Answer:
7.005 m^2.
Step-by-step explanation:
We can split this into one vertical rectangle 3.45 * 0.9 m^2
2 rectangles 2 * 0.75 = 1.5 m^2
1 rectangle 1.2 * 0.75 m^2
= 3.105 + 2 * 1.5 + 0.9
= 7.005 m^2.
Word related to circle
Answer:
Center, radius, chord, diameter... are Words related to circle
What is the perimeter of A’B’C’D’?
[tex]\displaystyle\bf\\\textbf{At any translation of a quadrilateral the sides remain the same,}\\\\\textbf{the angles remain the same.}\\\\\textbf{It turns out that the quadrilateral remains the same.}\\\\P_{A'B'C'D'}=P_{ABCD}=AB+BC+CD+DA=\\\\~~~~~~~~~~~~~~=2.2+4.5+6.1+1.4=\boxed{\bf14.2}[/tex]
The Graduate Record Examination (GRE) is a standardized test that students usually take before entering graduate school. According to the document Interpreting Your GRE Scores, a publication of the Educational Testing Service, the scores on the verbal portion of the GRE are (approximately) normally distributed with mean 462 points and standard deviation 119 points. (6 p.) (a) Obtain and interpret the quartiles for these scores. (b) Find and interpret the 99th percentile for these scores
Answer:
(a) The first quartile is 382.27 and it means that at least el 25% of the scores are less than 382.27 points.
The second quartile is 462 and it means that at least el 50% of the scores are less than 462 points.
The third quartile is 541.73 and it means that at least el 75% of the scores are less than 541.73 points.
(b) The 99th percentile is 739.27 and it means that at least el 99% of the scores are less than 739.27 points.
Step-by-step explanation:
The first, second the third quartile are the values that let a probability of 0.25, 0.5 and 0.75 on the left tail respectively.
So, to find the first quartile, we need to find the z-score for which:
P(Z<z) = 0.25
using the normal table, z is equal to: -0.67
So, the value x equal to the first quartile is:
[tex]z=\frac{x-m}{s}\\ x=z*s +m\\x =-0.67*119 + 462\\x=382.27[/tex]
Then, the first quartile is 382.27 and it means that at least el 25% of the scores are less than 382.27 points.
At the same way, the z-score for the second quartile is 0, so:
[tex]x=0*119+462\\x=462[/tex]
So, the second quartile is 462 and it means that at least el 50% of the scores are less than 462 points.
Finally, the z-score for the third quartile is 0.67, so:
[tex]x=z*s +m\\x =0.67*119 + 462\\x=541.73[/tex]
So, the third quartile is 541.73 and it means that at least el 75% of the scores are less than 541.73 points.
Additionally, the z-score for the 99th percentile is the z-score for which:
P(Z<z) = 0.99
z = 2.33
So, the 99th percentile is calculated as:
[tex]x=z*s +m\\x =2.33*119 + 462\\x=739.27[/tex]
So, the 99th percentile is 739.27 and it means that at least el 99% of the scores are less than 739.27 points.
can some one answer this plsss
Answer:
D
Step-by-step explanation:
0.2x+5=8
0.2x=3
x=15
Therefore, the correct answer is choice D. Hope this helps!
Find the area of the largest rectangle that can be inscribed in a right triangle with legs of lengths 4 cm and 6 cm if two sides of the rectangle lie along the legs. webassign cengage
Answer:
[tex]6cm^2[/tex]
Step-by-step explanation:
Let x and y be the sides of the rectangle.
Area of the Triangle, A(x,y)=xy
From the diagram, Triangle ABC is similar to Triangle AKL
AK=4-y
Therefore:
[tex]\dfrac{x}{6} =\dfrac{4-y}{4}[/tex]
[tex]4x=6(4-y)\\x=\dfrac{6(4-y)}{4} \\x=1.5(4-y)\\x=6-1.5y[/tex]
We substitute x into A(x,y)
[tex]A=y(6-1.5y)=6y-1.5y^2[/tex]
We are required to find the maximum area. This is done by finding
the derivative of Aand solving for the critical points.
Derivative of A:
[tex]A'(y)=6-3y\\$Set $A'=0\\6-3y=0\\3y=6\\y=2$ cm[/tex]
Recall that: x=6-1.5y
x=6-1.5(2)
x=6-3
x=3cm
Therefore, the maximum rectangle area is:
Area =3 X 2 =[tex]6cm^2[/tex]
Find the product of (x − 7)2.
