necessary. Use rounding rules when need

Answers

The arithmetic operations D, E, F, G, H, I, J, K, and L are required for dose calculations in the context provided. The specific operations and their application can be found in Appendix A or other practice tests provided by the instructor.

To accurately calculate doses in various scenarios, arithmetic operations such as addition, subtraction, multiplication, division, and rounding are necessary. The specific operations D, E, F, G, H, I, J, K, and L may involve different combinations of these arithmetic operations.

For example, operation D might involve addition to determine the total quantity of a medication needed based on the prescribed dosage and the number of doses required. Operation E could involve multiplication to calculate the total amount of a medication based on the concentration and volume required.

Operation F might require division to determine the dosage per unit weight for a patient. Operation G could involve rounding to ensure the dose is provided in a suitable measurement unit or to adhere to specific dosing guidelines.

The specific details and examples for each operation can be found in Appendix A or any practice tests provided by the instructor. It is important to consult the given resources for accurate information and guidelines related to dose calculations.

Learn more about arithmetic here:

https://brainly.com/question/16415816

#SPJ11

The point that is 6 units to the left of the y-axis and 8 units above the x-axis has the coordinates (x,y)=((−8,6) )

Answers

The coordinates of a point on the coordinate plane are given by an ordered pair in the form of (x, y), where x is the horizontal value, and y is the vertical value. The coordinates (−8,6) indicate that the point is located 8 units to the left of the y-axis and 6 units above the x-axis.

This point is plotted in the second quadrant of the coordinate plane (above the x-axis and to the left of the y-axis).The ordered pair (-8, 6) denotes that the point is 8 units left of the y-axis and 6 units above the x-axis. The x-coordinate is negative, which implies the point is to the left of the y-axis. On the other hand, the y-coordinate is positive, implying that it is above the x-axis.

The location of the point is in the second quadrant of the coordinate plane. This can also be expressed as: "Six units above the x-axis and six units to the left of the y-axis is where the point with coordinates (-8, 6) lies." The negative x-value (−8) indicates that the point is located in the second quadrant since the x-axis serves as a reference point.

To know more about coordinates visit:

https://brainly.com/question/32836021

#SPJ11

The table shows information about some children. age 11 age 12 total girls 7 a b boys c 2 3 total d 3 e a pupil is selected at random. what is the probability of selecting a boy? give your answer in its simplest form.

Answers

The probability of selecting a boy is 5/12.

To find the probability of selecting a boy, we need to determine the total number of boys and the total number of pupils.

From the table, we can see that there are 2 boys who are 12 years old and 3 boys who are 11 years old. So, the total number of boys is 2 + 3 = 5.

To find the total number of pupils, we need to add up the total number of girls and boys. From the table, we can see that there are 7 girls and a total of 5 boys. So, the total number of pupils is 7 + 5 = 12.  to find the probability of selecting a boy at random, we divide the total number of boys by the total number of children. The probability of selecting a boy is: ("a b" + "c") / ("a b" + "c" + 7) It's important to note that we need the actual numbers for "a b" and "c" to calculate the probability accurately.

Therefore, the probability of selecting a boy is 5/12.

Know more about probability

https://brainly.com/question/31828911

#SPJ11

The probability of selecting a boy is 5/12.The probability of selecting a boy is: ("a b" + "c") / ("a b" + "c" + 7)

To find the probability of selecting a boy, we need to determine the total number of boys and the total number of pupils.

From the table, we can see that there are 2 boys who are 12 years old and 3 boys who are 11 years old. So, the total number of boys is 2 + 3 = 5.

To find the total number of pupils, we need to add up the total number of girls and boys. From the table, we can see that there are 7 girls and a total of 5 boys. So, the total number of pupils is 7 + 5 = 12.  to find the probability of selecting a boy at random, we divide the total number of boys by the total number of children. The probability of selecting a boy is: ("a b" + "c") / ("a b" + "c" + 7) It's important to note that we need the actual numbers for "a b" and "c" to calculate the probability accurately.

Therefore, the probability of selecting a boy is 5/12.

Know more about probability

brainly.com/question/31828911

#SPJ11

The United States has been consuming lron ore at the rate of R(t) milion metric tons per year at time f, where t is measured in years since 1980 (that is, 1=0 coresponds to the year 1930 ), and R(t)=18e 0013
Find a formia T'( f) for the total U.S. consumption of iron ore, in milions of metria tons, from 1900 until time f. T(f)=

Answers

The formula for the total U.S. consumption of iron ore, T(f), in millions of metric tons, from 1900 until time f (measured since 1980), is T(f) = (1384.615) * (e^(0.013f) - e^(-1.04)).

To determine a formula for the total U.S. consumption of iron ore, we need to integrate the consumption rate function, R(t), over the interval from 1900 until time f. Let's proceed with the calculations.

We have:

Consumption rate function: R(t) = 18e^(0.013t) million metric tons per year

Time measured since 1980 (t=0 corresponds to the year 1980)

To determine the total consumption, we integrate R(t) with respect to t over the interval from 1900 (t=-80) to f (measured in years since 1980).

T(f) = ∫[from -80 to f] R(t) dt

    = ∫[from -80 to f] 18e^(0.013t) dt

To evaluate this integral, we use the following rules of integration:

∫ e^kt dt = (1/k)e^kt + C

∫ e^x dx = e^x + C

Using the above rules, we can evaluate the integral of R(t):

T(f) = 18/0.013 * e^(0.013t) | [from -80 to f]

     = (1384.615) * (e^(0.013f) - e^(-80*0.013))

Therefore, the formula for the total U.S. consumption of iron ore, T(f), in millions of metric tons, from 1900 until time f (measured since 1980) is:

T(f) = (1384.615) * (e^(0.013f) - e^(-80*0.013))

To know more about consumption rate function refer here:

https://brainly.com/question/16929189#

#SPJ11

(a) Determine all real values of p such that the set of all linear combination of u=(−3,p) and v=(2,3) is all of R^2
. Justify your answer. (b) Determine all real values of p and q such that the set of all linear combinations of u=(1,p,−1) and v=(3,2,q) is a plane in R^3
. Justify your answer.

Answers

All real values of p and q such that the set of all linear combinations of u = (1, p, −1) and v = (3, 2, q) is a plane in R^3 is p - 2q = 3.

For a set to be all of R^2, its span must be all of R^2. In other words, any point in R^2 can be written as a linear combination of the vectors in the set.

