Please help! Due very soon! I will upvote!
Question 24 Review Session 3 In Problem II, we knew the image was virtual because O it was 120 cm from the lens. O it was on the same side as the object. O it was upright O the lens was diverging. Que

Answers

Answer 1

In the case of lenses, the image will always be reversed if it is real. Additionally, in the case of lenses, the picture is inverted if the image distance is positive. On the opposite side of the lens, these images will develop.

In the case of mirrors, a virtual picture will always be upright. When light rays from a source do not intersect to form an image, an optical system (a set of lenses and/or mirrors) creates a virtual picture (as opposed to a real image). Instead, they can be 'traced back' to a point behind the lens or mirror.

To learn more about lenses, click here.

https://brainly.com/question/32156996

#SPJ4

Answer 2

The image was virtual because it was on the same side as the object.

In Problem II, we determine whether the image is virtual or not. From the given options, "it was on the same side as the object" indicates that the image is virtual. When an object is placed in front of a lens, the lens produces an image of the object on the other side of the lens. However, in this case, since the image is on the same side as the object, it is virtual.

A virtual image is an image that cannot be projected onto a screen. It appears to be behind the lens and is seen through the lens by an observer. Virtual images are always erect and located on the same side of the lens as the object.

Learn more about virtual images:

https://brainly.com/question/13197137

#SPJ11


Related Questions

The magnetic field produced by an MRI solenoid 2.7 m long and 1.4 m in diameter is 2.2 T . Find the magnitude of the magnetic flux through the core of this solenoid. Express your answer using two significant figures.

Answers

The magnitude of the magnetic flux through the core of the solenoid is approximately 3.4 Tm².

Let's calculate the magnitude of the magnetic flux through the core of the solenoid.

The magnetic flux through the core of a solenoid can be calculated using the formula:

Φ = B * A

Where:

The magnetic flux (Φ) represents the total magnetic field passing through a surface. The magnetic field (B) corresponds to the strength of the magnetic force, and the cross-sectional area (A) refers to the area of the solenoid that the magnetic field passes through.

The solenoid has a length of 2.7 meters and a diameter of 1.4 meters, resulting in a radius of 0.7 meters. The magnetic field strength inside the solenoid is 2.2 Tesla.

The formula to calculate the cross-sectional area of the solenoid is as follows:

A = π * r²

Substituting the values, we have:

A = π * (0.7 m)²

A = 1.54 m²

Now, let's calculate the magnetic flux:

Φ = B * A

Φ = 2.2 T * 1.54 m²

Φ ≈ 3.39 Tm²

Rounding to two significant figures, the magnitude of the magnetic flux through the core of the solenoid is approximately 3.4 Tm².

Therefore, the magnitude of the magnetic flux through the core of the solenoid is approximately 3.4 Tm².

Learn more about magnitude at: https://brainly.com/question/30337362

#SPJ11

An object oscillates with simple harmonic motion along with x axis. Its displacement from the origin varies
with time according to the equation
x = (4.00m) cos( pi t + pi/4)
Where t is in seconds and the angles in the parentheses are in radians.
(a) Determine the amplitude, frequency and period of the motion.
(b) Calculate the velocity and acceleration of the object at time t.
(c) Using the results in part(b), determine the position, velocity and acceleration of the object at t = 1.0 s
(d) Determine the maximum speed and acceleration of the object.

Answers

(a) Amplitude: 4.00 m, Frequency: 0.5 Hz, Period: 2 seconds

(b) Velocity: -4.00 m/sin(πt + π/4), Acceleration: -4.00mπcos(πt + π/4)

(c) Position: 0.586 m, Velocity: -12.57 m/s, Acceleration: 12.57 m/s²

(d) Maximum speed: 12.57 m/s, Maximum acceleration: 39.48 m/s²

(a) Amplitude, A = 4.00 m

Frequency, ω = π radians/sec

Period, T = 2π/ω

Amplitude, A = 4.00 m

Frequency, f = ω/2π = π/(2π) = 0.5 Hz

Period, T = 2π/ω = 2π/π = 2 seconds

(b) Velocity, v = dx/dt = -4.00m sin(πt + π/4)

Acceleration, a = dv/dt = -4.00mπ cos(πt + π/4)

(c) At t = 1.0 s:

Position, x = 4.00 mcos(π(1.0) + π/4) ≈ 0.586 m

Velocity, v = -4.00 m sin(π(1.0) + π/4) ≈ -12.57 m/s

Acceleration, a = -4.00mπ cos(π(1.0) + π/4) ≈ 12.57 m/s²

(d) Maximum speed, vmax = Aω = 4.00 m * π ≈ 12.57 m/s

Maximum acceleration, amax = Aω² = 4.00 m * π² ≈ 39.48 m/s²

Learn more about Velocity at https://brainly.com/question/80295

#SPJ11

Calculate the mass of ice that remains at thermal equilibrium when 1 kg of ice at -43°C is added to 1 kg of water at 24°C. Please report the mass of ice in kg to 3 decimal places. Hint: the latent h

Answers

The mass of ice remaining at thermal equilibrium is approximately 0.125 kg, assuming no heat loss or gain from the environment.

To calculate the mass of ice that remains at thermal equilibrium, we need to consider the heat exchange that occurs between the ice and water.

The heat lost by the water is equal to the heat gained by the ice during the process of thermal equilibrium.

The heat lost by the water is given by the formula:

Heat lost by water = mass of water * specific heat of water * change in temperature

The specific heat of water is approximately 4.186 kJ/(kg·°C).

The heat gained by the ice is given by the formula:

Heat gained by ice = mass of ice * latent heat of fusion

The latent heat of fusion for ice is 334 kJ/kg.

Since the system is in thermal equilibrium, the heat lost by the water is equal to the heat gained by the ice:

mass of water * specific heat of water * change in temperature = mass of ice * latent heat of fusion

Rearranging the equation, we can solve for the mass of ice:

mass of ice = (mass of water * specific heat of water * change in temperature) / latent heat of fusion

Given:

mass of water = 1 kgchange in temperature = (24°C - 0°C) = 24°C

Plugging in the values:

mass of ice = (1 kg * 4.186 kJ/(kg·°C) * 24°C) / 334 kJ/kg

mass of ice ≈ 0.125 kg (to 3 decimal places)

Therefore, the mass of ice that remains at thermal equilibrium is approximately 0.125 kg.

The complete question should be:

Calculate the mass of ice that remains at thermal equilibrium when 1 kg of ice at -43°C is added to 1 kg of water at 24°C.

Please report the mass of ice in kg to 3 decimal places.

Hint: the latent heat of fusion is 334 kJ/kg, and you should assume no heat is lost or gained from the environment.

To learn more about thermal equilibrium, Visit:

https://brainly.com/question/14556352

#SPJ11

As part of Jayden's aviation training, they are practicing jumping from heights. Jayden's 25 m bungee cord stretches to a length of 33 m at the end of his jump when he is suspended (at rest) waiting to be raised up again. Assuming Jayden has a mass of 85 kg, use Hooke's law to find the spring constant of the bungee cord.

Answers

The spring constant of Jayden's bungee cord is approximately 104.125 N/m.

To find the spring constant of the bungee cord, we can utilize Hooke's law, which states that the force exerted by a spring is directly proportional to the displacement of the spring from its equilibrium position. In this case, the displacement is the difference in length between the unstretched and stretched bungee cord.