Answer:
x+7)^2=x^2+2*7x+7^2= x^2+14x+49
Step-by-step explanation:
Answer:
2x-14
From: iOE your friend :D :)
* Be awesome Be you*
I really need help, please help me.
Answer:
96 degrees
Step-by-step explanation:
Since x is half of 168, its angle measure is 84 degrees. Since x and y are a linear pair, their angle measures must add to 180 degrees, meaning that:
y+84=180
y=180-84=96
Hope this helps!
Which of the following equations describes the line shown below? Check all
that apply
Answer:
y-7=1/2(x-8)
y-4=1/2(x-2)
Step-by-step explanation:
Slope: 3/6, or 1/2
y-7=1/2(x-8)
y-4=1/2(x-2)
(b) How many different groups of children can be chosen from a class of 18 children if the class contains one set of twins who must not be separated?
The random variable X is exponentially distributed, where X represents the waiting time to see a shooting star during a meteor shower. If X has an average value of 49 seconds, what are the parameters of the exponential distribution
Answer:
[tex]X \sim Exp (\mu = 49)[/tex]
But also we can define the variable in terms of [tex]\lambda[/tex] like this:
[tex]X \sim Exp(\lambda= \frac{1}{\lambda} = \frac{1}{49})[/tex]
And usually this notation is better since the probability density function is defined as:
[tex] P(X) =\lambda e^{-\lambda x}[/tex]
Step-by-step explanation:
We know that the random variable X who represents the waiting time to see a shooting star during a meteor shower follows an exponential distribution and for this case we can write this as:
[tex]X \sim Exp (\mu = 49)[/tex]
But also we can define the variable in terms of [tex]\lambda[/tex] like this:
[tex]X \sim Exp(\lambda= \frac{1}{\lambda} = \frac{1}{49})[/tex]
And usually this notation is better since the probability density function is defined as:
[tex] P(X) =\lambda e^{-\lambda x}[/tex]
A 95% confidence interval for a population mean is determined to be 100 to 120. For the same data, if the confidence coefficient is reduced to .90, the confidence interval for μ a. becomes wider. b. becomes narrower. c. becomes 100.1 to 120.1. d. does not change.
Answer:
b. becomes narrower.
Step-by-step explanation:
Since the 95% confidence interval for a population mean could find out from 100 to 120
And based on this, the coefficient confidence level is declined to 0.90
Therefore the confidence interval for mean should become narrowed
As a 95% confidence interval represents narrower and 99% confidence interval represents wider
Therefore the option B is correct
Using confidence interval concepts, the correct option is:
b. becomes narrower
The margin of error of a confidence interval is given by:
[tex]M = z\frac{s}{\sqrt{n}}[/tex]
In which:
z is the critical value.s is the standard deviation.n is the sample size.The lower the confidence level, the lower the value of z, hence, the margin of error decreases and the interval becomes narrower, which means that option b is correct.
A similar problem is given at https://brainly.com/question/14377677
For the following exercises, the given limit represents the derivative of a function y=f(x) at x=a. Find f(x) and a. limit as h approaches zero: ([3(2+h)^2 +2] - 14)/h
Answer:
[tex]f(x)=3x^2+2[/tex] and the limit is 12
Step-by-step explanation:
we know that the derivative of the function f in x=a is the limit of this
[tex]\dfrac{f(a+h)-f(a)}{a+h-a}=\dfrac{f(a+h)-f(a)}{h}[/tex]
as the expression is
[tex][3(a+h)^2+2 ]-14[/tex]
we can say that
[tex]f(a+h)=3(2+h)^2+2 \\\\f(a)=14[/tex]
from the first equation we can identify a = 2 and then
[tex]f(x)=3x^2+2[/tex]
to verify that we are correct, we can compute f(2)=3*4+2=14
f'(x)=6x
so f'(2)=12
we can estimate it from the fraction as well
so the limit is 12
The area of the sector of a circle with a radius of 8 centimeters is 125.6 square centimeters. The estimated value of is 3.14.
The measure of the angle of the sector is
Answer:
225º or 3.926991 radians
Step-by-step explanation:
The area of the complete circle would be π×radius²: 3.14×8²=200.96
The fraction of the circle that is still left will be a direct ratio of the angle of the sector of the circle.