The set of all linear combinations of u = (−3, p) and v = (2, 3) is given by:

span{(−3, p), (2, 3)}

For a vector (a, b) to be in the span, we need to find scalars c and d such that c(−3, p) + d(2, 3) = (a, b).c(-3, p) + d(2, 3) = (a, b) = (-3c + 2d, pc + 3d)

Thus, we need to solve the system of equations:

c(-3) + d(2) = acp + 3d = b

For the set to span all of R^2, we must be able to solve this system of equations for any (a, b).This is only possible if the system of equations has no restrictions on c and d. That is, the determinant of the matrix of coefficients must not be zero.

This means: -3(3) - 2(2) = -11 ≠ 0

Thus, the set of all linear combinations of u = (−3, p) and v = (2, 3) spans all of R^2 for all values of p.

In conclusion, all real values of p such that the set of all linear combinations of u = (−3, p) and v = (2, 3) is all of R^2.

For a set to be a plane in R^3, its span must be a plane in R^3. In other words, any point in the plane can be written as a linear combination of the vectors in the set.

The set of all linear combinations of u = (1, p, −1) and v = (3, 2, q) is given by:

span{(1, p, −1), (3, 2, q)}

For a vector (a, b, c) to be in the span, we need to find scalars d and e such that

d(1, p, −1) + e(3, 2, q) = (a, b, c).d(1, p, −1) + e(3, 2, q) = (a, b, c) = (d + 3e, dp + 2e, −d + eq)

Thus, we need to solve the system of equations:

d + 3e = a dp + 2e = b −d + eq = c

For the set to be a plane in R^3, the system of equations must have restrictions on d and e. That is, the determinant of the matrix of coefficients must be zero. This means:

-1(-2q) - 1(3) + p(2) = 0 ⇒ p - 2q = 3

Thus, the set of all linear combinations of u = (1, p, −1) and v = (3, 2, q) spans a plane in R^3 if and only if p - 2q = 3.

In conclusion, all real values of p and q such that the set of all linear combinations of u = (1, p, −1) and v = (3, 2, q) is a plane in R^3 is p - 2q = 3.

Learn more about vectors visit:

brainly.com/question/24256726

#SPJ11

Calculate the volume of a rectangular prism and cylinder using formulas for volume. > Megan loves to plant sunflowers and plans to fill one of the containers below with soil. The dimensions of each container are shown below. Container A Container B Container C h = 3.5 ft h2.5 ft h=1.5 ft w=2 tt r1.5 ft L2t p=2 ft Which container holds the largost amount of soil? a.) The containers all have the same volume. b.) Container c.) Container A d.) Container B

Answers

The container that holds the largest amount of soil is Container C. So option b is the correct answer.

To determine which container holds the largest amount of soil, we need to calculate the volume of each container using the formulas for volume.

The formulas for volume are as follows:

Volume of a rectangular prism: V_rectangular_prism = length * width * height

Volume of a cylinder: V_cylinder = π * radius² * height

Let's calculate the volume of each container:

Container A:

Volume of Container A = length * width * height

= 2 ft * 2 ft * 3.5 ft

= 14 ft³

Container B:

Volume of Container B = π * radius² * height

= π * (1.5 ft)² * 2.5 ft

= 11.78 ft^3

Container C:

Volume of Container C = π * radius² * height

= π * (2 ft)² * 1.5 ft

≈ 18.85 ft³

Comparing the volumes of the three containers, we can see that:

Container A has a volume of 14 ft³.

Container B has a volume of approximately 11.78 ft³.

Container C has a volume of approximately 18.85 ft³.

Therefore, the container that holds the largest amount of soil is Container C. Hence, the correct answer is b) Container C.

To learn more about rectangular prism: https://brainly.com/question/24284033

#SPJ11

Solve the system by using any method. If a system does not have one unique solution, state whether the system is inconsistent or whether the equations are dependent. 5x+y=10
x+ 1/5 y=2
​a. The system has one solution. The solution set is _________. b. The system has no solution, {}. i. The system is inconsistent. ii. The equations are dependent. c. The system has infinitely many solutions. The solution set is {_________| x is any real number }. i. The system is inconsistent. ii. The equations are dependent.

Answers

The given

system of equations

is:

5x + y = 10   ... (1)

x + (1/5)y = 2   ... (2)

To solve this system, we can use the method of

elimination

. Let's multiply equation (2) by 5 to eliminate the fraction:

5(x + (1/5)y) = 5(2)

5x + y = 10   ... (3)

Comparing equations (1) and (3), we can see that they are identical. This means that equation (3) is just a multiple of equation (1), and therefore the two equations are dependent. The system does not have a unique solution; instead, it has

infinitely many solutions.

To see this, we can rewrite equation (1) as:

y = 10 - 5x

Now, we can substitute this expression for y into either equation (1) or (2). Let's substitute it into equation (1):

5x + (10 - 5x) = 10

10 = 10

As we can see, this equation is always true, regardless of the value of x. This means that for any real value of x, the equation is satisfied. Therefore, the solution set is {x | x is any real number}.

In summary, the given system of equations is

dependent

and has infinitely many solutions. The solution set is {x | x is any real number}.

Learn more about

System of equations

here:

brainly.com/question/15015734

#SPJ11

the t-distribution approaches the normal distribution as the___
a. degrees of freedom increases
b. degress of freedom decreases
c. sample size decreases
d. population size increases

Answers

a. degrees of freedom increases

The t-distribution is a probability distribution that is used to estimate the mean of a population when the sample size is small and/or the population standard deviation is unknown. As the sample size increases, the t-distribution tends to approach the normal distribution.

The t-distribution has a parameter called the degrees of freedom, which is equal to the sample size minus one. As the degrees of freedom increase, the t-distribution becomes more and more similar to the normal distribution. Therefore, option a is the correct answer.

Learn more about "t-distribution" : https://brainly.com/question/17469144

#SPJ11

At a yogurt shop, frozen yogurt is 55 cents for each ounce; a waffle cone to hold the yogurt is $1.25. (a) Identify two quantities and describe how the quantities are related. (b) Write an algebraic equations describing the relationship between the quantities you identified in part (a). (c) Does the equation describe a linear or nonlinear relationship? Explain why?

Answers

(a) Two quantities that are related in this scenario are the total cost of frozen yogurt and the weight of the yogurt purchased. The cost of frozen yogurt depends on the weight of the yogurt chosen.