The change in length of the bungee cord during Jayden's jump can be calculated as follows:

Change in length = Stretched length - Unstretched length

= 33 m - 25 m

= 8 m

Now, Hooke's law can be expressed as:

F = k * x

where F is the force exerted by the spring, k is the spring constant, and x is the displacement.

Since Jayden is at rest when suspended, the net force acting on him is zero. Therefore, the force exerted by the bungee cord must balance Jayden's weight. The weight can be calculated as:

Weight = mass * acceleration due to gravity

= 85 kg * 9.8 m/s^2

= 833 N

Using Hooke's law and setting the force exerted by the bungee cord equal to Jayden's weight:

k * x = weight

Substituting the values we have:

k * 8 m = 833 N

Solving for k:

k = 833 N / 8 m

= 104.125 N/m

Therefore, the spring constant of Jayden's bungee cord is approximately 104.125 N/m.

To learn more about spring constant

https://brainly.com/question/23885190

#SPJ11

Many nocturnal animals demonstrate the phenomenon of eyeshine, in which their eyes glow various colors at night when illuminated by a flashlight or the headlights of a car (see the photo). Their eyes react this way because of a thin layer of reflective tissue called the tapetum lucidum that is located directly behind the retina. This tissue reflects the light back through the retina, which increases the available light that can activate photoreceptors, and thus improve the animal’s vision in low-light conditions. If we assume the tapetum lucidum acts like a concave spherical mirror with a radius of curvature of 0.750 cm, how far in front of the tapetum lucidum would an image form of an object located 30.0 cm away? Neglect the effects of

Answers

The question is related to the phenomenon of eyeshine exhibited by many nocturnal animals. The animals' eyes react in a particular way due to a thin layer of reflective tissue called the tapetum lucidum that is present directly behind the retina.

This tissue reflects the light back through the retina, which increases the available light that can activate photoreceptors and, thus, improve the animal's vision in low-light conditions.We need to calculate the distance at which an image would be formed of an object situated 30.0 cm away from the tapetum lucidum if we assume the tapetum lucidum acts like a concave spherical mirror with a radius of curvature of 0.750 cm. Neglect the effects of aberrations. Therefore, by applying the mirror formula we get the main answer as follows:

1/f = 1/v + 1/u

Here, f is the focal length of the mirror, v is the image distance, and u is the object distance. It is given that the radius of curvature, r = 0.750 cm

Hence,

f = r/2

f = 0.375 cm

u = -30.0 cm (The negative sign indicates that the object is in front of the mirror).

Using the mirror formula, we have:

1/f = 1/v + 1/u

We get: v = 0.55 cm

Therefore, an image of the object would be formed 0.55 cm in front of the tapetum lucidum. Hence, in conclusion we can say that the Image will form at 0.55 cm in front of the tapetum lucidum.

to know more about nocturnal animals visit:

brainly.com/question/31402222

#SPJ11

A8C charge is moving in a magnetic held with a velocity of 26x10m/s in a uniform magnetic field of 1.7. the velocity vector is making a 30° angle win the direction of magnetic field, what is the magnitude of the force experienced by the charge

Answers

The magnitude of the force experienced by the charge in a magnetic field with a velocity of 26 x 10 m/s is 932.8 N

We are given the following information in the question:

Charge on the moving charge, q = 8 C

The velocity of the charge, v = 26 × 10 m/s

Magnetic field strength, B = 1.7 T

The angle between the velocity vector and magnetic field direction, θ = 30°

We can use the formula for the magnitude of the magnetic force experienced by a moving charge in a magnetic field, which is : F = qvb sin θ

where,

F = force experienced by the charge

q = charge on the charge

m = mass of the charge

n = number of electrons

v = velocity of the charger

b = magnetic field strength

θ = angle between the velocity vector and magnetic field direction

Substituting the given values, we get :

F = (8 C)(26 × 10 m/s)(1.7 T) sin 30°

F = (8)(26 × 10)(1.7)(1/2)F = 932.8 N

Thus, the magnitude of the force experienced by the charge is 932.8 N.

To learn more about magnetic field :

https://brainly.com/question/14411049

#SPJ11

Please show all work clearly. Also, this problem is not meant to take the literal calculation of densities and pressure at high Mach numbers and high altitudes. Please solve it in the simplest way with only the information given and easily accessed values online.
A scramjet engine is an engine which is capable of reaching hypersonic speeds (greater than about Mach 5). Scramjet engines operate by being accelerated to high speeds and significantly compressing the incoming air to supersonic speeds. It uses oxygen from the surrounding air as its oxidizer, rather than carrying an oxidant like a rocket. Rather than slowing the air down for the combustion stage, it uses shock waves produced by the fuel ignition to slow the air down for combustion. The supersonic exhaust is then expanded using a nozzle. If the intake velocity of the air is Mach 4 and the exhaust velocity is Mach 10, what would the expected pressure difference to be if the intake pressure to the combustion chamber is 50 kPa. Note: At supersonic speeds, the density of air changes more rapidly than the velocity by a factor equal to M^2. The inlet density can be assumed to be 1.876x10^-4 g/cm^3 at 50,000 feet. The relation between velocity and air density change, taking into account the significant compressibility due to the high Mach number (the ration between the local flow velocity and the speed of sound), is:
−^2 (/) = /
The speed of sound at 50,000 ft is 294.96 m/s.

Answers

The expected pressure difference between the intake and exhaust of a scramjet engine with an intake velocity of Mach 4 and an exhaust velocity of Mach 10 is 1.21 MPa.

The pressure difference in a scramjet engine is determined by the following factors:

The intake velocity

The exhaust velocity

The density of the air

The speed of sound

The intake velocity is Mach 4, which means that the air is traveling at four times the speed of sound. The exhaust velocity is Mach 10, which means that the air is traveling at ten times the speed of sound.

The density of the air at 50,000 feet is 1.876x10^-4 g/cm^3. The speed of sound at 50,000 feet is 294.96 m/s.

The pressure difference can be calculated using the following equation:

ΔP = (ρ1 * v1^2) - (ρ2 * v2^2)

where:

ΔP is the pressure difference in Pascals

ρ1 is the density of the air at the intake in kg/m^3

v1 is the intake velocity in m/s

ρ2 is the density of the air at the exhaust in kg/m^3

v2 is the exhaust velocity in m/s

Plugging in the known values, we get the following pressure difference:

ΔP = (1.876x10^-4 kg/m^3 * (4 * 294.96 m/s)^2) - (1.876x10^-4 kg/m^3 * (10 * 294.96 m/s)^2) = 1.21 MPa

To learn more about pressure difference click here: brainly.com/question/26504865

#SPJ11

A load is suspended from a steel wire with a radius of 1 mm. The load extends the wire the same amount as heating by 20°С. Find the weight of the load

Answers

The weight of the load is 0.128 kg.

Radius of the wire = 1 mm

Extension in the wire = Heating by 20°С

Weight of the load = ?

Formula used: Young's Modulus (Y) = Stress / Strain

When a wire is extended by force F, the strain is given as,

Strain = extension / original length

Where the original length is the length of the wire before loading and extension is the increase in length of the wire after loading.

Suppose the cross-sectional area of the wire be A. If T be the tensile force in the wire then Stress = T/A.

Now, according to Young's modulus formula,

Y = Stress / Strain

Solving the above expression for F, we get,

F = YAΔL/L

Where F is the force applied

YA is the Young's modulus of the material

ΔL is the change in length

L is the original length of the material

Y for steel wire is 2.0 × 1011 N/m2Change in length, ΔL = Original Length * Strain

Where strain is the increase in length per unit length

Original Length = 2 * Radius

                          = 2 * 1 mm

                          = 2 × 10⁻³ m

Strain = Change in length / Original length

Let x be the weight of the load, the weight of the load acting downwards = Force (F) acting upwards

F = xN

By equating both the forces and solving for the unknown variable x, we can obtain the weight of the load.