[tex]\frac{125.6}{200.96}[/tex]=.625. This is the ratio of the circe that is in the sector. In order to find the measure we must multiply it by either the number of degrees in the circle or by the number of radians in the circle (depending on the form in which you want your answer).
There are 360º in a circle, so .625×360=225 meaning that the measure of the angle of the sector is 225º.
We can do the same thing for radians, if necessary. There are 2π radians in a circle, so .625×2π=3.926991 radians.
Answer:
225º
Step-by-step explanation:
Rockwell hardness of pins of a certain type is known to have a mean value of 50 and a standard deviation of 1.5. (Round your answers to four decimal places.)(a) If the distribution is normal, what is the probability that the sample mean hardness for a random sample of 10 pins is at least 51
Answer:
0.0174 = 1.74% probability that the sample mean hardness for a random sample of 10 pins is at least 51
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question, we have that:
[tex]\mu = 50, \sigma = 1.5, n = 10, s = \frac{1.5}{\sqrt{10}} = 0.4743[/tex]
What is the probability that the sample mean hardness for a random sample of 10 pins is at least 51
This is 1 subtracted by the pvalue of Z when X = 51. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{51 - 50}{0.4743}[/tex]
[tex]Z = 2.11[/tex]
[tex]Z = 2.11[/tex] has a pvalue of 0.9826
1 - 0.9826 = 0.0174
0.0174 = 1.74% probability that the sample mean hardness for a random sample of 10 pins is at least 51
A sample of 8 students was asked how often they used campus dining facilities during the past month. The responses were as follows. 4 1 6 1 2 10 2 6 The sample standard deviation is _____.
Answer:
Your answer is 3.16227766
Step-by-step explanation:
Math 7th grade. help please!!!
Answer:
1 .angle S is 90 degree
2. 12
3. 155 degree
1. x = 3
hope it helps .....
Evaluate the expression 4/15÷x+0.4 for x if: x=1, x=4/9, x=1 1/3. Solve for each X. I need help Will give brainliest!
Answer:
4/15 ÷ x + 0.4
When x = 1
4/15 ÷ 1 + 0.4
x = 2/3
When x = 4/9
4/15 ÷ 4/9 +0.4
x = 1
When x = 1 ⅓ = 4/3
4/15 ÷ 4/3 + 0.4
x = 3/5
Hope this helps.
Which answer shows 0.00897 written in scientific notation?
0.897x10-2
O 8.97x102
8.97 x 10-2
8.97 x 103
Answer:
d) [tex]8.97*10^{-3}[/tex]
Step-by-step explanation:
Move the decimal 3 spaces to the right so that way the decimal can be between the first two numbers. When you move the decimal to the right, it makes the exponent negative, when it moves to the left, it makes it positive
Which expression is equivalent to 24 ⋅ 2−7?
Answer:
41
Step-by-step explanation:
[tex]24*2-7=\\48-7=\\41[/tex]
Overweight participants who lose money when they don’t meet a specific exercise goal meet the goal more often, on average, than those who win money when they meet the goal, even if the final result is the same financially. In particular, participants who lost money met the goal for an average of 45.0 days (out of 100) while those winning money or receiving other incentives met the goal for an average of 33.7 days. The incentive does make a difference. In this exercise, we ask how big the effect is between the two types of incentives. Find a 90% confidence interval for the difference in mean number of days meeting the goal, between people who lose money when they don't meet the goal and those who win money or receive other similar incentives when they do meet the goal. The standard error for the difference in means from a bootstrap distribution is 4.14.
Answer:
The 90% confidence interval for the difference in mean number of days meeting the goal is (4.49, 18.11).
Step-by-step explanation:
The (1 - α)% confidence interval for the difference between two means is:
[tex]CI=\bar x_{1}-\bar x_{2}\pm z_{\alpha/2}\times SE_{\text{diff}}[/tex]
It is provided that:
[tex]\bar x_{1}=45\\\bar x_{2}=33.7\\SE_{\text{diff}} =4.14\\\text{Confidence Level}=90\%[/tex]
The critical value of z for 90% confidence level is,
z = 1.645
*Use a z-table.