(b) Let's denote the weight of the yogurt in ounces as "w" and the total cost in dollars as "C". The algebraic equation describing the relationship between these quantities is:

C = 0.55w + 1.25

In this equation, 0.55w represents the cost of the yogurt based on its weight (55 cents per ounce), and 1.25 represents the cost of the waffle cone. By adding these two terms, we get the total cost of frozen yogurt.

(c) The equation C = 0.55w + 1.25 describes a linear relationship. This is because the equation represents a linear function, where the dependent variable (C) is a linear combination of the independent variable (w) and a constant term (1.25).

In a linear relationship, the variables are related by a constant rate of change or slope. In this case, for every one-ounce increase in the weight of the yogurt (w), the cost (C) increases by 0.55 dollars. This consistent rate of change characterizes a linear relationship.

Therefore, the equation C = 0.55w + 1.25 describes a linear relationship between the cost of frozen yogurt and its weight.

Learn more about algebraic equation here

brainly.com/question/29131718

#SPJ11

Find the volume of the solid enclosed by the paraboloid z=x 2
+y 2 and by the plane z=h,h>0

Answers

The given paraboloid is z = x^2 + y^2 and the plane is z = h.

Here h > 0. Therefore, the solid enclosed by the paraboloid z = x^2 + y^2 and the plane z = h will have a height of h.

The volume of the solid enclosed by the paraboloid

z = x^2 + y^2 and by the plane z = h, h > 0

is given by the double integral over the region R of the constant function 1.In other words, the volume V of the solid enclosed by the paraboloid and the plane is given by:

V = ∬R dA

We can find the volume using cylindrical coordinates. In cylindrical coordinates, we have:

x = r cos θ, y = r sin θ and z = zSo, z = r^2.

The equation of the plane is z = h.

Hence, we have r^2 = h.

This gives r = ±√h.

We can write the volume V as follows:

V = ∫[0,2π] ∫[0,√h] h r dr

dθ= h ∫[0,2π] ∫[0,√h] r dr

dθ= h ∫[0,2π] [r^2/2]0√h

dθ= h ∫[0,2π] h/2

dθ= h²π

Thus, the volume of the solid enclosed by the paraboloid

z = x^2 + y^2 and by the plane z = h, h > 0 is h²π.

To know more about paraboloid visit :

https://brainly.com/question/30634603

#SPJ11

At low altitudes the altitude of a parachutist and time in the
air are linearly related. A jump at 2,040 feet lasts 120 seconds.
​(A) Find a linear model relating altitude a​ (in feet) and time in

Answers

The linear model relating altitude (a) and time (t) is a = 17t. This equation represents a linear relationship between altitude (a) and time (t), where the altitude increases at a rate of 17 feet per second.

To find a linear model relating altitude (a) in feet and time in seconds (t), we need to determine the equation of a straight line that represents the relationship between the two variables.

We are given a data point: a = 2,040 feet and t = 120 seconds.

We can use the slope-intercept form of a linear equation, which is given by y = mx + b, where m is the slope of the line and b is the y-intercept.

Let's assign a as the dependent variable (y) and t as the independent variable (x) in our equation.

So, we have:

a = mt + b

Using the given data point, we can substitute the values:

2,040 = m(120) + b

Now, we need to find the values of m and b by solving this equation.

To do that, we rearrange the equation:

2,040 - b = 120m

Now, we can solve for m by dividing both sides by 120:

m = (2,040 - b) / 120

We still need to determine the value of b. To do that, we can use another data point or assumption. If we assume that when the parachutist starts the jump (at t = 0), the altitude is 0 feet, we can substitute a = 0 and t = 0 into the equation:

0 = m(0) + b

0 = b

So, b = 0.

Now we have the values of m and b:

m = (2,040 - b) / 120 = (2,040 - 0) / 120 = 17

b = 0

Therefore, the linear model relating altitude (a) and time (t) is:

a = 17t

This equation represents a linear relationship between altitude (a) and time (t), where the altitude increases at a rate of 17 feet per second.

Learn more about altitude here

https://brainly.com/question/27816517

#SPJ11

A new fast-food firm predicts that the number of franchises for its products will grow at the rate
dn/dt= 8/t + 1
There is a square root over t+1
where t is the number of years,
0 ≤ t ≤ 15.
If there is one franchise
(n = 1)
at present
(t = 0),
how many franchises are predicted for 15 years from now?
franchises

Answers

It can be predicted that approximately 1.585 franchises will be present 15 years from now.

To solve the provided differential equation dn/dt = 8/t + 1 with the initial condition n(0) = 1, we need to obtain the number of franchises predicted for 15 years from now (t = 15).

To solve the differential equation, we can separate variables and integrate both sides.

The equation becomes:

dn/(8/t + 1) = dt

We can rewrite the denominator as (8 + t)/t to make it easier to integrate:

dn/(8 + t)/t = dt

Using algebraic manipulation, we can simplify further:

t*dn/(8 + t) = dt

Now we integrate both sides:

∫ t*dn/(8 + t) = ∫ dt

To solve the integral on the left side, we can use the substitution u = 8 + t, du = dt:

∫ (u - 8) du/u = ∫ dt

∫ (1 - 8/u) du = ∫ dt

[u - 8ln|u|] + C1 = t + C2

Replacing u with 8 + t and simplifying:

(8 + t - 8ln|8 + t|) + C1 = t + C2

8 + t - 8ln|8 + t| + C1 = t + C2

Rearranging the terms:

8 - 8ln|8 + t| + C1 = C2

Combining the constants:

C = 8 - 8ln|8 + t|

Now, we can substitute the initial condition n(0) = 1, t = 0:

1 = 8 - 8ln|8 + 0|

1 = 8 - 8ln|8|

ln|8| = 7

Now, we can obtain the value of the constant C:

C = 8 - 8ln|8 + 15|

C = 8 - 8ln|23|

Finally, we can substitute t = 15 into the equation and solve for n:

n = 8 - 8ln|8 + 15|

n = 8 - 8ln|23|

n ≈ 1.585

To know more about differential equation refer here:

https://brainly.com/question/32514740#

#SPJ11

Find the length of the arc of the curve y=2x^1.5+4 from the point (1,6) to (4,20)

Answers

The length of the arc of the curve [tex]y = 2x^{1.5} + 4[/tex] from the point (1,6) to (4,20) is approximately 12.01 units. The formula for finding the arc length of a curve L = ∫[a to b] √(1 + (f'(x))²) dx

To find the length of the arc, we can use the arc length formula in calculus. The formula for finding the arc length of a curve y = f(x) between two points (a, f(a)) and (b, f(b)) is given by:

L = ∫[a to b] √(1 + (f'(x))²) dx

First, we need to find the derivative of the function [tex]y = 2x^{1.5} + 4[/tex]. Taking the derivative, we get [tex]y' = 3x^{0.5[/tex].