Solution:

F = YAΔL/L

F = (2.0 × 1011 N/m²) * π (1 × 10⁻³ m)² * (20°C) * (2 × 10⁻³ m) / 2 × 10⁻³ m

F = 1.256 N

f = mg

x = F/g

  = 1.256 N / 9.8 m/s²

  = 0.128 kg

Therefore, the weight of the load is 0.128 kg.

Learn more About Young's Modulus from the given link

https://brainly.com/question/13257353

#SPJ11

boy and a girl pull and push a crate along an icy horizontal surface, moving it 15 m a constant speed. The boy exerts 50 N of force at an angle of 52° above the orizontal, and the girl exerts a force of 50 N at an angle of 32° above the horizontal, calculate the total work done by the boy and girl together.

Answers

The total work done by the boy and girl together is 1112.7 J.

In this problem, a boy and a girl exert forces on a crate to pull and push it along an icy horizontal surface. The crate is moved 15 m at a constant speed. The boy exerts a force of 50 N at an angle of 52° above the horizontal, and the girl exerts a force of 50 N at an angle of 32° above the horizontal. The question is asking for the total work done by the boy and girl together.To solve this problem, we need to use the formula for work done, which is W = Fdcosθ, where W is work done, F is the force applied, d is the distance moved, and θ is the angle between the force and the displacement. We can calculate the work done by the boy and girl separately and then add them up to get the total work done.Let's start with the boy. The force applied by the boy is 50 N at an angle of 52° above the horizontal. The horizontal component of the force is Fx = Fcosθ = 50cos(52°) = 31.86 N.

The vertical component of the force is Fy = Fsinθ = 50sin(52°) = 39.70 N. Since the crate is moving horizontally, the displacement is in the same direction as the horizontal force. Therefore, the angle between the force and the displacement is 0°, and cosθ = 1. The work done by the boy is W = Fdcosθ = (31.86 N)(15 m)(1) = 477.9 J.Next, let's find the work done by the girl. The force applied by the girl is 50 N at an angle of 32° above the horizontal. The horizontal component of the force is Fx = Fcosθ = 50cos(32°) = 42.32 N.

The vertical component of the force is Fy = Fsinθ = 50sin(32°) = 26.47 N.

Again, the displacement is in the same direction as the horizontal force, so the angle between the force and the displacement is 0°, and cosθ = 1. The work done by the girl is W = Fdcosθ = (42.32 N)(15 m)(1) = 634.8 J.

To find the total work done by the boy and girl together, we simply add up the work done by each of them: Wtotal = Wboy + Wgirl = 477.9 J + 634.8 J = 1112.7 J.

To know more about total work:

https://brainly.com/question/31506558


#SPJ11

A merry-go-round accelerates from rest to 0.68 rad/s in 30 s. Assuming the merry-go-round is a uniform disk of radius 6.0 m and mass 3.10×10^4 kg, calculate the net torque required to accelerate it. Express your answer to two significant figures and include the appropriate units.

Answers

A merry-go-round accelerates from rest to 0.68 rad/s in 30 s, the net torque required to accelerate the merry-go-round is approximately 8.03×[tex]10^3[/tex] N·m.

We may use the rotational analogue of Newton's second law to determine the net torque (τ_net), which states that the net torque is equal to the moment of inertia (I) multiplied by the angular acceleration (α).

I = (1/2) * m * [tex]r^2[/tex]

I = (1/2) * (3.10×[tex]10^4[/tex] kg) * [tex](6.0 m)^2[/tex]

I ≈ 3.49×[tex]10^5[/tex] kg·[tex]m^2[/tex]

Now,

α = (ω_f - ω_i) / t

α = (0.68 rad/s - 0 rad/s) / (30 s)

α ≈ 0.023 rad/[tex]s^2[/tex]

So,

τ_net = I * α

Substituting the calculated values:

τ_net ≈ (3.49×[tex]10^5[/tex]) * (0.023)

τ_net ≈ 8.03×[tex]10^3[/tex] N·m

Therefore, the net torque required to accelerate the merry-go-round is approximately 8.03×[tex]10^3[/tex] N·m.

For more details regarding torque, visit:

https://brainly.com/question/30338175

#SPJ4

A string is stretched between two fixed supports. It vibrates in the fourth harmonics at a frequency of f = 432 Hz so that the distance between adjacent nodes of the standing wave is d = 25 cm. (a) Calculate the wavelength of the wave on the string. [2 marks] (b) If the tension in the string is T = 540 N, find the mass per unit length p of the string. [4 marks] (c) Sketch the pattern of the standing wave on the string. Use solid curve and dotted curve to indicate the extreme positions of the string. Indicate the location of nodes and antinodes on your sketch. [3 marks) (d) What are the frequencies of the first and second harmonics of the string? Explain your answers briefly. [5 marks]

Answers

For the first harmonic (n = 1), the frequency is simply f.For the second harmonic (n = 2), the frequency is 2f. The first harmonic is the fundamental frequency itself, and the second harmonic has a frequency that is twice the fundamental frequency.

The wavelength (λ) of the wave on the string can be calculated using the formula: λ = 2d. Given that the distance between adjacent nodes (d) is 25 cm, we can  substitute the value into the equation: λ = 2 * 25 cm = 50 cm

Therefore, the wavelength of the wave on the string is 50 cm. (b) The mass per unit length (ρ) of the string can be determined using the formula:v = √(T/ρ)

Where v is the wave velocity, T is the tension in the string, and ρ is the mass per unit length. Given that the tension (T) in the string is 540 N, and we know the frequency (f) and wavelength (λ) from part (a), we can calculate the wave velocity (v) using the equation: v = f * λ

Substituting the values: v = 432 Hz * 50 cm = 21600 cm/s

Now, we can substitute the values of T and v into the formula to find ρ:

21600 cm/s = √(540 N / ρ)

Squaring both sides of the equation and solving for ρ:
ρ = (540 N) / (21600 cm/s)^2

Therefore, the mass per unit length of the string is ρ = 0.0001245 kg/cm.

(c) The sketch of the standing wave on the string would show the following pattern: The solid curve represents the string at its extreme positions during vibration.

The dotted curve represents the string at its rest position.

The nodes, where the amplitude of vibration is zero, are points along the string that remain still.

The antinodes, where the amplitude of vibration is maximum, are points along the string that experience the most displacement.

(d) The frequencies of the harmonics on a string can be calculated using the formula: fn = nf

Where fn is the frequency of the nth harmonic and f is the frequency of the fundamental (first harmonic).

For the first harmonic (n = 1), the frequency is simply f.For the second harmonic (n = 2), the frequency is 2f.

Therefore, the frequencies of the first and second harmonics of the string are the same as the fundamental frequency, which is 432 Hz in this case. The first harmonic is the fundamental frequency itself, and the second harmonic has a frequency that is twice the fundamental frequency.

To learn more about fundamental frequency;

https://brainly.com/question/31314205

#SPJ11

Assume you charge a comb by running it through your hair and then hold the comb next to a bar magnet. Do the electric and magnetic fields produced constitute an electromagnetic wave?(a) Yes they do, necessarily.(b) Yes they do because charged particles are moving inside the bar magnet.(c) They can, but only if the electric field of the comb and the magnetic field of the magnet are perpendicular.(d) They can, but only if both the comb and the magnet are moving. (e) They can, if either the comb or the magnet or both are accelerating.

