The equivalent exponential expression for this problem is given as follows:
A. 4^15 x 5^10.
How to simplify the exponential expression?The exponential expression in the context of this problem is defined as follows:
[tex]\left(\frac{4^3}{5^{-2}}\right)^5[/tex]
To simplify the expression, we must first apply the power of power rule, which means that when one exponential expression is elevated to an exponent, we keep the base and multiply the exponents, hence:
4^(15)/5^(-10)
The negative exponent at the denominator means that the expression can be moved to the numerator with a positive exponent, hence the simplified expression is given as follows:
4^15 x 5^10.
More can be learned about exponent rules at https://brainly.com/question/11975096
#SPJ1
how many intervals (or 'bins' or 'classes') should be chosen when creating a histogram? question 1 options: most often, about 8-10. eleven. it can vary - it really depends on the distribution of the variable. a minimum of 5.
"It can vary - it really depends on the distribution of the variable."
The number of intervals, or bins, to choose when creating a histogram can vary depending on the distribution of the variable.
Most often, about 8-10 intervals are used, but there is no set rule. It is generally recommended to have at least 5 intervals, but if the data is highly skewed or has outliers, more intervals may be needed to accurately represent the distribution.
Ultimately, the goal is to choose a number of intervals that provides a clear visual representation of the data without oversimplifying or overcomplicating the histogram.
The number of intervals or bins to be chosen when creating a histogram can vary and it really depends on the distribution of the variable.
While most often, about 8-10 bins are used, there is no hard and fast rule for the number of bins to be used in a histogram.
In general, the number of bins should be large enough to display the shape of the distribution clearly, but not so large that it obscures important features of the distribution or leads to overfitting.
A minimum of 5 bins is recommended to display the basic shape of the distribution, but more bins may be necessary for complex or multi-modal distributions.
Depending on the distribution of the variable, a histogram's number of intervals or bins can be altered.
There is no established guideline, however 8–10 intervals are typically utilized.
A minimum of five intervals are often advised, however if the data is extremely skewed or contains outliers, more intervals could be required to correctly depict the distribution.
For similar questions on variable.
https://brainly.com/question/27894163
#SPJ11
Point A = (5,4). If you rotated A 90 degrees about the point (2,-1), what would be the coordinates of A'?
Point A = (5,4). If you rotated A 90 degrees about the point (2,-1), the coordinates of A' is (-1,2).
Describe Rotation?Rotation is the process of rotating an object or a point around a fixed point or axis. In mathematics, rotation refers to a transformation that preserves the size and shape of an object while changing its orientation. It is a basic geometric transformation that is used in various fields, including mathematics, physics, engineering, and computer graphics.
In a two-dimensional space, a rotation is typically described by an angle of rotation and a fixed point, which is known as the center of rotation. The angle of rotation represents the amount by which the object is rotated, while the center of rotation is the point around which the object is rotated. In a three-dimensional space, a rotation is described by an axis of rotation and an angle of rotation.
To rotate point A 90 degrees counterclockwise about the point (2,-1), we can use the following formula:
A' = (x', y') = (a + (x - a) cosθ - (y - b) sinθ, b + (x - a) sinθ + (y - b) cosθ)
where (a,b) is the center of rotation and θ is the angle of rotation (90 degrees in this case).
Substituting the given values, we get:
a = 2, b = -1, x = 5, y = 4, θ = 90 degrees
x' = 2 + (5 - 2) cos(90) - (4 + 1) sin(90) = 2 - 3 = -1
y' = -1 + (5 - 2) sin(90) + (4 + 1) cos(90) = -1 + 3 = 2
Therefore, the coordinates of A' are (-1, 2).
To know more about coordinates visit:
https://brainly.com/question/18596983
#SPJ9
Write the functions in standard form:
h(x)=2(x-3)²-9
h(x)=
p(x) = -5(x + 2)² + 15
p(x)=
Answer:
[tex]h(x)=2x^2-12x+9[/tex], [tex]p(x)=-5x^2-20x-5[/tex]
Step-by-step explanation:
To get to the standard form of a quadratic equation, we need to expand and simplify. Recall that standard form is written like so:
[tex]ax^2+bx+c[/tex]
Where a, b, and c are constants.