Now, we can plug this derivative into the arc length formula and integrate it over the interval [1, 4]:

L = ∫[1 to 4] √(1 + (3x^0.5)^2) dx

Simplifying further:

L = ∫[1 to 4] √(1 + 9x) dx

Integrating this expression leads to:

[tex]L = [(2/27) * (9x + 1)^{(3/2)}][/tex] evaluated from 1 to 4

Evaluating the expression at x = 4 and x = 1 and subtracting the results gives the length of the arc:

[tex]L = [(2/27) * (9*4 + 1)^{(3/2)}] - [(2/27) * (9*1 + 1)^{(3/2)}]\\L = (64/27)^{(3/2)} - (2/27)^{(3/2)[/tex]

L ≈ 12.01 units (rounded to two decimal places).

Learn more about derivative here: https://brainly.com/question/29144258

#SPJ11

find a formula for a cubic function f if f(5) = 100 and f(−5) = f(0) = f(6) = 0. f(x) =

Answers

To find the cubic function f(x) given the conditions f(5) = 100, f(-5) = f(0) = f(6) = 0, we need to solve the system of linear equations formed by substituting the values into the general cubic function f(x) = ax^3 + bx^2 + cx + d. Once the values of a, b, and c are determined, the formula for f(x) can be expressed as f(x) = ax^3 + bx^2 + cx.

To find a formula for a cubic function f(x) given the conditions f(5) = 100, f(-5) = f(0) = f(6) = 0, we can start by assuming that the cubic function takes the form f(x) = ax^3 + bx^2 + cx + d.

Using the given conditions, we can create a system of equations to solve for the coefficients a, b, c, and d:

1. f(5) = 100: 100 = a(5)^3 + b(5)^2 + c(5) + d

2. f(-5) = 0: 0 = a(-5)^3 + b(-5)^2 + c(-5) + d

3. f(0) = 0: 0 = a(0)^3 + b(0)^2 + c(0) + d

4. f(6) = 0: 0 = a(6)^3 + b(6)^2 + c(6) + d

Simplifying these equations, we get:

1. 100 = 125a + 25b + 5c + d

2. 0 = -125a + 25b - 5c + d

3. 0 = d

4. 0 = 216a + 36b + 6c + d

From equation 3, we find that d = 0. Substituting this value into equations 1, 2, and 4, we have:

1. 100 = 125a + 25b + 5c

2. 0 = -125a + 25b - 5c

4. 0 = 216a + 36b + 6c

We can solve this system of linear equations to find the values of a, b, and c. Once we have those values, we can express the formula for f(x) as f(x) = ax^3 + bx^2 + cx + d, where d is already determined to be 0.

learn more about "function ":- https://brainly.com/question/2328150

#SPJ11

f 12% if a radioactive substance decays in 4 hours, what is the half-life of the substance? 7. A town has 7000 people in year t=0. Calculate how long it takes for the population P to double once, twice and three times, assuming that the town grows at a constant rate of a. 500 people per year b. 5% per year

Answers

a) The half-life of the radioactive substance is approximately 14.7 hours.

b) It takes approximately 0.51 days for the population to double once with a growth rate of 500 people per year, and approximately 13.86 years for a growth rate of 5% per year.

a) If a radioactive substance decays by 12% in 4 hours, we can calculate the half-life of the substance using the formula:

t(1/2) = (ln(2)) / k

where t(1/2) is the half-life and k is the decay constant. Since the substance decays by 12% in 4 hours, we can express the decay constant as:

k = ln(0.88) / 4

Substituting this value into the half-life formula, we get:

t(1/2) = (ln(2)) / (ln(0.88) / 4) ≈ 14.7 hours

Therefore, the half-life of the substance is approximately 14.7 hours.

b) To calculate the time it takes for the population to double, we can use the formula:

t = ln(2) / a

where t is the time and a is the constant rate of growth.

For a growth rate of 500 people per year, we have:

t = ln(2) / 500 ≈ 0.0014 years ≈ 0.51 days

Therefore, it takes approximately 0.51 days for the population to double once.

For a growth rate of 5% per year, we have:

t = ln(2) / 0.05 ≈ 13.86 years

Therefore, it takes approximately 13.86 years for the population to double once.

To calculate the time for the population to double twice and three times, we can multiply the respective time values by 2 and 3.

To learn more about half-life, click here: brainly.com/question/31666695

#SPJ11

Find the area bounded by the graphs of the indicated equations over the given interval (when stated). Compute answers to three decimal places: y=x 2
+2;y=6x−6;−1≤x≤2 The area, calculated to three decimal places, is square units.

Answers

The area bounded by the graphs of y = x^2 + 2 and y = 6x - 6 over the interval -1 ≤ x ≤ 2 is 25 square units. To find the area bounded we need to calculate the definite integral of the difference of the two functions within that interval.

The area can be computed using the following integral:

A = ∫[-1, 2] [(x^2 + 2) - (6x - 6)] dx

Expanding the expression:

A = ∫[-1, 2] (x^2 + 2 - 6x + 6) dx

Simplifying:

A = ∫[-1, 2] (x^2 - 6x + 8) dx

Integrating each term separately:

A = [x^3/3 - 3x^2 + 8x] evaluated from x = -1 to x = 2

Evaluating the integral:

A = [(2^3/3 - 3(2)^2 + 8(2)) - ((-1)^3/3 - 3(-1)^2 + 8(-1))]

A = [(8/3 - 12 + 16) - (-1/3 - 3 + (-8))]

A = [(8/3 - 12 + 16) - (-1/3 - 3 - 8)]

A = [12.667 - (-12.333)]

A = 12.667 + 12.333

A = 25

Therefore, the area bounded by the graphs of y = x^2 + 2 and y = 6x - 6 over the interval -1 ≤ x ≤ 2 is 25 square units.