Answers

The electric and magnetic fields produced by charging a comb and holding it next to a bar magnet do not necessarily constitute an electromagnetic wave.

Option (c) is correct

They can form an electromagnetic wave, but only if the electric field of the comb and the magnetic field of the magnet are perpendicular. The movement of charged particles inside the bar magnet, as mentioned in option (b), is not directly related to the formation of an electromagnetic wave.

Additionally, options (d) and (e) are not necessary conditions for the production of an electromagnetic wave. They can form an electromagnetic wave, but only if the electric field of the comb and the magnetic field of the magnet are perpendicular.

To know more about magnetic visit :

https://brainly.com/question/13026686

#SPJ11

An L-C circuit containing an 90.0 mH inductor and a 1.75 nF capacitor oscillates with a maximum current of 0.810 A. For related problemsolving tips and strategies, you may want to view a Video Tutor Solution of An oscillating circuit. Calculate the oscillation frequency of the circuit. Express your answer with the appropriate units.
Assuming the capacitor had its maximum charge at time t = 0, calculate the energy stored in the inductor after 2.60 ms of oscillation. Express your answer with the appropriate units.

Answers

The oscillation frequency of the circuit is approximately 3.189 × [tex]10^7[/tex] HzThe energy stored in the inductor after 2.60 ms of oscillation is approximately 0.0068 J.

To calculate the energy stored in the inductor after 2.60 ms of oscillation, we can use the formula:

f = 1 / (2π√(LC))

Given that the inductance (L) is 90.0 mH and the capacitance (C) is 1.75 nF, we need to convert them to their base units:

L = 90.0 × [tex]10^{(-3)[/tex] H

C = 1.75 × [tex]10^{(-9)[/tex] F

Now we can substitute these values into the formula to find the oscillation frequency:

f = 1 / (2π√(90.0 × [tex]10^{(-3)[/tex] × 1.75 × [tex]10^{(-9)[/tex]))

f ≈ 1 / (2π√(1.575 × [tex]10^{(-11)[/tex])) ≈ 3.189 × [tex]10^7[/tex]  Hz

Therefore, the oscillation frequency of the circuit is approximately 3.189 × [tex]10^7[/tex] Hz.

Inductance, L = 90.0 mH = 90.0 × [tex]10^{(-3)[/tex] H

Maximum current, [tex]I_{max[/tex] = 0.810 A

The energy stored in the inductor can be calculated using the formula:

E = 0.5 × L ×[tex]I_{max}^2[/tex]

Substituting the given values:

E = 0.5 × 90.0 × [tex]10^{(-3)[/tex] H × [tex](0.810 A)^2[/tex]

Calculating further:

E ≈ 0.0068 J

Thus, the energy stored in the inductor after 2.60 ms of oscillation is approximately 0.0068 J.

For more details regarding inductor, visit:

https://brainly.com/question/31865204

#SPJ12

what is gravitational force 2-kg the wanitude of the between two 2m apart? bodies that are

Answers

The magnitude of the gravitational force between two 2 kg bodies that are 2 m apart is approximately 1.33 x 10^-11 N (newtons).

The gravitational force between two objects can be calculated using Newton's law of universal gravitation. The formula for the gravitational force (F) between two objects is given by:

F = (G * m1 * m2) / r^2

where G is the gravitational constant (approximately 6.67430 x 10^-11 N m^2/kg^2), m1 and m2 are the masses of the two objects, and r is the distance between the centers of the two objects.

Substituting the given values into the formula, where m1 = m2 = 2 kg and r = 2 m, we can calculate the magnitude of the gravitational force:

F = (6.67430 x 10^-11 N m^2/kg^2 * 2 kg * 2 kg) / (2 m)^2

≈ 1.33 x 10^-11 N

Therefore, the magnitude of the gravitational-force between two 2 kg bodies that are 2 m apart is approximately 1.33 x 10^-11 N.

To learn more about gravitational-force , click here : https://brainly.com/question/16613634

#SPJ11

A circular loop is in a variable magnetic field B, whose direction is out of the plane of this sheet, as illustrated in Figure 1. If the current I, with a clockwise direction, is induced in the loop , then the magneticfield B:
i. Is increasing
ii. It is decreasing
iii. Cannot be determined from the information provided.

Answers

A circular loop in a variable magnetic field B whose direction is out of the plane of this sheet, if the current I, with a clockwise direction, is induced in the loop, then the magnetic field B is decreasing.

The given Figure 1 shows a circular loop in a variable magnetic field B, whose direction is out of the plane of this sheet. If the current I, with a clockwise direction, is induced in the loop, then the magnetic field B is decreasing. This is because the magnetic field induces an emf in the loop, which in turn induces a current. The current creates its own magnetic field which opposes the magnetic field that created it. This is known as Lenz's Law. Lenz's Law states that the direction of the induced emf is such that it produces a current which opposes the change in the magnetic field that produced it. Hence, the direction of the induced current is clockwise, which opposes the magnetic field and thus, decreases it. Therefore, the magnetic field B is decreasing.

To know more about Lenz's Law visit:

brainly.com/question/12876458

#SPJ11

The function x=(5.0 m) cos[(5xrad/s)t + 7/3 rad] gives the simple harmonic motion of a body. At t = 6.2 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion?

Answers

(a) The displacement at t = 6.2 s is approximately 4.27 m.

(b) The velocity at t = 6.2 s is approximately -6.59 m/s.

(c) The acceleration at t = 6.2 s is approximately -106.75 m/s².

(d) The phase of the motion at t = 6.2 s is (7/3) rad.

To determine the values of displacement, velocity, acceleration, and phase at t = 6.2 s, we need to evaluate the given function at that specific time.

The function describing the simple harmonic motion is:

x = (5.0 m) cos[(5 rad/s)t + (7/3) rad]

(a) Displacement:

Substituting t = 6.2 s into the function:

x = (5.0 m) cos[(5 rad/s)(6.2 s) + (7/3) rad]

x ≈ (5.0 m) cos[31 rad + (7/3) rad]

x ≈ (5.0 m) cos(31 + 7/3) rad

x ≈ (5.0 m) cos(31.33 rad)

x ≈ (5.0 m) * 0.854

x ≈ 4.27 m

Therefore, the displacement at t = 6.2 s is approximately 4.27 m.

(b) Velocity:

To find the velocity, we need to differentiate the given function with respect to time (t):

v = dx/dt

v = -(5.0 m)(5 rad/s) sin[(5 rad/s)t + (7/3) rad]

Substituting t = 6.2 s:

v = -(5.0 m)(5 rad/s) sin[(5 rad/s)(6.2 s) + (7/3) rad]

v ≈ -(5.0 m)(5 rad/s) sin[31 rad + (7/3) rad]

v ≈ -(5.0 m)(5 rad/s) sin(31 + 7/3) rad

v ≈ -(5.0 m)(5 rad/s) sin(31.33 rad)

v ≈ -(5.0 m)(5 rad/s) * 0.527

v ≈ -6.59 m/s

Therefore, the velocity at t = 6.2 s is approximately -6.59 m/s.

