Answer:
1/2
Step-by-step explanation:
The numbers that are odd on the spinner are 1, 3, and 5.
3 numbers out of 6.
3/6 = 1/2
P(odd)= 1/2
One positive number is
6 more than twice another. If their product is
1736, find the numbers.
Answer:
[tex]\Large \boxed{\sf \ \ 28 \ \text{ and } \ 62 \ \ }[/tex]
Step-by-step explanation:
Hello, let's note a and b the two numbers.
We can write that
a = 6 + 2b
ab = 1736
So
[tex](6+2b)b=1736\\\\ \text{***Subtract 1736*** } <=> 2b^2+6b-1736=0\\\\ \text{***Divide by 2 } <=> b^2+3b-868=0 \\ \\ \text{***factorize*** } <=> b^2 +31b-28b-868=0 \\ \\ <=> b(b+31) -28(b+31)=0 \\ \\ <=> (b+31)(b-28) =0 \\ \\ <=> b = 28 \ \ or \ \ b = -31[/tex]
We are looking for positive numbers so the solution is b = 28
and then a = 6 +2*28 = 62
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Identify which quadrant of the coordinate plane the point (−3, 15) lies in.
Answer:
Quadrant II.
Step-by-step explanation:
Quadrant | has positive x and y coordinates.
Quadrant || has negative x and positive y coordinates.
Quadrant ||| has negative x and y coordinates.
Quadrant |V has positive x and negative y coordinates.
Since -3 is negative and 15 is positive, the answer is Quadrant II.
vertex form of x^2+6x+3
Answer:
y = (x + 3)^2 - 6.
Step-by-step explanation:
The vertex formula is Y = a(x - h)^2 + k.
To find the vertex formula, we need to find h and k, by finding the vertex of x^2 + 6x + 3.
h = -b/2a
a = 1, b = 6.
h = -6 / 2 * 1 = -6 / 2 = -3
k = (-3)^2 + 6(-3) + 3 = 9 - 18 + 3 = -9 + 3 = -6
So far, we have Y = a(x - (-3))^2 + -6, so y = a(x + 3)^2 - 6.
In this case, the coefficient of x^2 of the given formula is 1, which means that a will be 1.
The vertex form of x^2 + 6x + 3 is y = (x + 3)^2 - 6.
To check our work...
y = (x + 3)^2 - 6
= x^2 + 3x + 3x + 9 - 6
= x^2 + 6x + 3
Hope this helps!
Determine the sum of the arithmetic series 6 + 11 + 16 +......
91.
Answer:
873
Step-by-step explanation:
so the equation is: 5x+1
sum is:
[tex] \frac{first \: one \: + \: last \: one}{2} \times quantity \: of \: terms \\ [/tex]
we have 6( 5×1+1) to 91 (5×18+1)
so we have 18 terms
then:
[tex] \frac{91 + 6}{2} \times 18 = 873[/tex]
The life of light bulbs is distributed normally. The standard deviation of the lifetime is 25 hours and the mean lifetime of a bulb is 510 hours. Find the probability of a bulb lasting for at most 552 hours.
Answer:
The probability of a bulb lasting for at most 552 hours.
P(x>552) = 0.0515
Step-by-step explanation:
Step(i):-
Given mean of the life time of a bulb = 510 hours
Standard deviation of the lifetime of a bulb = 25 hours
Let 'X' be the random variable in normal distribution
Let 'x' = 552
[tex]Z = \frac{x-mean}{S.D} = \frac{552-510}{25} =1.628[/tex]
Step(ii):-
The probability of a bulb lasting for at most 552 hours.
P(x>552) = P(Z>1.63)
= 1- P( Z< 1.63)
= 1 - ( 0.5 + A(1.63)
= 1- 0.5 - A(1.63)
= 0.5 -A(1.63)
= 0.5 -0.4485
= 0.0515
Conclusion:-
The probability of a bulb lasting for at most 552 hours.
P(x>552) = 0.0515
Several terms of a sequence StartSet a Subscript n EndSet Subscript n equals 1 Superscript infinity are given below. {1, negative 5, 25, negative 125, 625, ...} a. Find the next two terms of the sequence. b. Find a recurrence relation that generates the sequence (supply the initial value of the index and the first term of the sequence). c. Find an explicit formula for the general nth term of the sequence.
Answer:
(a) -3125, 15625
(b)
[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]
(c)[tex]a_n=(-5)^{n-1}[/tex]
Step-by-step explanation:
The sequence [tex]a_n$ _{n=1}^\infty[/tex] is given as:
[tex]\{1,-5,25,-125,625,\cdots\}[/tex]
(a)The next two terms of the sequence are:
625 X -5 = - 3125
-3125 X -5 =15625
(b)Recurrence Relation
The recurrence relation that generates the sequence is:
[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]
(c)Explicit Formula
The sequence is an alternating geometric sequence where:
Common Ratio, r=-5First Term, a=1Therefore, an explicit formula for the sequence is:
[tex]a_n=1\times (-5)^{n-1}\\a_n=(-5)^{n-1}[/tex]
Write an equation that represents the relationship.Please help!