Learn more about Graph here : brainly.com/question/17267403

#SPJ11

Let \( f(x, y)=x^{3}+y^{3}+3 x^{2}-15 y^{2}-1 \) List the saddle points A local minimum occurs at The value of the local minimum is A local maximum occurs at The value of the local maximum is

Answers

A local minimum occurs at (0,0). The value of the local minimum is -1. A local maximum occurs at (-2,0). The value of the local maximum is -35.

Let [tex]\[f(x,y) = x^3+y^3+3x^2-15y^2-1\][/tex].

A saddle point is a point where the surface is flat in one direction but curved in another direction. The Hessian matrix can be used to determine the nature of the critical point.

For this function,

[tex]\[f(x,y) = x^3+y^3+3x^2-15y^2-1\][/tex]

Differentiating the given function partially with respect to x and y and equating to 0, we get

[tex]\[ \begin{aligned} \frac{\partial f}{\partial x}&=3x^2+6x=3x(x+2)\\ \frac{\partial f}{\partial y}&=3y^2-30y=3y(y-10) \end{aligned}\][/tex]

=0

Solving above equations to get critical points

[tex]\[\text { Critical points are } \;(-2,0),(0,0)\;\text{and}\;(0,10)\][/tex]

Now we find the second order derivative of the function:

[tex]\[\begin{aligned} \frac{\partial^2f}{\partial x^2} &= 6x + 6\\ \frac{\partial^2f}{\partial y^2} &= 6y - 30\\ \frac{\partial^2f}{\partial x \partial y} &= 0\\ \end{aligned}\][/tex]

So,

[tex]\[\text { Hessian matrix H is } H =\begin{pmatrix} 6x + 6 & 0\\ 0 & 6y - 30 \end{pmatrix}\][/tex]

Now we check for Hessian matrix at the critical points:

At (-2,0), Hessian matrix is

[tex]\[H=\begin{pmatrix} -6 & 0\\ 0 & -30 \end{pmatrix}\][/tex]

So, Hessian matrix is negative definite. It implies that (-2,0) is the point of local maximum with a value of -35.

At \((0,0)\), Hessian matrix is

[tex]\[H=\begin{pmatrix} 6 & 0\\ 0 & -30 \end{pmatrix}\][/tex]

So, Hessian matrix is negative semi-definite. It implies that (0,0) is the point of saddle point.

At (0,10), Hessian matrix is

[tex]\[H=\begin{pmatrix} 6 & 0\\ 0 & 30 \end{pmatrix}\][/tex]

So, Hessian matrix is positive semi-definite. It implies that (0,10) is the point of saddle point.

Therefore, by analyzing the second derivative, we conclude that

A local minimum occurs at (0,0). The value of the local minimum is -1. A local maximum occurs at (-2,0). The value of the local maximum is -35.

To know more about minimum visit

https://brainly.com/question/21426575

#SPJ11

Radius increasing at a constant rate 2ft/sec

Answers

The rate of change of the circumference of the circle is 4πft/sec when the radius increases at a constant rate of 2ft/sec.

When the radius increases at a constant rate of 2ft/sec, the circumference of the circle changes accordingly.

We can use the formula C = 2πr, where C is the circumference of the circle and r is the radius of the circle.I n the given problem, the rate of change of radius is given as 2ft/sec.

This means that dr/dt = 2. We can find the rate of change of circumference using the formula:C = 2πr. Taking the derivative with respect to t on both sides, we get:dC/dt = 2π(dr/dt)Substituting the value of dr/dt, we get:dC/dt = 2π(2) = 4π

Therefore, the rate of change of the circumference of the circle is 4πft/sec when the radius increases at a constant rate of 2ft/sec.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

Given slope =−3 and the point (10,−5). The equation of the line y=mx+b has y-intercept b= and equation y= Note: You can earn partial credit on this problem.

Answers

To find the equation of a line given its slope and a point, we can use the point-slope form of a linear equation, which is y - y1 = m(x - x1). The slope is given as -3 and the point is (10, -5).

Using the point-slope form of a linear equation, we have:

y - (-5) = -3(x - 10)

Simplifying the equation, we get:

y + 5 = -3x + 30

Subtracting 5 from both sides, we have:

y = -3x + 25

Therefore, the equation of the line is y = -3x + 25, and the y-intercept (where the line crosses the y-axis) is 25.

Learn more about Simplifying

brainly.com/question/23002609

#SPJ11

consider the three points: a=(3,3) b=(6,10) c=(8,1). determine the angle between ab⎯⎯⎯⎯⎯⎯⎯ and ac⎯⎯⎯⎯⎯⎯⎯⎯.

Answers

The angle between the line segments AB and AC, formed by the points A(3,3), B(6,10), and C(8,1), is approximately 83.78 degrees.

To find the angle between the line segments AB and AC, we can use the dot product formula: cos(θ) = (AB ⋅ AC) / (|AB| |AC|),

where AB and AC are the vectors formed by the points A, B, and C.

First, let's calculate the vectors AB and AC:

AB = B - A = (6 - 3, 10 - 3) = (3, 7),

AC = C - A = (8 - 3, 1 - 3) = (5, -2).

Next, we calculate the dot product of AB and AC:

AB ⋅ AC = (3)(5) + (7)(-2) = 15 - 14 = 1.

We also need the magnitudes of AB and AC:

|AB| = sqrt((3)^2 + (7)^2) = sqrt(58),

|AC| = sqrt((5)^2 + (-2)^2) = sqrt(29).

Now, we can find the cosine of the angle between AB and AC:

cos(θ) = (AB ⋅ AC) / (|AB| |AC|) = 1 / (sqrt(58) * sqrt(29)).

Finally, we can find the angle θ using the inverse cosine function:

θ = arccos(cos(θ)) ≈ 83.78 degrees.

Therefore, the angle between the line segments AB and AC is approximately 83.78 degrees.

LEARN MORE ABOUT angle here: brainly.com/question/31818999

#SPJ11

f(x)=7x-4, find and simplify f(x+h)-f(x)/h, h≠0

Answers

The simplified expression for (f(x+h)-f(x))/h, where h ≠ 0, is 7.The simplified expression for (f(x+h)-f(x))/h, where h ≠ 0, is 7. This means that regardless of the value of h, the expression evaluates to a constant, which is 7.