Let's expand and simplify h(x).
[tex]2(x-3)^2-9=\\2(x^2+9-6x)-9=\\2x^2+18-12x-9=\\2x^2+9-12x=\\2x^2-12x+9[/tex]
Thus, [tex]h(x)=2x^2-12x+9[/tex]
Let's do the same for p(x).
[tex]-5(x+2)^2+15=\\-5(x^2+4+4x)+15=\\-5x^2-20-20x+15=\\-5x^2-5-20x=\\-5x^2-20x-5[/tex]
Thus, [tex]p(x)=-5x^2-20x-5[/tex]
The right triangle shown is enlarged such that each side is multiplied by the value of the hypotenuse, 3y. Find the expression that represents the perimeter of the enlarged triangle. TRIANGLE AND ANSWER CHOICES BELOW!
Answer:
c.
Step-by-step explanation:
The original triangle has two sides with length 4x each, and the hypotenuse has length 3y.
After the enlargement, each of the sides with length 4x becomes 3y × 4x = 12xy, and the hypotenuse becomes 3y × 3y = 9y^2.
Therefore, the perimeter of the enlarged triangle is the sum of the lengths of its three sides:
12xy + 12xy + 9y^2 = 24xy + 9y^2 = 9y^2 + 24xy
So the answer is (C) 9y^2 + 24xy.
Please answer the question in the pdf. I just need the values for A, B, and C. I am offering 15 points. Thanks.
Recall the equation provided in the pdf:
(125x ^ 3 * y ^ - 12) ^ (- 2/3) = (y ^ [A])/([B] * x ^ [c])
find A B and C.
The answer will be:
A = 8/3B = 3/4C = 8/3Checkout the calculation of the exponentialWe can solve this problem using the rules of exponents and algebraic manipulation.
Starting with the left-hand side of the equation:
(125x^3 * y^-12)^(-2/3)
Using the rule that (a * b)^c = a^c * b^c, we can rewrite the expression as:
125^(-2/3) * x^(-2) * y^(8)
Simplifying further, we can use the fact that a^(-n) = 1/(a^n) to get:
1/(5^2 * x^2 * y^8/3)
Now, we can see that the denominator on the right-hand side of the equation must be 5^2 * x^2 * y^8/3. To find the numerator, we need to simplify the expression y^A. Comparing exponents, we see that:
y^A = y^(8/3)
Therefore, we need to find a value of A such that A = 8/3. Solving for A, we get:
A = 8/3
Now, we can write the equation as:
y^(8/3)/(5^2 * x^2 * y^8/3) = y^(8/3)/(25 * x^2 * y^(8/3))
Comparing exponents again, we see that we need to find values of B and C such that:
B * C = 2
and
-8/3 = -C
Solving for C, we get:
C = 8/3
Substituting this value of C into the first equation, we get:
B * 8/3 = 2
Solving for B, we get:
B = 3/4
Therefore, the solution is:
A = 8/3
B = 3/4
C = 8/3
Learn more about exponential algebra here:
https://brainly.com/question/12940982
#SPJ1
You roll a six sided die 30 times. A 5 is rolled 8 times. What is the theoretical probability of rolling a 5? What is the experimental probability of rolling a 5?
The theoretical and experimental probability of rolling a 5 are 1/6 and 4/15 respectively.
How do we derive the probability?We will calculate the theoretical probability by substituting 30 for the number of favorable outcomes as the die is rolled 30 times with one option each for 30 rolls and 180 for total number of outcomes in theoretical probability formula.
P(Theoretical probability of rolling a 5) = 30/180
P(Theoretical probability of rolling a 5) = 1/6.
The experimental probability is calculated by substituting 8 for the number of time the event occurs and 30 for the total number of trials.