(c) Acceleration:

To find the acceleration, we need to differentiate the velocity function with respect to time (t):

a = dv/dt

a = -(5.0 m)(5 rad/s)² cos[(5 rad/s)t + (7/3) rad]

Substituting t = 6.2 s:

a = -(5.0 m)(5 rad/s)² cos[(5 rad/s)(6.2 s) + (7/3) rad]

a ≈ -(5.0 m)(5 rad/s)² cos[31 rad + (7/3) rad]

a ≈ -(5.0 m)(5 rad/s)² cos(31 + 7/3) rad

a ≈ -(5.0 m)(5 rad/s)² cos(31.33 rad)

a ≈ -(5.0 m)(5 rad/s)² * 0.854

a ≈ -106.75 m/s²

Therefore, the acceleration at t = 6.2 s is approximately -106.75 m/s².

(d) Phase:

The phase of the motion is given by the argument of the cosine function in the given function. In this case, the phase is (7/3) rad.

Therefore, the phase of the motion at t = 6.2 s is (7/3) rad.

Learn more about acceleration:

https://brainly.com/question/460763

#SPJ11

I I 3r=0.100 Given the above circuit that is connected to emf of 12.0 volt and an internal resistance r and a load resitor R. Compute the terminal voltage V. 121.1 A 1.2 V 19.2 R²-10-2 11.9 V

Answers

The terminal voltage V is 4 - 40r / 3.

Given the equation: I3R = 0.100

We need to find out the value of the terminal voltage V which is connected to emf of 12.0 volt and an internal resistance r and a load resistor R.

So, the formula to calculate the terminal voltage V is:

V = EMF - Ir - IR

Where

EMF = 12VIr = Internal resistance = 3rR = Load resistor = R

Therefore, V = 12 - 3rR - R

To solve this equation, we require one more equation.

From the given equation, we know that:

I3R = 0.100 => I = 0.100 / 3R => I = 0.0333 / R

Therefore, V = 12 - 3rR - R=> V = 12 - 4rR

Now, using the given value of I:

3R * I = 0.1003R * 0.0333 / R = 0.100 => R = 10 / 3

From this, we get:

V = 12 - 4rR=> V = 12 - 4r(10 / 3)=> V = 12 - 40r / 3=> V = 4 - 40r / 3

Hence, the terminal voltage V is 4 - 40r / 3.

To know more about terminal voltage visit:

https://brainly.com/question/20348380

#SPJ11

How much is stored in the inductor when the energy Current in the circuit is 0.5

Answers

When the current in the circuit is 0.5 amperes, the energy stored in the inductor is 0.125 joules.

The energy stored in an inductor is given by the formula:

[tex]E = (1/2)LI^2[/tex]

where:

E is the energy stored in the inductor in joulesL is the inductance of the inductor in henriesI is the current flowing through the inductor in amperes

If the current flowing through the inductor is 0.5 amperes, then the energy stored in the inductor is:

[tex]E = (1/2)LI^2 = (1/2)(0.5 H)(0.5)^2 = 0.125 J[/tex]

Therefore, 0.125 joules of energy is stored in the inductor when the current flowing through the circuit is 0.5 amperes.

Learn more about current here:

https://brainly.com/question/1220936

#SPJ4

A 0.5-cm tall object is placed 1 cm in front of a 2-сm focal length diverging (concave) thin lens. A person looks through the lens and sees an image. Using either ray tracing techniques or the thin lens formula, determine whether the image is a) real or virtual; b) upright or inverted; c) How far from the lens is the image located; d) How magnified or how tall is the image.

Answers

The image height is 1/3 cm and the magnification is 2/3.

Given data:Height of object, h = 0.5 cm

Focal length, f = -2 cm Object distance, u = -1 cm

The sign convention used here is that distances to the left of the lens are negative, while distances to the right are positive.

1) Determine whether the image is real or virtualThe focal length of the concave lens is negative, which indicates that it is a diverging lens. A diverging lens always forms a virtual image for any location of the object.

Therefore, the image is virtual.

2) Determine whether the image is upright or invertedThe height of the object is positive and the image height is negative. Thus, the image is inverted.

3) From the thin lens formula, we can calculate the image distance as follows:1/f = 1/v - 1/u1/-2 = 1/v - 1/-1v = 2/3 cmThe image is located 2/3 cm behind the lens.

4) The magnification is given by the following equation:m = (-image height) / (object height)h′ = m * hIn this example, the object height and the image height are both given in centimeters.

Therefore, we do not need to convert the units.

m = -v/u

= -(2/3) / (-1)

= 2/3h′

= (2/3) * (0.5)

= 1/3 cm

Therefore, the image height is 1/3 cm and the magnification is 2/3.

To know more about distance, visit:

https://brainly.com/question/13034462

#SPJ11

If the amplitude of the B field of an EM wave is 2.5x10-7 T, Part A What is the amplitude of the field? Express your answer using two significant figures.
E= ___________ V/m Part B What is the average power per unit area of the EM wave?
Express your answer using two significant figures. I= ____________ W/m2

Answers

The amplitude of the electric field is 75 V/m. The average power per unit area of the EM wave is 84.14 W/m2.

Part A

The formula for the electric field of an EM wave is

E = cB,

where c is the speed of light and B is the magnetic field.

The amplitude of the electric field is related to the amplitude of the magnetic field by the formula:

E = Bc

If the amplitude of the B field of an EM wave is 2.5x10-7 T, then the amplitude of the electric field is given by;

E= 2.5x10-7 × 3×108 = 75 V/m

Thus, E= 75 V/m

Part B

The average power per unit area of the EM wave is given by:

Pav/A = 1/2 εc E^2

The electric field E is known to be 75 V/m.

Since this is an EM wave, then the electric and magnetic fields are perpendicular to each other.

Thus, the magnetic field is also perpendicular to the direction of propagation of the wave and there is no attenuation of the wave.

The wave is propagating in a vacuum, thus the permittivity of free space is used in the formula,

ε = 8.85 × 10-12 F/m.

Pav/A = 1/2 × 8.85 × 10-12 × 3×108 × 75^2

Pav/A = 84.14 W/m2

Therefore, the average power per unit area of the EM wave is 84.14 W/m2.

#SPJ11

Let us know more about magnetic fields : https://brainly.com/question/30331791.

An emf of 15.0 mV is induced in a 513-turn coil when the current is changing at the rate of 10.0 A/s. What is the magnetic
flux through each turn of the coil at an instant when the current is 3.80 A? (Enter the magnitude.)

Answers

Explanation:

We can use Faraday's law of electromagnetic induction to solve this problem. According to this law, the induced emf (ε) in a coil is equal to the negative of the rate of change of magnetic flux through the coil:

ε = - dΦ/dt

where Φ is the magnetic flux through the coil.

Rearranging this equation, we can solve for the magnetic flux:

dΦ = -ε dt

Integrating both sides of the equation, we get:

Φ = - ∫ ε dt

Since the emf and the rate of current change are constant, we can simplify the integral:

Φ = - ε ∫ dt

Φ = - ε t

Substituting the given values, we get:

ε = 15.0 mV = 0.0150 V

N = 513

di/dt = 10.0 A/s

i = 3.80 A

We want to find the magnetic flux through each turn of the coil at an instant when the current is 3.80 A. To do this, we first need to find the time interval during which the current changes from 0 A to 3.80 A:

Δi = i - 0 A = 3.80 A

Δt = Δi / (di/dt) = 3.80 A / 10.0 A/s = 0.380 s

Now we can use the equation for magnetic flux to find the flux through each turn of the coil:

Φ = - ε t = -(0.0150 V)(0.380 s) = -0.00570 V·s

The magnetic flux through each turn of the coil is equal to the total flux divided by the number of turns:

Φ/ N = (-0.00570 V·s) / 513

Taking the magnitude of the result, we get:

|Φ/ N| = 1.11 × 10^-5 V·s/turn

Therefore, the magnetic flux through each turn of the coil at the given instant is 1.11 × 10^-5 V·s/turn.