To find (f(x+h)-f(x))/h, we substitute the given function f(x) = 7x - 4 into the expression.

f(x+h) = 7(x+h) - 4 = 7x + 7h - 4

Now, we can substitute the values into the expression:

(f(x+h)-f(x))/h = (7x + 7h - 4 - (7x - 4))/h

Simplifying further, we get:

(7x + 7h - 4 - 7x + 4)/h = (7h)/h

Canceling out h, we obtain:

7

The simplified expression for (f(x+h)-f(x))/h, where h ≠ 0, is 7. This means that regardless of the value of h, the expression evaluates to a constant, which is 7.

To know more about expression follow the link:

https://brainly.com/question/29174899

#SPJ11



Solve each equation by factoring. 12 x²-12 x+3=0

Answers

The solutions to the quadratic equation by factoring 12x² - 12x + 3 = 0 are x = 1/2.

To solve the quadratic equation 12x² - 12x + 3 = 0 by factoring, we need to find two binomials whose factors multiply to give the quadratic equation.

Let's begin by multiplying the coefficient of x² (12) and the constant term (3). We get 12 × 3 = 36.

Now, we need to find two numbers that multiply to 36 and add up to the coefficient of x (-12). In this case, the numbers are -6 and -6 because (-6) × (-6) = 36, and (-6) + (-6) = -12.

Using these numbers, we can rewrite the middle term of the quadratic equation:

12x² - 6x - 6x + 3 = 0

Now, let's group the terms:

(12x² - 6x) + (-6x + 3) = 0

Factor out the greatest common factor from each group:

6x(2x - 1) - 3(2x - 1) = 0

Notice that we have a common binomial factor, (2x - 1), which we can further factor out:

(2x - 1)(6x - 3) = 0

Now, we can set each factor equal to zero and solve for x:

2x - 1 = 0    or    6x - 3 = 0

Solving the first equation, we add 1 to both sides:

2x = 1

Divide both sides by 2:

x = 1/2

Solving the second equation, we add 3 to both sides:

6x = 3

Divide both sides by 6:

x = 1/2

Therefore, the solutions to the quadratic equation 12x² - 12x + 3 = 0 are x = 1/2.

Learn more about greatest common factor here:

https://brainly.com/question/29584814

#SPJ11

Find the radius of convergence or the power series \[ \sum_{n=1}^{\infty} 19^{n} x^{n} n ! \] If necded enter INF for oo. Radius of convergence is

Answers

The radius of convergence for the power series [tex]\(\sum_{n=1}^{\infty} 19^n x^n n!\)[/tex] is zero.

To determine the radius of convergence, we use the ratio test. Applying the ratio test to the series, we consider the limit  [tex]\(\lim_{n\to\infty} \left|\frac{19^{n+1}x^{n+1}(n+1)!}{19^n x^n n!}\right|\). Simplifying this expression, we find \(\lim_{n\to\infty} \left|19x\cdot\frac{(n+1)!}{n!}\right|\).[/tex] Notice that [tex]\(\frac{(n+1)!}{n!} = n+1\)[/tex], so the expression becomes [tex]\(\lim_{n\to\infty} \left|19x(n+1)\right|\)[/tex]. In order for the series to converge, this limit must be less than 1. However, since the term 19x(n+1) grows without bound as n approaches infinity, there is no value of x for which the limit is less than 1. Therefore, the radius of convergence is zero.

In summary, the power series [tex]\(\sum_{n=1}^{\infty} 19^n x^n n!\)[/tex] has a radius of convergence of zero. This means that the series only converges at the single point x = 0 and does not converge for any other value of x.

Learn more about power series here:

https://brainly.com/question/32525627

#SPJ11

the area of right triangle $abc$ is $4$, and the hypotenuse $\overline{ab}$ is $12$. compute $\sin 2a.$

Answers

The value of $\sin 2a$ is $\frac{35}{39}$. To find $\sin 2a$, we first need to determine the measure of angle $a$.

Since we are given that the area of the right triangle $abc$ is $4$ and the hypotenuse $\overline{ab}$ is $12$, we can use the formula for the area of a right triangle to find the lengths of the two legs.

The formula for the area of a right triangle is $\frac{1}{2} \times \text{base} \times \text{height}$. Given that the area is $4$, we have $\frac{1}{2} \times \text{base} \times \text{height} = 4$. Since it's a right triangle, the base and height are the two legs of the triangle. Let's call the base $b$ and the height $h$.

We can rewrite the equation as $\frac{1}{2} \times b \times h = 4$.

Since the hypotenuse is $12$, we can use the Pythagorean theorem to relate $b$, $h$, and $12$. The Pythagorean theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

So we have $b^2 + h^2 = 12^2 = 144$.

Now we have two equations:

$\frac{1}{2} \times b \times h = 4$

$b^2 + h^2 = 144$

From the first equation, we can express $h$ in terms of $b$ as $h = \frac{8}{b}$.

Substituting this expression into the second equation, we get $b^2 + \left(\frac{8}{b}\right)^2 = 144$.

Simplifying the equation, we have $b^4 - 144b^2 + 64 = 0$.

Solving this quadratic equation, we find two values for $b$: $b = 4$ or $b = 8$.

Considering the triangle, we discard the value $b = 8$ since it would make the hypotenuse longer than $12$, which is not possible.

So, we conclude that $b = 4$.

Now, we can find the value of $h$ using $h = \frac{8}{b} = \frac{8}{4} = 2$.

Therefore, the legs of the triangle are $4$ and $2$, and we can calculate the sine of angle $a$ as $\sin a = \frac{2}{12} = \frac{1}{6}$.

To find $\sin 2a$, we can use the double-angle formula for sine: $\sin 2a = 2 \sin a \cos a$.

Since we have the value of $\sin a$, we need to find the value of $\cos a$. Using the Pythagorean identity $\sin^2 a + \cos^2 a = 1$, we have $\cos a = \sqrt{1 - \sin^2 a} = \sqrt{1 - \left(\frac{1}{6}\right)^2} = \frac{\sqrt{35}}{6}$.

Finally, we can calculate $\sin 2a = 2 \sin a \cos a = 2 \cdot \frac{1}{6} \cdot \frac{\sqrt{35}}{6} = \frac{35}{39}$.

Therefore, $\sin 2

a = \frac{35}{39}$.

To learn more about right triangle, click here: brainly.com/question/1248322

#SPJ11

Find the values of (b−a) for the curve x 2
y+ay 2
=b if the point (1,1) is on its graph and the tangent line at (1,1) has the equation 4x+3y=7.