P(Experimental probability of rolling a 5)= 8/30
P(Experimental probability of rolling a 5) =4/15
Read more about probability
brainly.com/question/24756209
#SPJ1
Solve for x to make A||B.
A = x + 12
B = x + 48
X = [?]
Answer:
Step-by-step explanation:= x+48=180 ( linier pair )
= x=180-48
= x=132
= x+12=180 (liner pair)
= x=180-12
= x=168
tim wants his mean quiz score to be 90. his first 3 quiz scores were 86, 92, and 94. what score should he make on the 4th quiz in order to have a mean quiz score of exactly 90?
The score to be made on the 4th quiz in order to have a mean quiz score of exactly 90 is equal to 88.
Let us consider the score that Tim needs to get on his fourth quiz be x.
Score he needs to get in order to have a mean quiz score of 90,
Set up an equation using the formula for the mean ,
(mean score) = (sum of scores) / (number of scores)
If Tim wants his mean quiz score to be 90, then we have,
⇒ 90 = (86 + 92 + 94 + x) / 4
Multiplying both sides by 4, we get,
⇒360 = 86 + 92 + 94 + x
Simplifying this equation, we get,
⇒ x = 360 - 272
⇒ x = 88
Therefore, Tim needs to get a score of 88 on his fourth quiz in order to have a mean quiz score of exactly 90.
Learn more about score here
brainly.com/question/31177688
#SPJ4
During a flood, there were 6000 acres of land under water. After 2 days, only 3375 acres of land were under water. Assume that the water receded at an exponential rate. Write a function to model this situation that has a B-value of 1.
where t is measured in days, and A(t) represents the amount of flooded land at time t. This function has a B-value of -0.3118.
To model the situation of the flood, we can use an exponential decay function, which represents the decreasing amount of flooded land over time. The function can be written as:
[tex]A(t) = A0 * e^{(-kt)}[/tex]
where A(t) is the amount of flooded land at time t, A0 is the initial amount of flooded land, k is a constant representing the rate of decay, and e is the mathematical constant approximately equal to 2.718.
To determine the value of k, we can use the given information that after 2 days, only 3375 acres of land were under water. Substituting t = 2 and A(t) = 3375 into the equation above, we get:
[tex]3375 = A0 * e^{(-2k)[/tex]
We also know that initially, there were 6000 acres of land under water. Substituting A0 = 6000 into the equation above, we get:
Dividing both sides by 6000, we get:
ln(0.5625) = -2k[tex]ln(0.5625) = -2k[/tex]
Taking the natural logarithm of both sides, we get:
[tex]ln(0.5625) = -2k[/tex]
Solving for k, we get:
[tex]k = -ln(0.5625)/2[/tex]
k ≈ 0.3118
Therefore, the function to model the situation of the flood is:
[tex]A(t) = 6000 * e^{(-0.3118t)}[/tex]
To learn more about function, visit
https://brainly.com/question/12431044
#SPJ1
the applet is selecting random samples from the town's population this year. what do we assume is true about this population of babies?
When the applet selects random samples from the town's population of babies, we assume that the population is large enough and diverse enough to accurately represent the characteristics and traits of the entire population.
We assume that the selection of the random samples is unbiased and that every member of the population has an equal chance of being selected for the sample.
Based on your question, we are discussing random samples taken from a town's population of babies this year. When selecting random samples from this population, we assume the following:
1. The population of babies is well-defined and includes all babies born in the town within the specified year.
2. The random samples are representative of the entire population, meaning that each baby has an equal chance of being selected in the sample.
3. The samples are independent, meaning that the selection of one baby does not influence the selection of another.
These assumptions ensure that the results obtained from the random samples can be generalized to the entire population of babies in the town for this year.
Learn more about random samples here:
https://brainly.com/question/15736806
#SPJ11
By assuming these conditions are met, we can perform statistical analyses on the random samples and make valid inferences about the entire population of babies in the town.