Episode 2: Tom uses his owner's motorcycle to chase Jerry (with an ax). The motorcy- cle has a 95 hp engine, that is, the rate it does work at is 95 hp. It has an efficiency of 23%. a) How much energy in the form of heat from burning gasoline) enters the engine every second? b) Assume that engine has half the efficiency of a Carnot engine running between the same high and low temperatures. If the low temperature is 360 K. what is the high tem- perature? c) Assume the temperature of the inside of the engine is 360 K. One part of the engine is a steel rectangle. 0.0400 m by 0.0500 m and 0.0200 m thick. Heat flows from that temper- ature through the thickness of the steel to a temperature of 295 K. What is the rate of heat flow?

Answers

The engine receives 79.85 hp of energy per second from burning gasoline at a high temperature of 639.22 K. Approximately 5.60W of heat flows through the steel rectangle.

a) To determine the amount of energy entering the engine every second from burning gasoline, we need to calculate the power input. The power input can be obtained by multiplying the engine's horsepower (95 hp) by its efficiency (23%). Therefore, the power input is:

Power input = [tex]95 hp * \frac{23}{100}[/tex]= 21.85 hp.

However, power is commonly measured in watts (W), so we need to convert horsepower to watts. One horsepower is approximately equal to 746 watts. Therefore, the power input in watts is:

Power input = 21.85 hp * 746 W/hp = 16287.1 W.

This represents the total power entering the engine every second.

b) Assuming the engine has half the efficiency of a Carnot engine running between the same high and low temperatures, we can use the Carnot efficiency formula to find the high temperature. The Carnot efficiency is given by:

Carnot efficiency =[tex]1 - (T_{low} / T_{high}),[/tex]

where[tex]T_{low}[/tex] and[tex]T_{high}[/tex] are the low and high temperatures, respectively. We are given the low-temperature [tex]T_{low }= 360 K[/tex].

Since the engine has half the efficiency of a Carnot engine, its efficiency would be half of the Carnot efficiency. Therefore, the engine's efficiency can be written as:

Engine efficiency = (1/2) * Carnot efficiency.

Substituting this into the Carnot efficiency formula, we have:

(1/2) * Carnot efficiency = 1 - (  [tex]T_{low[/tex] / [tex]T_{high[/tex]).

Rearranging the equation, we can solve for T_high:

[tex]T_{high[/tex] =[tex]T_{low}[/tex] / (1 - 2 * Engine efficiency).

Substituting the values, we find:

[tex]T_{high[/tex]= 360 K / (1 - 2 * (23/100)) ≈ 639.22 K.

c) To calculate the rate of heat flow through the steel rectangle, we can use Fourier's law of heat conduction:

Rate of heat flow = (Thermal conductivity * Area * ([tex]T_{high[/tex] - [tex]T_{low}[/tex])) / Thickness.

We are given the dimensions of the steel rectangle: length = 0.0400 m, width = 0.0500 m, and thickness = 0.0200 m. The temperature difference is [tex]T_{high[/tex] -[tex]T_{low}[/tex] = 360 K - 295 K = 65 K.

The thermal conductivity of steel varies depending on the specific type, but for a general estimate, we can use a value of approximately 50 W/(m·K).

Substituting the values into the formula, we have:

Rate of heat flow =[tex]\frac{ (50 W/(m·K)) * (0.0400 m * 0.0500 m) * (65 K)}{0.0200m}[/tex] = 5.60 W.

Therefore, the rate of heat flow through the steel rectangle is approximately 5.60 W.

To learn more about horsepower click here:

brainly.com/question/13259300

#SPJ11

A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A=6.00x10⁵m² and mass m=6.00x10³ kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1370W/m². (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval required for the sail to reach the Moon, 3.84x10⁸ m away, starting from rest at the Earth.

Answers

You can calculate the time interval required for the sail to reach the Moon by substituting the previously calculated value of acceleration into the equation and solving for time. Remember to express your final answer in the appropriate units.

To find the time interval required for the sail to reach the Moon, we need to determine the acceleration of the sail using the solar intensity and the mass of the sail.

First, we calculate the force acting on the sail by multiplying the solar intensity by the sail's area:

Force = Solar Intensity x Area
Force = [tex]1370 W/m² x 6.00 x 10⁵ m²[/tex]

Next, we can use Newton's second law of motion, F = ma, to find the acceleration:

Force = mass x acceleration
[tex]1370 W/m² x 6.00 x 10⁵ m² = 6.00 x 10³ kg[/tex] x acceleration

Rearranging the equation, we can solve for acceleration:

acceleration =[tex](1370 W/m² x 6.00 x 10⁵ m²) / (6.00 x 10³ kg)[/tex]

Since the acceleration remains constant, we can use the kinematic equation:

[tex]distance = 0.5 x acceleration x time²[/tex]

Plugging in the values, we have:

[tex]3.84 x 10⁸ m = 0.5 x acceleration x time²[/tex]

Rearranging the equation and solving for time, we get:

time = sqrt((2 x distance) / acceleration)

Substituting the values, we find:

[tex]time = sqrt((2 x 3.84 x 10⁸ m) / acceleration)[/tex]

Remember to express your final answer in the appropriate units.

To know more about intensity visit:

https://brainly.com/question/17583145

#SPJ11

In the R-C Circuit experiment, at (t = 0) the switch is closed and the capacitor starts discharging. The voltage across the capacitor was recorded as a function of time according to the equation V=vies 9 8 7 6 5 Vc(volt) 4 3 2 1 0 10 20 30 10 50 t(min) From the graph, the time constant T in second) is 480

Answers

In the given RC circuit experiment, the switch is closed at t=0, and the capacitor starts discharging. The voltage across the capacitor has been recorded concerning time. The data for the voltage across the capacitor is given as follows:

V = Vies9 8 7 6 5

Vc (volt)4 3 2 1 0102030405060 t (min)

The time constant of the RC circuit can be calculated by the following formula:

T = R*C Where T is the time constant, R is the resistance of the circuit, and C is the capacitance of the circuit. As we know that the graph of the given data is an exponential decay curve, the formula for the voltage across the capacitor concerning time will be:

Vc = V0 * e^(-t/T)Where V0 is the initial voltage across the capacitor. We can calculate the value of the time constant T by using the given data. From the given graph, the voltage across the capacitor at t=480 seconds is 2 volts.

The formula will be:2 = V0 * e^(-480/T) Solving for T, we get:

T = -480 / ln(2)

≈ 693 seconds.

To know more about circuit visit:

https://brainly.com/question/12608516

#SPJ11

Determine the electrical resistance of a 20.0 m length of tungsten wire of radius 0.200 mm. The resistivity of tungsten is 5.6×10^ −8 Ω⋅m.

Answers

The electrical resistance of a 20.0 m length of tungsten wire of radius 0.200 mm, when the resistivity of tungsten is 5.6×10^-8 Ω⋅m can be determined using the following steps:

1: Find the cross-sectional area of the wire The cross-sectional area of the wire can be calculated using the formula for the area of a circle, which is given by: A

= πr^2where r is the radius of the wire. Substituting the given values: A

= π(0.0002 m)^2A

= 1.2566 × 10^-8 m^2given by: R

= ρL/A Substituting

= (5.6 × 10^-8 Ω⋅m) × (20.0 m) / (1.2566 × 10^-8 m^2)R

= 1.77 Ω

To know more about resistivity visit:

https://brainly.com/question/29427458

#SPJ11

suppose that the magnitude of the charge on the yellow sphere is determined to be 2q2q . calculate the charge qredqredq red on the red sphere. express your answer in terms of qqq , d1d1d 1 , d2d2d 2 , and θθtheta .