Compute the 90% confidence interval for the difference in mean number of days meeting the goal as follows:
[tex]CI=\bar x_{1}-\bar x_{2}\pm z_{\alpha/2}\times SE_{\text{diff}}[/tex]
[tex]=45-33.7\pm 1.645\times 4.14\\\\=11.3\pm 6.8103\\\\=(4.4897, 18.1103)\\\\\approx (4.49, 18.11)[/tex]
Thus, the 90% confidence interval for the difference in mean number of days meeting the goal is (4.49, 18.11).
Find sin angle ∠ C.
A. 12/13
B. 1
C. 13/12
D. 13/5
Answer:
A
Step-by-step explanation:
We can use the trigonometric ratios. Recall that sine is the ratio of the opposite side to the hypotenuse:
[tex]\displaystyle \sin(C)=\frac{\text{opposite}}{\text{hypotenuse}}[/tex]
The opposite side with respect to ∠C is 24 and the hypotenuse is 26.
Hence:
[tex]\displaystyle \sin(C)=\frac{24}{26}=\frac{12}{13}[/tex]
Our answer is A.
If anyone could help me, I'll really appreciate it.
Differentiate the following functions with respect to x.
[tex]y = {cosh}^{ - 1} (2x + 1) - {xsech}^{ - 1} (x)[/tex]
Answer:
[tex]\frac{d y}{d x} = \frac{2}{\sqrt{(2 x+1)^{2} -1} } + (\frac{-x}{|x|\sqrt{1-x^2}) }) + (1) Sec h^{-1} (x)[/tex]
Step-by-step explanation:
Step(i):-
Given function
[tex]y = cosh^{-1} (2 x +1) - x Sec h^{-1} (x)[/tex] ....(i)
we will use differentiation formulas
i) y = cos h⁻¹ (x)
Derivative of cos h⁻¹ (x)
[tex]\frac{d y}{d x} = \frac{1}{\sqrt{x^2-1} }[/tex]
ii)
y = sec h⁻¹ (x)
Derivative of sec h⁻¹ (x)
[tex]\frac{d y}{d x} = \frac{-1}{|x|\sqrt{(x^2-1} }[/tex]
Apply U V formula
[tex]\frac{d UV}{d x} = U V^{l} + V U^{l}[/tex]
Step(ii):-
Differentiating equation (i) with respective to 'x'
[tex]\frac{d y}{d x} = \frac{1}{\sqrt{(2 x+1)^{2} -1} } X \frac{d}{d x} (2 x+1) + x (\frac{-1}{|x|\sqrt{1-x^2}) }) + (1) Sec h^{-1} (x)[/tex]
[tex]\frac{d y}{d x} = \frac{1}{\sqrt{(2 x+1)^{2} -1} } X (2) + (\frac{-x}{|x|\sqrt{1-x^2}) }) + (1) Sec h^{-1} (x)[/tex]
Conclusion:-
[tex]\frac{d y}{d x} = \frac{2}{\sqrt{(2 x+1)^{2} -1} } + (\frac{-x}{|x|\sqrt{1-x^2}) }) + (1) Sec h^{-1} (x)[/tex]
It is known that when a certain liquid freezes into ice, its volume increases by 8%. Which of these expressions is equal to the volume of this liquid that freezes to make 1,750 cubic inches of ice?
Answer:
Volume of liquid which freezes to ice is 1620. 37 .
Expression to find this is 108x/100 = 1750
Step-by-step explanation:
Let the volume of liquid be x cubic inches
It is given that volume of liquid increases by 8% when it freezes to ice
increase in volume of x x cubic inches liquid = 8% of x = 8/100 * x = 8x/100
Total volume of ice = initial volume of liquid + increase in volume when it freezes to ice = x + 8x/100 = (100x + 8x)/100 = 108x/100
Given that total volume of liquid which freezes is 1750
Thus,
108x/100 = 1750
108x = 1750*100
x = 1750*100/108 = 1620. 37
Volume of liquid which freezes to ice is 1620. 37 .