When an applet is selecting random samples from a town's population of babies this year, we typically assume the following about the population:
Independence:
Each baby selected in the sample is independent of the others, meaning that the outcome of one selection does not affect the outcome of another selection.
Randomness:
The applet chooses babies from the population in a random manner, ensuring that every baby has an equal chance of being selected.
Representativeness:
The random samples selected are representative of the entire population, meaning that the samples accurately reflect the characteristics of the town's population of babies as a whole.
For similar question on conditions.
https://brainly.com/question/28532738
#SPJ11
Solve for x. -7.6 -1.2 + X 0.5
<
1. Decide if each quadrilateral is a paranciogram. Explain
1 Pt
105
DOOOO
B
A
75
DE
1 Pt
OO
A B
4/7 -
11
65°
E
1 Pt.
For what value of x must the quadrilateral be a parallelogram?
A
O
B
с D E
A. Yes the quadrialateral is a parallelogram, because consecutive angle are supplementary.
B. Yes the quadrialateral is a parallelogram, because one pair of opposites sides is both
parallel and congruent
C. Yes the quadrialateral is a parallelogram, because opposite angles are congruent.
D. Yes the quadrialateral is a parallelogram, because diagonals bisect each other.
E. No we do not have enough information to prove this is a parallelogram.
IF YOU CAN HELP WITH SCHOOL FOR $ PLEASE ASK FOR MY CONTACT IN COMMENTS
For all given Quadrilaterals none has enough information provided in the problem to definitively say - if they are a parallelogram.Hence, option E is correct for all.
How to determine if Quadrilateral is a parallelogram?If a quadrilateral is a parallelogram, it satisfies the following properties:
Opposite sides are parallel.Opposite sides are equal in length.Opposite angles are equal.Diagonals bisect each other.It is important to note that in order to definitively conclude that a quadrilateral is a parallelogram, all four properties must be satisfied. If only one or some of the properties are met, it does not necessarily guarantee that the quadrilateral is a parallelogram.
Figure 1-: Adjacent angles are 105 and 75 degrees, which satify the condition of opposite angles being equal but except this no other information is provided, Hence, we don't have enough information to say figure 1 is a parallelogram.
Figure 2-: Diagonals bisect each other and make angle 65 degree with each other. Given that Diagonal 1 bisects Diagonal 2 and the opposite sides of the quadrilateral are equal, by using SAS criterion, the congruency of triangles formed by the diagonals can be derived to say that the opposite angles of the quadrilateral are also equal . However, we still need more information about parallelism of sides to definitively say given quadrilateral is a parallelogram.
Figure 3-: One pair of opposite side is equal in length ,while other pair of line is parallel to each other.This information is insufficient to determine if given quadrilateral is a parallelogram.
Learn more about parallelogram here:
https://brainly.com/question/29147156
#SPJ1
Find the surface area and width of a rectangular prism with height of 6 cm, length of 5 cm, and the
volume of 240 cm³.
Answer:
236 cm^2 and 8 cm
Step-by-step explanation:
width=w
240=6(5)(w)
w=8 cm
area=2[(6)(5)+(6)(8)+(5)(8)]
area=236 cm^2
the profit p (in dollars) generated by selling x units of a certain commodity is given by the function p ( x ) = - 1500 + 12 x - 0.004 x ^ 2 What is the maximum profit, and how many units must be sold to generate it?
The profit (p) is $7500 generated by selling 1500 units of a certain commodity is given by the function p ( x ) = - 1500 + 12 x - 0.004 x²
To maximize our profit, we must locate the vertex of the parabola represented by this function. The x-value of the vertex indicates the number of units that must be sold to maximize profit.
We may use the formula for the x-coordinate of a parabola's vertex:
x = -b/2a
where a and b represent the coefficients of the quadratic function ax² + bx + c. In this situation, a = -0.004 and b = 12, resulting in:
x = -12 / 2(-0.004) = 1500
This indicates that when 1,500 units are sold, the profit is maximized.