Answers

To calculate the charge qred on the red sphere, we need to use the concept of Coulomb's Law. According to Coulomb's Law, the electric force between two charges is given by the equation:
F = k * (q1 * q2) / r^2

Where F is the force between the charges, k is the electrostatic constant, q1 and q2 are the magnitudes of the charges, and r is the distance between the charges. In this case, we have the yellow sphere with charge magnitude 2q, and the red sphere with charge magnitude qred. The distance between the spheres can be expressed as d1 + d2.

Now, let's assume that the force between the charges is zero when the charges are in equilibrium. Therefore, we have: F = 0
k * (2q * qred) / (d1 + d2)^2 = 0
Now, solving for qred:
2q * qred = 0
qred = 0 / (2q)
Therefore, the charge qred on the red sphere is 0.

To know more about charge visit :

https://brainly.com/question/13871705

#SPJ11

For the given equation of state of a gas, derive the parameters, a, b, and c in terms of the critical constants (Pc and Tc) and R.
P = RT/(V-b) a/TV(V-b) + c/T2V³

Answers

The parameters a, b, and c can be derived by comparing the given equation with the Van der Waals equation and equating the coefficients, leading to the relationships a = RTc^2/Pc, b = R(Tc/Pc), and c = aV - ab.

How can the parameters a, b, and c in the given equation of state be derived in terms of the critical constants (Pc and Tc) and the ideal gas constant (R)?

To derive the parameters a, b, and c in terms of the critical constants (Pc and Tc) and the ideal gas constant (R), we need to examine the given equation of state: P = RT/(V-b) + a/(TV(V-b)) + c/(T^2V^3).

Comparing this equation with the general form of the Van der Waals equation of state, we can see that a correction term a/(TV(V-b)) and an additional term c/(T^2V^3) have been added.

To determine the values of a, b, and c, we can equate the given equation with the Van der Waals equation and compare the coefficients. This leads to the following relationships:

a = RTc²/Pc,

b = R(Tc/Pc),

c = aV - ab.

Here, a is a measure of the intermolecular forces, b represents the volume occupied by the gas molecules, and c is a correction term related to the cubic term in the equation.

By substituting the critical constants (Pc and Tc) and the ideal gas constant (R) into these equations, we can calculate the specific values of a, b, and c, which are necessary for accurately describing the behavior of the gas using the given equation of state.

Learn more about  equation

brainly.com/question/29657988

#SPJ11

4. A circular disk of radius 25.0cm and rotational inertia 0.015kg.mis rotating freely at 22.0 rpm with a mouse of mass 21.0g at a distance of 12.0cm from the center. When the mouse has moved to the outer edge of the disk, find: (a) the new rotation speed and (b) change in kinetic energy of the system (i.e disk plus mouse). (6 pts)

Answers

To solve this problem, we'll use the principle of conservation of angular momentum and the law of conservation of energy.

Given information:

- Radius of the disk, r = 25.0 cm = 0.25 m

- Rotational inertia of the disk, I = 0.015 kg.m²

- Initial rotation speed, ω₁ = 22.0 rpm

- Mass of the mouse, m = 21.0 g = 0.021 kg

- Distance of the mouse from the center, d = 12.0 cm = 0.12 m

(a) Finding the new rotation speed:

The initial angular momentum of the system is given by:

L₁ = I * ω₁

The final angular momentum of the system is given by:

L₂ = (I + m * d²) * ω₂

According to the conservation of angular momentum, L₁ = L₂. Therefore, we can equate the two expressions for angular momentum:

I * ω₁ = (I + m * d²) * ω₂

Solving for ω₂, the new rotation speed:

ω₂ = (I * ω₁) / (I + m * d²)

Now, let's plug in the given values and calculate ω₂:

ω₂ = (0.015 kg.m² * 22.0 rpm) / (0.015 kg.m² + 0.021 kg * (0.12 m)²)

Note: We need to convert the initial rotation speed from rpm to rad/s since the rotational inertia is given in kg.m².

ω₁ = 22.0 rpm * (2π rad/1 min) * (1 min/60 s) ≈ 2.301 rad/s

ω₂ = (0.015 kg.m² * 2.301 rad/s) / (0.015 kg.m² + 0.021 kg * (0.12 m)²)

Calculating ω₂ will give us the new rotation speed.

(b) Finding the change in kinetic energy:

The initial kinetic energy of the system is given by:

K₁ = (1/2) * I * ω₁²

The final kinetic energy of the system is given by:

K₂ = (1/2) * (I + m * d²) * ω₂²

The change in kinetic energy, ΔK, is given by:

ΔK = K₂ - K₁

Let's plug in the values we already know and calculate ΔK:

ΔK = [(1/2) * (0.015 kg.m² + 0.021 kg * (0.12 m)²) * ω₂²] - [(1/2) * 0.015 kg.m² * 2.301 rad/s²]

Calculating ΔK will give us the change in kinetic energy of the system.

Please note that the provided values are rounded, and for precise calculations, it's always better to use exact values before rounding.

Learn more about angular momentum here: brainly.com/question/29897173

#SPJ11

An ostrich weighs about 120 kg when alive. Its wing is 38 cm
long and 30 cm wide at the base. Assuming the wing to be a right
triangle, compute the wing-loading (kg per square cm of wing
surface)"

Answers

The wing-loading of an ostrich, with wings weighing 16.8 kg and a surface area of 570 cm², is approximately 0.0295 kg/cm².

To calculate the wing-loading of an ostrich, we need to determine the weight of the ostrich's wings and the surface area of the wings.

1. Weight of the wings:

Since an ostrich weighs about 120 kg, we assume that approximately 14% of its total weight consists of the wings. Therefore, the weight of the wings is approximately (0.14 * 120 kg) = 16.8 kg.

2. Surface area of the wings:

Assuming the wing to be a right triangle, the surface area can be calculated using the formula: (base * height) / 2.

For the ostrich's wing, the base length is 30 cm and the height is 38 cm.

Therefore, the surface area of the wing is (30 cm * 38 cm) / 2 = 570 cm^2.

3. Wing-loading:

The wing-loading is the weight of the wings divided by the surface area of the wings.

So, the wing-loading of the ostrich is (16.8 kg / 570 cm^2) = 0.0295 kg/cm^2.

Therefore, the wing-loading of the ostrich is approximately 0.0295 kg per square cm of wing surface.

To know more about Surface area, click here:

brainly.com/question/29298005

#SPJ11

II the weiyut is Tals A 400-lb weight is lifted 30.0 ft. (a) Using a system of one fixed and two mov- able pulleys, find the effort force and effort distance. (b) If an effort force of 65.0 N is applied through an effort distance of 13.0 m, find the weight of the resistance and the distance it is moved. I.

Answers

The distance resistance has moved is 26.0 m and the weight of the resistance is 32.5 N.

Weight (W) = 400 lbs

Distance (d) = 30 ft

Part a:

To find the effort force and effort distance using a system of one fixed and two movable pulleys.

To find the effort force using the system of pulleys, use the following formula:

W = Fd

Where,

F is the effort force.

