Answer:
[tex](\frac{x1 + x2}{2}, \frac{y1+y2}{2}[/tex])
Step-by-step explanation:
Chad bought 1 box of raisins. He gave 1/6 of it to one brother, 1/4 to another brother, and he kept the rest for himself. What fraction did he keep?
Write the answer in the simplest form
Answer:
He kept 7/12 of the box.
Step-by-step explanation:
We add and convert both 1/6 and 1/4 because we cant add fractions with unlike denominators.
1/6 = 2/12 | 1/4 = 3/12
then add.
2/12 + 3/12 = 5/12.
we subtract this from a whole, which is 12/12.
12/12 - 5/12 = 7/12
he keeps 7/12 of the box
hope this helped!
If the area of the rectangle is(xA^3−4x^2−15x+21) and the width is (x-6), what is the length?
Answer:
hmm, imma have to do the problem
Step-by-step explanation:
y= -2x+8
what is the value of y when 0 is the value of x?
Not sure what you mean but will be explaining about y = 0 and x =0 anyway.
So for x = 0, that means the value of x is 0.
y = -2(0)+8
y=0+8
y=8
So when x = 0, the value of y is 8 (y = 8) or we can write (0,8)
For y = 0, that means the value of y is 0.
0=-2x+8
-8=-2x
-2x=-8
x=4
So when y = 0, x = 4. We can write as (4,0)
Which ordered pair is a solution to the equation below? 3x + 2y = 10
Question 1 options:
(4, 0)
(6, -4)
(-1, 4)
Answer:
(6,-4)
Step-by-step explanation:
I have tried replacing each option with x, y in the equation.
Let's replace (6, -4) with x and y
3x+2y=10
3(6)+2(-4)=10
3(6)= 18 2(-4)= -8
18+(-8)=10
in other words:
18-8=10
The statement is true, so the correct answer is:
(6, -4)
A total of 710 tickets were sold for the school play . They were either adult tickets or student tickets. There were 60 more student tickets sold than adult tickets. How many adult tickets were sold ?
Answer: 325
Explanation:
Let the number of adult tickets be x
( since there are an unknown amount of tickets for adults, we already know how many student tickets there are)
Let the number of student tickets be x+60
710=x+x+60
710=2x+60
-60 -60
650=2x
650/2
= 325
Adult tickets=325
Student tickets=385
C
Kris is cutting ribbon that each measure 2 ft
long. If Kris is cutting from a piece that measures
8zft
, how many pieces can Kris cut?
Answer:
4
Step-by-step explanation:
because 2+2+2+2=8 pretty self explanatory
Answer:
13
Step-by-step explanation:
it costs 13$ for admission to amusement park, plus 1.50$ for each ride.if you have a total of 35.50 to spend, what is the greatest number of rides you can go on
Answer:
Thus, the greatest number of rides I can go on is 15 rides
Step-by-step explanation:
I have $35.50 to spend for admission plus rides in the amusement park.
Admission costs $13. That leaves me with
$35.50 - $13 = $22.50
to spend on rides.
Considering each ride costs $1.50, we can find the maximum number of rides by dividing the remaining money by the cost per ride as follows:
$22.50 / $1.50 = 15
Thus, the greatest number of rides I can go on is 15 rides
plsss help 6th grade math
Answer: D
Step-by-step explanation:
If you put -5 and +5 on a number line and count their distance from zero they are both the same distance.
The sum of two numbers is 38. The smaller number is 22 less than the larger number. What are the numbers?
Answer:
30 and 8
Step-by-step explanation:
30 - 8 = 22
What is the equation of the line that passes through the point (5,2) and has a slope
of -3/5
Answer:y = -0.6x + 5
Step-by-step explanation:
Answer:
yessir the one on top is right btw
Step-by-step explanation:
hope this helped
Will mark as brainless if you answer correctly
Answer:
ans=10
Step-by-step explanation:
Answer:
10
Step-by-step explanation:
10(4-7) / -(4 - 1)
10(-3) / -(3)
-30 / -3 =
10
Use this picture and help please
Answer:
This would be 55 degrees because the sum of angles A, B and C = 180 degrees
Find the slope of the line.
18. Which product is greater. (-4)-(-6) or
(-7).(-8)? Explain.
Answer:
So when u do (-4)-(-6) it equals 2.
But when u do (-7)*(-8) it equals 56
Therefore saying that (-7)*(-8)=56 is the greatest product.
Step-by-step explanation:
How do you do these two questions?
Answer:
(x − π)⁷ / 5040
(x − 1)³ / 16
Step-by-step explanation:
Taylor series expansion of a function is:
f(x) = ∑ₙ₌₀°° f⁽ⁿ⁾(x₀) / n! (x − x₀)ⁿ
where f⁽ⁿ⁾(x₀) is the nth derivative evaluated at x₀.
For the first problem, f(x) = sin x and x₀ = π. We want the seventh degree term, so n = 7.
The seventh degree term is therefore: f⁽⁷⁾(π) / 7! (x − π)⁷
Find the seventh derivative of sin x:
f(x) = sin x
f⁽¹⁾(x) = cos x
f⁽²⁾(x) = -sin x
f⁽³⁾(x) = -cos x
f⁽⁴⁾(x) = sin x
f⁽⁵⁾(x) = cos x
f⁽⁶⁾(x) = -sin x
f⁽⁷⁾(x) = -cos x
Evaluated at π, f⁽⁷⁾(x) = 1. So the seventh degree term is (x − π)⁷ / 5040.
For the second problem, f(x) = √x and x₀ = 1. We want the third degree term, so n = 3.
The third degree term is therefore: f⁽³⁾(1) / 3! (x − 1)³
Find the third derivative of √x:
f(x) = √x
f⁽¹⁾(x) = ½ x^-½
f⁽²⁾(x) = -¼ x^-³/₂
f⁽³⁾(x) = ⅜ x^-⁵/₂
Evaluated at 1, f⁽³⁾(x) = ⅜. So the third degree term is (x − 1)³ / 16.