To calculate the greatest profit, enter x = 1500 into the profit function:
P(1500) = -1500 + 12(1500) - 0.004(1500)^2
P(1500) = -1500 + 18000 - 9000
P(1500) = $7500
Therefore, the maximum possible profit is $7,500 and it is generated when 1,500 units are sold.
Learn more about Profit maximization:
https://brainly.com/question/30436087
#SPJ4
To achieve this maximum profit, exactly 1500 units must be sold.
To find the maximum profit and the number of units needed to generate it, we can use the given profit function p(x) = -1500 + 12x - 0.004x^2. We need to find the vertex of the parabola represented by this quadratic function, as the vertex will give us the maximum profit and the corresponding number of units.
Step 1: Identify the coefficients a, b, and c in the quadratic function.
In p(x) = -1500 + 12x - 0.004x^2, the coefficients are:
a = -0.004
b = 12
c = -1500
Step 2: Find the x-coordinate of the vertex using the formula x = -b / (2a).
x = -12 / (2 * -0.004) = -12 / -0.008 = 1500
Step 3: Find the maximum profit by substituting the x-coordinate into the profit function p(x).
p(1500) = -1500 + 12 * 1500 - 0.004 * 1500^2
p(1500) = -1500 + 18000 - 0.004 * 2250000
p(1500) = -1500 + 18000 - 9000
p(1500) = 7500
So, the maximum profit is $7,500, and 1,500 units must be sold to generate it.
To learn more about parabola: brainly.com/question/8227487
#SPJ11
9) Given f-¹(x)=-3x+2, write an equation
that represents f(x).
as you already know, to get the inverse of any expression we start off by doing a quick switcheroo on the variables and then solving for "y", let's do so for this inverse, since finding the inverse of the inverse, will give us the original function :)
[tex]f^{-1}(x)=-3x+2\implies y~~ = ~~-3x+2\hspace{5em}\stackrel{\textit{quick switcheroo}}{x~~ = ~~-3y+2} \\\\\\ x-2=-3y\implies \cfrac{x-2}{-3}=y\implies \cfrac{2-x}{3}=y=f(x)[/tex]
a random sample of n equal to 64 scores is selected from a normally distributed population with mu equal to 77 and sigma equal to 21. what is the probability that the sample mean will be less than 79? hint: this is a z-score for a sample.
The probability of the sample mean being less than 79 is 77.64%
In order to solve the given problem we have to take the help of Standard error mean
SEM = ∑/√(n)
here,
∑ = population standard deviation
n = sample size
hence, the z-score can be calculated as
z = ( x' - μ)/σ/√(n)
here,
x' = sample mean
μ = population mean
σ = population standard deviation
n = sample size
adding the values into the formula
SEM = σ / √(n)
= 21/√64
= 2.625
z = (x' - μ)/SEM
= (79-77)/2.625
= 0.76
now, using standard distribution table we find that probability of a z-score is less than 0.77 then converting it into percentage
0.77 x 100
= 77%
The probability of the sample mean being less than 79 is 77.64%
To learn more about probability,
https://brainly.com/question/13604758
#SPJ4
The solid below is dilated by a scale factor of 1/2. Find the volume of the
solid created upon dilation.
24
26
10
34
Answer: 4080
Step-by-step explanation:
First you have to find the area of the triangle. 24*10 = 240. 240/2 = 120. Then you multiply the area of the triangle and multiply it by 34. 120 * 34 = 4080. This means the answer is 4080
A container built for transatlantic shipping is constructed in the shape of a right
rectangular prism. Its dimensions are 4 ft by 9.5 ft by 13 ft. If the container is entirely
full and, on average, its contents weigh 0.05 pounds per cubic foot, find the total
weight of the contents. Round your answer to the nearest pound if necessary
Thus, the on average the contents weight for the transatlantic shipping is found as 24.7 pounds.