Expression to find this is 108x/100 = 1750
Please answer this correctly
Answer:
Raspberry: 30%
Strawberry: 15%
Apple: 20%
Lemon: 35%
Step-by-step explanation:
18 + 9 + 12 + 21 = 60 (there are 60 gummy worms)
18 out of 60 = 30%
9 out of 60 = 15%
12 out of 60 = 20%
21 out of 60 = 35%
Please mark Brainliest
Hope this helps
Answer:
Raspberry Worms: 30%
Strawberry Worms: 15%
Apple Worms: 20%
Lemon Worms: 35%
Step-by-step explanation:
Raspberry Worms: [tex]\frac{18}{18+9+12+21}=\frac{18}{60}=\frac{30}{100}[/tex] or 30%
Strawberry Worms: [tex]\frac{9}{18+9+12+21}=\frac{9}{60} =\frac{15}{100}[/tex] or 15%
Apple Worms: [tex]\frac{12}{18+9+12+21} =\frac{12}{60} =\frac{20}{100}[/tex] or 20%
Lemon Worms: [tex]\frac{21}{18+9+12+21} =\frac{21}{60} =\frac{35}{100}[/tex] or 35%
A population of protozoa develops with a constant relative growth rate of 0.7944 per member per day. On day zero the population consists of two members. Find the population size after six days
Answer:
[tex] y =y_o e^{kt}[/tex]
Where [tex] y_o = 2[/tex] the relative growth is [tex] k =0.7944[/tex] and t represent the number of days.
For this case we can to find the population after the day 6 so then we need to replace t =6 in our model and we got:
[tex] y(6) =2 e^{0.7944*6} = 234.99 \approx 235[/tex]
And for this case we can conclude that the population of protozoa for the 6 day would be approximately 235
Step-by-step explanation:
We can assume that the following model can be used:
[tex] y =y_o e^{kt}[/tex]
Where [tex] y_o = 2[/tex] the relative growth is [tex] k =0.7944[/tex] and t represent the number of days.
For this case we can to find the population after the day 6 so then we need to replace t =6 in our model and we got:
[tex] y(6) =2 e^{0.7944*6} = 234.99 \approx 235[/tex]
And for this case we can conclude that the population of protozoa for the 6 day would be approximately 235
A number subtracted from -9
Answer:
x-9
Step-by-step explanation:
divide and simplify x^2+7x+12 over x+3 divided by x-1 over x+4
Answer:
[tex]\dfrac{x^2+8x+16}{x-1}[/tex]
Step-by-step explanation:
In general, "over" and "divided by" are used to mean the same thing. Parentheses are helpful when you want to show fractions divided by fractions. Here, we will assume you intend ...
[tex]\dfrac{\left(\dfrac{x^2+7x+12}{x+3}\right)}{\left(\dfrac{x-1}{x+4}\right)}=\dfrac{(x+3)(x+4)}{x+3}\cdot\dfrac{x+4}{x-1}=\dfrac{(x+4)^2}{x-1}\\\\=\boxed{\dfrac{x^2+8x+16}{x-1}}[/tex]
The length of time for one individual to be served at a cafeteria is an exponential random variable with mean of 5 minutes. Assume a person has waited for at least 3 minutes to be served. What is the probability that the person will need to wait at least 7 minutes total
Answer:
44.93% probability that the person will need to wait at least 7 minutes total
Step-by-step explanation:
To solve this question, we need to understand the exponential distribution and conditional probability.
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:
[tex]f(x) = \mu e^{-\mu x}[/tex]
In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.
The probability that x is lower or equal to a is given by:
[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]
Which has the following solution:
[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]
The probability of finding a value higher than x is:
[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]
Conditional probability:
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
The length of time for one individual to be served at a cafeteria is an exponential random variable with mean of 5 minutes
This means that [tex]m = 5, \mu = \frac{1}{5} = 0.2[/tex]
Assume a person has waited for at least 3 minutes to be served. What is the probability that the person will need to wait at least 7 minutes total
Event A: Waits at least 3 minutes.
Event B: Waits at least 7 minutes.
Probability of waiting at least 3 minutes:
[tex]P(A) = P(X > 3) = e^{-0.2*3} = 0.5488[/tex]
Intersection:
The intersection between waiting at least 3 minutes and at least 7 minutes is waiting at least 7 minutes. So
[tex]P(A \cap B) = P(X > 7) = e^{-0.2*7} = 0.2466[/tex]
What is the probability that the person will need to wait at least 7 minutes total
[tex]P(B|A) = \frac{0.2466}{0.5488} = 0.4493[/tex]
44.93% probability that the person will need to wait at least 7 minutes total
A parabola is defined by the equation x = 5y2 In which direction will the parabola open?
ОА.
up
OB.
down
O C. right
OD.
left
Answer:
C) To the right.
Step-by-step explanation:
i need help on this lol
Answer:
the math problem is incomplete