Answer:
5). x = 11.9°
6). x = 27.2°
Step-by-step explanation:
5). By applying cosine rule in the given triangle,
cos(32)° = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]
cos(32)° = [tex]\frac{x}{14}[/tex]
x = 14cos(32)°
x = 11.87
x ≈ 11.9°
6). By applying sine rule in the given triangle,
sin(54°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
sin(54°) = [tex]\frac{22}{x}[/tex]
x = [tex]\frac{22}{\text{sin(54)}}[/tex]
x = 27.19°
x ≈ 27.2°