Explain about the rectangular prism:a solid, three-dimensional object with six rectangular faces.It is a prism due to its uniform cross-section along its whole length.Volume is a unit of measurement for the amount of 3-dimensional space a thing occupies. Cubic units are used to measure volume.Given dimension of rectangular prism
Length l = 4ft
width w = 9.5 ft
height h = 13 ft
Volume of rectangular prism = l*w*h
V = 4*9.5*13
V = 494 ft³
Now,
1 ft³ = 0.05 pounds
So,
weight of 494 ft³ = 494*0.05 pounds
weight of 494 ft³ = 24.7 pounds
Thus, the on average the contents weigh for the transatlantic shipping is found as 24.7 pounds.
know more about the rectangular prism
https://brainly.com/question/24284033
#SPJ1
Himpunan penyelesaian dari :
18 - 2x < 3.(2x - 1) - 3
adalah ….
Step-by-step explanation:
18-2x<3(2x-1)-3
21-2x<6x-3
24<8x
3<x
Interval notation
(3, ∞)
Use the functions f(x)=√x+1, g(x)=2x-5, and h(x) = 3x² - 3 to complete the table.
x
4
10
20
34
52
f(g(x))
Answer:
To find the values of f(g(x)) for the given values of x, we need to first evaluate g(x) for each value of x, and then plug the result into f(x).
Using the given functions:
g(x) = 2x - 5
f(x) = √(x+1)
Therefore, we have:
f(g(x)) = √(g(x) + 1) = √(2x - 5 + 1) = √(2x - 4) = 2√(x - 2)
So, we can complete the table as follows:
x f(g(x))
4 2
10 4
20 6
34 8
52 10
Therefore, the completed table is:
x f(g(x))
4 2
10 4
20 6
34 8
52 10
help me please like right now as soon as possible write the answer in terms of pi and round the answer to the nearest hundredths place I will give branliest
Thus, the total surface area of cylinder is found to be 480π sq. cm.
Explain about the surface area of cylinder:A cylinder's surface area is made up of its two congruent, parallel circular sides added together with its curved surface area. You must determine the Base Area (B) and Curved Surface Area in order to determine the surface area of a cylinder (CSA).
As a result, the base area multiplied by two and the area of a curved surface add up to the surface area or total surface of a cylinder.
Given data:
radius r = 8 cm
Height h = 22 cm
Total surface area of cylinder = 2*area of circle + area of curved cylinder
TSA = 2πr² + 2πrh
TSA = 2π(8)² + 2π(8)(22)
TSA = 2π(64) + 2π(176)
TSA = 128π + 352π
TSA = 480π sq. cm.
Thus, the total surface area of cylinder is found to be 480π sq. cm.
Know more about the surface area of cylinder:
https://brainly.com/question/27440983
#SPJ1
Complete question-
Find the surface area of the cylinder with radius of 8 cm and height of 22 cm. write the answer in terms of pi and round the answer to the nearest hundredths place.
Quilt squares are cut on the diagonal to form triangular quilt pieces. The hypotenuse of the resulting triangles is 20 inches long. What is the side length of each piece?
1. 10√2
2. 20√2
3. 10√3
4. 20√3
Answer:
The correct answer is:
10√2
Explanation:
In a right triangle, the hypotenuse is the side opposite the right angle and is also the longest side. The other two sides are called the legs.
In this problem, the hypotenuse of the resulting triangles is given as 20 inches. Since the quilt squares are cut on the diagonal to form triangular quilt pieces, the hypotenuse of each triangle is formed by the diagonal cut of a square.
Let's denote the side length of each square as "s" inches.
According to the Pythagorean Theorem, which relates the sides of a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the two legs.
In this case, the hypotenuse is 20 inches, so we have:
20^2 = s^2 + s^2 (since the two legs of the right triangle are the sides of the square)
400 = 2s^2
Dividing both sides by 2, we get:
200 = s^2
Taking the square root of both sides, we get:
s = √200
Since we are looking for the side length of each piece in simplified radical form, we can further simplify √200 as follows:
√200 = √(100 x 2) = 10√2
So, the side length of each quilt piece is 10√
The side length of each piece of the triangular pieces of quilt cut from squares will be 10√2 inches.