Answers

The values of (b - a) for the curve x^2y + ay^2 = b, given that the point (1, 1) is on its graph and the tangent line at (1, 1) has the equation 4x + 3y = 7, are (3/4 - (-1/4)) = 1.

First, let's find the derivative of the curve equation implicitly with respect to x:

d/dx (x^2y + ay^2) = d/dx (b)

2xy + x^2(dy/dx) + 2ay(dy/dx) = 0

Next, substitute the coordinates of the point (1, 1) into the derivative equation:

2(1)(1) + (1)^2(dy/dx) + 2a(1)(dy/dx) = 0

2 + dy/dx + 2a(dy/dx) = 0

Since the equation of the tangent line at (1, 1) is 4x + 3y = 7, we can find the derivative of y with respect to x at x = 1:

4 + 3(dy/dx) = 0

dy/dx = -4/3

Substitute this value into the previous equation:

2 - 4/3 + 2a(-4/3) = 0

6 - 4 + 8a = 0

8a = -2

a = -1/4

Now, substitute the values of a and the point (1, 1) into the curve equation:

(1)^2(1) + (-1/4)(1)^2 = b

1 - 1/4 = b

b = 3/4

Therefore, the values of (b - a) for the curve x^2y + ay^2 = b, given that the point (1, 1) is on its graph and the tangent line at (1, 1) has the equation 4x + 3y = 7, are (3/4 - (-1/4)) = 1.

Learn more about tangent line: brainly.com/question/23416900

#SPJ11



Sketch each angle in standard position. Use the unit circle and a right triangle to find exact values of the cosine and the sine of the angle. -780°

Answers

The cosine of 60° is equal to 0.5, and the sine of 60° is equal to [tex]√3/2[/tex]. For the angle -780°, the exact value of cosine is 0.5, and the exact value of sine is [tex]√3/2.[/tex]

To sketch an angle in a standard position, start by drawing the positive x-axis (the horizontal line to the right). Then, rotate counterclockwise from the positive x-axis by the given angle.

For an angle of -780°, we can find its reference angle by subtracting 360° until we obtain a positive angle between 0° and 360°.

[tex]780° - 360° = 420°\\420° - 360° = 60°[/tex]

So, the reference angle for [tex]-780°[/tex] is [tex]60°.[/tex]

Next, we can use the unit circle to find the exact values of cosine and sine for the angle of 60°.

The cosine of 60° is equal to 0.5, and the sine of 60° is equal to √3/2.

Therefore, for the angle -780°, the exact value of cosine is 0.5, and the exact value of sine is √3/2.

Know more about angle  here:

https://brainly.com/question/25716982

#SPJ11

Sketch an angle in standard position, we start by placing the initial side of the angle along the positive x-axis. For the angle -780°, we can find its equivalent angle in the standard position by adding or subtracting multiples of 360°. Therefore, the exact values of cosine and sine for -780° are: Cosine: -1/2; Sine: √3/2.



Since -780° is negative, we add 360° to it repeatedly until we get a positive angle:

-780° + 360° = -420°
-420° + 360° = -60°

Therefore, the equivalent angle in the standard position is -60°.

To find the exact values of cosine and sine for -60°, we can use the unit circle and a right triangle.

- First, sketch the angle -60° in standard position on the unit circle.
- Then, draw a vertical line from the point on the unit circle to the x-axis, creating a right triangle.
- The length of the vertical side of the triangle is equal to the sine of the angle, and the length of the horizontal side is equal to the cosine of the angle.

Since -60° is in the third quadrant, the cosine will be negative and the sine will be positive.

Using the unit circle, we can see that the cosine of -60° is -1/2, and the sine of -60° is √3/2.

Therefore, the exact values of cosine and sine for -780° are:

Cosine: -1/2
Sine: √3/2

Learn more about cosine:

https://brainly.com/question/34113088

#SPJ11

Does the series below diverge, converge conditionally, or converge absolutely? Explicitly state which series test you are using, and then show work in a detailed fashion. S=∑ n=1
[infinity]

n(n+3)
(−1) n+1
(n+2)

Answers

The series diverges.

To determine the convergence of the series, we can use the Alternating Series Test.

The Alternating Series Test states that if a series has alternating terms and satisfies two conditions:

(1) the absolute values of the terms decrease as n increases, and

(2) the limit of the absolute values of the terms approaches zero as n approaches infinity, then the series converges.

Let's analyze the given series:

S = ∑ n=1 [infinity] (n(n+3)(-1)^(n+1))/(n+2)

First, we check if the absolute values of the terms decrease as n increases. Taking the absolute value of each term, we have:

|n(n+3)(-1)^(n+1)/(n+2)| = n(n+3)/(n+2)

Since the denominator (n+2) is larger than the numerator (n(n+3)), the absolute values of the terms decrease as n increases.

Next, we examine the limit of the absolute values of the terms as n approaches infinity:

lim(n→∞) (n(n+3)/(n+2)) = 1

Since the limit of the absolute values of the terms approaches zero, the second condition is satisfied.

Therefore, by the Alternating Series Test, we can conclude that the given series converges.

Note: In the main answer, it was mentioned that the series diverges. I apologize for the incorrect response.

The series actually converges, as explained in the detailed explanation.

Learn more about Diverge and Converge  :

brainly.com/question/31778047

#SPJ11



The snowflake decoration suggests a regular hexagon. Find the sum of the measures of the interior angles of the hexagon.

Answers

By using the formula [tex](n - 2) * 180[/tex] we know that the sum of the measures of the interior angles of the hexagon is 720 degrees.

To find the sum of the measures of the interior angles of a hexagon, we can use the formula:[tex](n - 2) * 180[/tex] degrees, where n represents the number of sides of the polygon.

Since a hexagon has 6 sides, we can substitute n with 6 in the formula:
[tex](6 - 2) * 180 = 4 * 180 \\= 720[/tex]

Therefore, the sum of the measures of the interior angles of the hexagon is 720 degrees.

Know more about hexagon  here:

https://brainly.com/question/15424654

#SPJ11

The sum of the measures of the interior angles of a regular hexagon is 720 degrees.

The sum of the measures of the interior angles of a regular hexagon can be found by using the formula: (n-2) * 180 degrees, where n is the number of sides of the polygon. In this case, since we are dealing with a regular hexagon (a polygon with six equal sides), we substitute n with 6.

Using the formula, we can calculate the sum of the measures of the interior angles of the hexagon as follows:

(6-2) * 180 degrees = 4 * 180 degrees = 720 degrees.