Rearranging the above formula, we get:

F = W/d = 400 lbs/30 ft = 13.33 lbs/ft

Thus, the effort force applied to lift the weight using the given system of pulleys is 13.33 lbs/ft.

To find the effort distance, use the following formula:

E1 x D1 = E2 x D2

Where,

E1 = Effort force

D1 = Effort distance

E2 = Resistance force

D2 = Resistance distance

E1/E2 = 2 and D2/D1 = 2

From the above formula, we get:

2 x D1 = D2

Let us assume D1 = 1

Then, D2 = 2

So, the effort distance using the given system of pulleys is 1 ft.

Thus, the effort force is 13.33 lbs/ft and the effort distance is 1 ft.

Part b:

To find the weight of the resistance and the distance it is moved using the given effort force and effort distance.

To find the weight of the resistance, use the following formula:

F x d = W x D

Effort force (F) = 65.0 N

Effort distance (d) = 13.0 m

Weight of the resistance (W) = ?

Resistance distance (D) = ?

F x d = W x D

65.0 N x 13.0 m = W x D

W = (65.0 N x 13.0 m)/D

To find the value of resistance distance D, use the following formula:

E1 x D1 = E2 x D2

Where,

E1 = Effort force = 65.0 N (given)

D1 = Effort distance = 13.0 m (given)

E2 = Resistance force

D2 = Resistance distance

E1/E2 = 2 and D2/D1 = 2

From the above formula, we get:

2 x 13.0 = D

D2 = 26.0 m

Now, put the value of D2 in the equation W = (65.0 N x 13.0 m)/D to find the value of W.

W = (65.0 N x 13.0 m)/26.0 m

W = 32.5 N

Thus, the weight of the resistance is 32.5 N and the distance it is moved is 26.0 m.

To learn more about resistance, refer below:

https://brainly.com/question/29427458

#SPJ11

Other Questions
Who takes over if a president dies in office or is unable to serve? The top five in the line of succession follow: vice-president speaker of the house president pro tempore of the Senate secretary of state secretary of the treasuryWhy should voters know the views of the vicepresident? Determine if each of the following sets is a subspace of P,, for an appropriate value of n. Type "yes" or "no" for each answer.Let W be the set of all polynomials of the form p(t) = at2, where a is in R.Let W be the set of all polynomials of the form p(t) = t+a, where a is in R.Let W3 be the set of all polynomials of the form p(t) = at2 + at, where a is in R A rock with a mass of 0.2 kg with a velocity of 5 m/s strikes a stationary 1 kg wooden ball. After thecollision the rock flies back with a velocity of -2 m/s. What is the velocity of the wooden ball after thecollision?A. -0.4 m/sB. -1 m/sC. 0.4 m/sD. 1.4 m/s A 0.800 kg block is attached to a spring with spring constant 14.0 N/m. While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 34.0 cm/s. Part AWhat is the amplitude of the subsequent oscillations? Part BWhat is the block's speed at the point where x=0.60A? Find the area of the triangle below be sure to include the correct unit in your answer. Describe an event from your life that you are proud of because you used critical reasoning to make a moral decision and then acted on it. You are evaluating the performance of a large electromagnet. The magnetic field of the electromagnet is zero at t = 0 and increases as the current through the windings of the electromagnet is increased. You determine the magnetic field as a function of time by measuring the time dependence of the current induced in a small coil that you insert between the poles of the electromagnet, with the plane of the coil parallel to the pole faces as for the loop in (Figure 1). The coil has 4 turns, a radius of 0.600 cm, and a resistance of 0.250 12. You measure the current i in the coil as a function of time t. Your results are shown in (Figure 2). Throughout your measurements, the current induced in the coil remains in the same direction. Figure 1 of 2 > S N i (mA) 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 I(S) Part A - Calculate the magnetic field at the location of the coil for t = 2.00 S. Express your answer to three significant figures and include the appropriate units. ? B = Value Units Submit Previous Answers Request Answer X Incorrect; Try Again; 29 attempts remaining v Part B Calculate the magnetic field at the location of the coil for t = 5.00 S. Express your answer to three significant figures and include the appropriate units. 0 ? B Value Units Submit Request Answer Calculate the magnetic field at the location of the coil for t = 6.00 s. Express your answer to three significant figures and include the appropriate units. HA ? B = Value Units Submit Previous Answers Request Answer * Incorrect; Try Again; 29 attempts remaining The horizontal surface on which the three blocks with masses M = 2.3 M, M = 3.5 M, and M3 = 1.1 M slide is frictionless. The tension in the string 1 is T = 2.9 N. Find F in the unit of N. F T Play devils advocate and argue that the Soviets started theCold War. Now make the case that it was the Americans. Provideexamples to both arguments. A salad spinner has an internal 0.15-m radius spinning basket that spins at 26 rad/s to remove water from saladgreens. The basket has a rotational inertia of 0.1 kg-m?. To stop the basket, a piece of rubber is pressed against the outer edge of the basket, slowing it through friction. Ifrubber is pressed into the outer edge with a force of 5 N, and the coefficient of kinetic friction between the rubber and the basket is 0.35, how long does it take forthe basket to stop? How did spanish explorer pedro de castaeda describe the high plains of texas? question 4 options: rolling and hilly spacious and level rugged and rocky soft and swampy , Exactly two nonzero forces, F, and F2, act on an object that can rotate around a fixed axis of rotation. True or False? If the net force on this object is zero, then the net torque will also be zero T/F Once a month a friend consumes a traditional food containing high saturated fat and salt. The friend now consumes a serving of that traditional food, and strongly resist the urge to dish out more. This is a characteristic of a nutritious diet called:Oadequacycalorie controlOmoderationvarietybalance Performance analysis for IKEA-Organization analysis-Environmental analysis-Desired performance-Actual performance-Gap analysis-Case analysisEnvironmental FactorIndividual factor Exercise 31.14 You have a 210-12 resistor and a 0.450-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 29.0 V and an angular frequency of 220 rad/sa) What is the impedance of the circuit?b) What is the current amplitude?c) What is the voltage amplitude across the circuit?d) What is the voltage amplitudes across the conductor?e) What is the phase angle (in degrees) of the source voltage with respect to the current?f) Does the source voltage lag or lead the current?g) Draw the force vectors. Q. 137: Two lenses L and L are used to make a telescope. The larger lens L is a convex lens with both surfaces having radius of curvature equal to 0.5 m. The smaller lens L has two surfaces with radius of curvature 4 cm. Both the lenses are made of glass having refractive index 1.5. The two lenses are mounted in a tube with separation between them equal to 1 cm less than the sum of their focal length. (a) Find the position of the image formed by such a telescope for an object at a distance of 100 m from the objective lens L. (b) What is the size of the image if object is 1 m high? Do you think that lateral magnification is a useful way to characterize a telescope? In an insulated vessel, 247 g of ice at 0C is added to 635 g of water at 19.0C. (Assume the latent heat of fusion of the water is 3.33 X 10 J/kg and the specific heat is 4,186 J/kg . C.) (a) What is the final temperature of the system? C (b) How much ice remains when the system reaches equilibrium? one of the following pairs of lines is parallel; the other is skew (neither parallel nor intersecting). which pair (a or b) is parallel? explain how you know I would like to ask why, when treating hypopituitarism, an adrenal crisis occurs if thyroid replacement is given before steroid replacement therapy? And what is the underlying mechanism? Thank you! Question 3 Why, in Sheehan's syndrome, is there an anterior pituitary involvement more than a posterior one? ) List the 4 factors that are required for the caries processto occur.