This is a simple mathematics problem that can be solved using the Pythagoras theorem. This theorem states that in a right-angled triangle, the square root of the sum of the two perpendicular sides (p,b) is equal to the longest side, called the hypotenuse (h).
[tex]h = \sqrt{p^2 + b^2}[/tex]
Since the triangle pieces have been cut from a square, they will be right-angled triangles, and the two perpendicular sides will be equal, i.e., p = b.
20 = √2p² (since p and b are equal, b can be taken as p)
On squaring both sides,
400 = 2p²
p² = 400/2
p² = 200
p = √200
p = 10√2 = b
To know more about Pythagoras theorem,
https://brainly.com/question/28981380
Find the value of the indicated trigonometry ratio cos in right tringle with side of 6,6*squort 2, 6*squort 3
Answer:√2/2
Step-by-step explanation:
Let's label the sides of the right triangle as follows:
The side adjacent to the angle θ (cosine is adjacent/hypotenuse): 6
The hypotenuse (the longest side): 6√2
The side opposite to the angle θ (sine is opposite/hypotenuse): 6√3
Using the Pythagorean theorem, we can find the length of the missing side:
a² + b² = c²
6² + (6√3)² = (6√2)²
36 + 108 = 72
144 = 72
√144 = √72
12 = 6√2
Now that we know the length of all three sides, we can use the cosine ratio to find the value of cos(θ):
cos(θ) = adjacent/hypotenuse = 6/6√2 = √2/2
Therefore, the value of cos(θ) in the right triangle with sides of 6, 6√2, and 6√3 is √2/2.
Simplify these expressions
5×x
6×x×y
2×x×3×y
Answer:
5x
6xy
2x3y
hope it's helpful
The Olympic record for the men's 50-meter freestyle is 21.91 seconds. Express this speed in meters per second
Answer:
50 meters/21.91 seconds = 2.282 m/sec
A biologist is studying the growth of a particular species of algae. She writes the following equation to show the radius of the algae, f(d), in mm, after d days:
f(d) = 7(1.06)d
Part A: When the biologist concluded her study, the radius of the algae was approximately 13.29 mm. What is a reasonable domain to plot the growth function? (4 points)
Part B: What does the y-intercept of the graph of the function f(d) represent? (2 points)
Part C: What is the average rate of change of the function f(d) from d = 4 to d = 11, and what does it represent? (4 points)
Part A: A reasonable domain to plot the growth function would be from d = 0 to d = 11.
Part B: The y-intercept of the graph of the function f(d) is 7
Part C: The average rate of change of the function f(d) from d = 4 to d = 11 is approximately 0.64 mm/day.
Domine and y-intercept of a function:
The domain of a function represents the set of input values for which the function is defined and can produce a meaningful output.
The y-intercept of a function represents the value of the function when the input is equal to zero.
The average rate of change of a function from x = a to x = b is given by the slope of the secant line passing through the points (a, f(a)) and (b, f(b)).
Here we have
A biologist is studying the growth of a particular species of algae. She writes the following equation to show the radius of the algae, f(d), in mm, after d days:
=> f(d) = 7(1.06)^d
Since it is given that the radius of the algae was approximately 13.29 mm when the biologist concluded her study, we can set f(d) = 13.29
=> 13.29 = [tex]7(1.06)^{d}[/tex]
=> ln(13.29/7) = d ln(1.06)
=> d = ln(13.29/7)/ln(1.06) ≈ 11
Therefore, A reasonable domain to plot the growth function would be from d = 0 to d = 11.
Part B: The y-intercept of the graph of the function f(d) represents the value of the function when d = 0.