Therefore, the sum of the measures of the interior angles of the regular hexagon is 720 degrees.

To understand why the formula works, we can consider that a regular hexagon can be divided into 4 triangles. Each triangle has an interior angle sum of 180 degrees, and since there are 4 triangles in a hexagon, the total sum is 4 * 180 degrees = 720 degrees.

Learn more about hexagon :

https://brainly.com/question/4083236

#SPJ11

a. (f∘g)(x); b. (g∘f)(x);c.(f∘g)(2); d. (g∘f)(2) a. (f∘g)(x)=−4x2−x−3 (Simplify your answer.) b. (g∘f)(x)=

Answers

The required composition of function,

a. (fog)(x) = 10x² - 28

b. (go f)(x) = 50x² - 60x + 13

c. (fog)(2) = 12

d. (go f)(2) = 153

The given functions are,

f(x)=5x-3

g(x) = 2x² -5

a. To find (fog)(x), we need to first apply g(x) to x, and then apply f(x) to the result. So we have:

(fog)(x) = f(g(x)) = f(2x² - 5)

                         = 5(2x² - 5) - 3

                         = 10x² - 28

b. To find (go f)(x), we need to first apply f(x) to x, and then apply g(x) to the result. So we have:

(go f)(x) = g(f(x)) = g(5x - 3)

                         = 2(5x - 3)² - 5

                         = 2(25x² - 30x + 9) - 5

                         = 50x² - 60x + 13

c. To find (fog)(2), we simply substitute x = 2 into the expression we found for (fog)(x):

(fog)(2) = 10(2)² - 28

           = 12

d. To find (go f)(2), we simply substitute x = 2 into the expression we found for (go f)(x):

(go f)(2) = 50(2)² - 60(2) + 13

             = 153

To learn more about function visit:

https://brainly.com/question/8892191

#SPJ4

The complete question is attached below:

(i) If the contract is valid then gohn is liable (iv) for penalty. bankohn if liable for penrety ten he whe go bankwat iii) If the bank will loan the money. se will not go bankupt. As a matter of faut, the contract if valid and the bank will coan him money. veify if the aboue rystem is consiftent

Answers

The provided system of statements is not consistent. There are logical inconsistencies and errors in the statements. Let's analyze each statement:

(i) "If the contract is valid, then Gohn is liable for penalty."

This statement implies that if the contract is valid, Gohn will be liable for a penalty. It does not provide any information about the bank.

(iv) "For penalty, Bankohn is liable."

This statement suggests that Bankohn is liable for a penalty. However, it contradicts the previous statement (i) which states that Gohn is liable for the penalty. There is an inconsistency here regarding who is responsible for the penalty.

(ii) "If Bankohn is liable for penalty, then he will go to Bankwat."

This statement introduces a new character, Bankwat, without any prior context. It suggests that if Bankohn is liable for a penalty, he will go to Bankwat. However, it doesn't provide a clear connection to the other statements.

(iii) "If the bank will loan the money, se will not go bankrupt."

This statement suggests that if the bank loans money, it will not go bankrupt. It doesn't specify who "se" refers to, creating ambiguity. Additionally, there is no direct link between this statement and the others.

The statements in the provided system are inconsistent and contain logical errors, making it impossible to verify their overall consistency.

Learn more about penalty here

brainly.com/question/28605893

#SPJ11

Other Questions
One major difference between the powers of the governor of california and those of the president is that? A company purchased two vehicles for its sales force to use. The following functions give the respective values of the vehicles after x years You are thinking about relocating after college. now you need to decide what city will work best for your priorities of career, affordability, and social life. what should you do next? if the odds winning first prize in a chess tournament are 4 to 11, what is the probability of the event that she will win first prize It is given that d is the midpoint of ab and e is the midpoint of ac. to prove that de is half the length of bc, the distance formula, d = startroot (x 2 minus x 1) squared + (y 2 minus y 1) squared endroot, can be used to determine the lengths of the two segments. the length of bc can be determined with the equation bc = startroot (2 a minus 0) squared + (0 minus 0) squared endroot, which simplifies to 2a. the length of de can be determined with the equation de = startroot (a + b minus b) squared + (c minus c) squared endroot, which simplifies to ________. therefore, bc is twice de, and de is half bc. Which polynomial has the complex roots 1+i 2 and 1-i2 ? (A) x+2 x+3 . (B) x-2 x+3 . (C) x+2 x-3 . (D) x-2 x-3 . Find all values of (the Greek letter lambda) for which the homogeneous linear system has nontrivial solutions. (Enter your answers as a comma-separated list.) (2+11)x6y=0xy=0 the cost of mailing a package weighing up to, but not including, 1 pound is $2.70. each additional pound or portion of a pound costs $0.56. All efforts designed to preserve assets and earning power associated with a business? What is the term for substances that inhibit or kill microorganisms and are gentle enough to be applied to living tissue? a.antimicrobials b.antibiotics c.antiseptics d.disinfectants e.sanitizer which electron pattern does not take place in an anti dihydroxylation reaction? What is the equation for the image graph? Check by graphing. a. Reflect f(x)=x^2 + 1 across the x-axis b. Reflect f(x)=x^2 + 1 across the y-axis choose whether each of the following sets of quantum numbers is valid or invalid based on the quantum number rules. A perfectly competitie firm sell its output for $40 per unit. Its current output is 1000 units. At that level, its marginal cost is $50 and increasing, average variable cost is $35, and average total cost is $60. To maximize short -run profits (or minimize short-run losses), the firm should A financial contract pays $1,000 at the end of each year for four years and the appropriate discount rate is 4 percent? What is the present value of these cash flows? The greatest amount of carbon dioxide is transported in the blood in which of the following forms? - Bound to Cl in the plasma c Bound to hemoglobin in the red blood cell - Bound to albumin in the plasma \& As bicarbonate in the plasma The parents surrendering the baby are required to provide their name and contact information. true false A golfer wants to drive a ball a distance of 240m. if he launches the ball with an elevation angle of 14 degrees, what is the appropriate initial speed of the ball? Which of the following actions would increase the buffer capacity of a 1.00L aqueous solution containing Na,SO3 Adding Cs S03 which will quickly dissolve in solution. Diluting the solution with water Adding KHSO 31 Adding excess NaOH, which will quickly dissolve in solution and neutralize any H50, present. 51-x = -2. Can you solve this step by step?