Substituting d = 0 into the given equation, we get:
f(0) = 7(1.06)⁰ = 7
Therefore, The y-intercept of the graph of the function f(d) is 7
Part C: The average rate of change of the function f(d) from d = 4 to d = 11 is given by the slope of the secant line passing through the points (4, f(4)) and (11, f(11)). Using the given equation, we can evaluate f(4) and f(11):
f(4) = 7(1.06)⁴ ≈ 8.84
f(11) = 7(1.06)¹¹ ≈ 13.29
The slope of the second line passing through these two points is:
Slope = (f(11) - f(4))/(11 - 4) = [ 13.29 - 8.84]/7 = 0.64
Therefore,
The average rate of change of the function f(d) from d = 4 to d = 11 is approximately 0.64 mm/day.
Learn more about Functions at
https://brainly.com/question/24839787
#SPJ1
A bottle of water that is 80°F is placed in a cooler full of ice. The temperature of the water decreases by 0. 5°F every minute. What is the temperature of the water, in degrees Fahrenheit, after 5 1/2
minutes? Express your answer as a decimal
After 5 and a half minutes, the temperature of the water will be 77°F.
In this scenario, we are given that the initial temperature of the water is 80°F. We also know that the temperature of the water decreases by 0.5°F every minute. We want to find out what the temperature of the water will be after 5 and a half minutes.
To solve this problem, we need to use a bit of math. We know that the temperature of the water is decreasing by 0.5°F every minute. So after 1 minute, the temperature of the water will be 80°F - 0.5°F = 79.5°F. After 2 minutes, the temperature will be 79.5°F - 0.5°F = 79°F. We can continue this pattern to find the temperature after 5 and a half minutes.
After 5 minutes, the temperature of the water will be 80°F - (0.5°F x 5) = 77.5°F. And after another half minute (or 0.5 minutes), the temperature will decrease by another 0.5°F, so the temperature will be 77.5°F - 0.5°F = 77°F.
To know more about temperature here
https://brainly.com/question/11464844
#SPJ4
2. Which sequence of transformations takes the graph of y = k(x) to the graph of
y=-k(x + 1)?
A. Translate 1 to the right, reflect over the x-axis, then scale vertically by a factor of 1/2
B. Translate 1 to the left, scale vertically by 1/2 , then reflect over the y-axis.
C. Translate left by 1/2, then translate up 1.
D. Scale vertically by 1/2, reflect over the x-axis, then translate up 1.
The correct answer is option B. Translate 1 to the left, scale vertically by 1/2, then reflect over the y-axis.
What does term "transformation of a graph" means?The process of modifying the shape, location, or features of a graph is often referred to as graph transformation. Graphs are visual representations of mathematical functions or data point connections, often represented on a coordinate plane.
Translations, reflections, rotations, dilations, and other changes to the look of a graph are examples of graph transformations.
For the given problem, Transformation to get the desired result can be carried out as:
Translate '1' to the left: The transformation "x + 1" in "-k(x + 1)" shifts the graph horizontally to the left by 1 unit.Scale vertically by '1/2' : The 1/2 factor in "-k(x + 1)" vertically scales the graph, compressing it vertically.Reflect over the y-axis: The minus sign before "k" in "-k(x + 1)" reflects the graph over the y-axis, flipping it horizontally.Hence, to convert the graph of "y = k(x)" to the graph of "y = -k(x + 1)," the correct sequence of transformations is to translate 1 unit to the left, scale vertically by 1/2, and then reflect across the y-axis, which is option B.
Learn more about Graph Transformation here:
https://brainly.com/question/10059147
#SPJ1
Mr. Frost worked 37 hours last week. He was paid $17 per hour. How much money did he make last week?
Answer:
$481
Step-by-step explanation:
37×$17=$481
he made $481
Using the graph, determine the coordinates of the x-intercepts of the parabola.
Answer:
x = -5, x = 1
As (x, y) coordinates, the x-intercepts are (-5, 0) and (1, 0).
Step-by-step explanation:
The x-intercepts are the x-values of the points at which the curve crosses the x-axis, so when y = 0.
From inspection of the given graph, we can see that the parabola crosses the x-axis at x = -5 and x = 1.
Therefore, the x-intercepts of the parabola are:
x = -5x = 1As (x, y) coordinates, the x-intercepts are (-5, 0) and (1, 0).