Answer:
n = r - 2.5
Step-by-step explanation:
We have the following data:
7 4.5
8 5.5
10 7.5
12 9.5
Now, what we will do is what happens if we subtract each one:
7 - 4.5 = 2.5
8 - 5.5 = 2.5
10 - 7.5 = 2.5
12 - 9.5 = 2.5
The difference is always kept constant, therefore the equation would be:
n = r - 2.5
Express it in slope-intercept form
Answer:
Step-by-step explanation:
Can u help me
Answer:
cant see the picture
Step-by-step explanation:
An article reported that for a sample of 52 kitchens with gas cooking appliances monitored during a one-week period, the sample mean CO2 level (ppm) was 654.16, and the sample standard deviation was 165.4.
Required:
a. Calculate and interpret a 9596 (two-sided) confidence interval for true average C02 level in the population of all homes from which the sample was selected.
b. Suppose the investigators had made a rough guess of 175 for the value of s before collecting data. What sample size would be necessary to obtain an interval width of 50 ppm for a confidence level of 95%?
Answer:
a) [tex]654.16-2.01\frac{165.4}{\sqrt{52}}=608.06[/tex]
[tex]654.16+2.01\frac{165.4}{\sqrt{52}}=700.26[/tex]
b) [tex]n=(\frac{1.960(175)}{25})^2 =188.23 \approx 189[/tex]
So the answer for this case would be n=189 rounded up to the nearest integer
Step-by-step explanation:
Part a
[tex]\bar X=654.16[/tex] represent the sample mean
[tex]\mu[/tex] population mean (variable of interest)
s=165.4 represent the sample standard deviation
n =52represent the sample size
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
The degrees of freedom aregiven by:
[tex]df=n-1=52-1=51[/tex]
Since the Confidence is 0.95 or 95%, the significance [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and the critical value would be [tex]t_{\alpha/2}=2.01[/tex]
Now we have everything in order to replace into formula (1):
[tex]654.16-2.01\frac{165.4}{\sqrt{52}}=608.06[/tex]
[tex]654.16+2.01\frac{165.4}{\sqrt{52}}=700.26[/tex]
Part b
The margin of error is given by this formula:
[tex] ME=z_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (a)
And on this case we have that ME =25 and we are interested in order to find the value of n, if we solve n from equation (a) we got:
[tex]n=(\frac{z_{\alpha/2} s}{ME})^2[/tex] (b)
The critical value for this case wuld be [tex]z_{\alpha/2}=1.960[/tex], replacing into formula (b) we got:
[tex]n=(\frac{1.960(175)}{25})^2 =188.23 \approx 189[/tex]
So the answer for this case would be n=189 rounded up to the nearest integer
Please answer this correctly
Answer:
1/8
Step-by-step explanation:
Total cards = 8
Card with 4 = 1
P(4) = 1/8
Solve of the following equations for x: x + 3 = 6
Answer:
X = 3Step-by-step explanation:
[tex]x + 3 = 6[/tex]
Move constant to R.H.S and change its sign:
[tex]x = 6 - 3[/tex]
Calculate the difference
[tex]x = 3[/tex]
Hope this helps...
Good luck on your assignment..
Add the two rational expressions: (x/x+1)+(2/x)
Please answer this correctly
Assuming the coin is not weighted and is a fair and standard coin - the chance of flipping head is 1/2. You can either flip head or tails, there are no other possible outcomes.
Which of the following statements are true? I. The sampling distribution of ¯ x x¯ has standard deviation σ √ n σn even if the population is not normally distributed. II. The sampling distribution of ¯ x x¯ is normal if the population has a normal distribution. III. When n n is large, the sampling distribution of ¯ x x¯ is approximately normal even if the the population is not normally distributed. I and II I and III II and III I, II, and III None of the above gives the complete set of true responses.
Complete Question
Which of the following statements are true?
I. The sampling distribution of [tex]\= x[/tex] has standard deviation [tex]\frac{\sigma}{\sqrt{n} }[/tex] even if the population is not normally distributed.
II. The sampling distribution of [tex]\= x[/tex] is normal if the population has a normal distribution.
III. When n is large, the sampling distribution of [tex]\= x[/tex] is approximately normal even if the the population is not normally distributed.
A I and II
B I and III
C II and III
D I, II, and III
None of the above gives the complete set of true responses.
Answer:
The correct option is D
Step-by-step explanation:
Generally the mathematically equation for evaluating the standard deviation of the mean([tex]\= x[/tex]) of samples is [tex]\frac{\sigma}{\sqrt{n} }[/tex] hence the the first statement is correct
Generally the second statement is true, that is the sampling distribution of the mean ([tex]\= x[/tex]) is normal given that the population distribution is normal
Now according to central limiting theorem given that the sample size is large the distribution of the mean ([tex]\= x[/tex]) is approximately normal notwithstanding the distribution of the population
What is the value of the angle marked with xxx?
Answer:
Here you go!! :)
Step-by-step explanation:
Given that the sides of the quadrilateral are 3.3
The measure of one angle is 116°
We need to determine the value of x.
Value of x:
Since, the given quadrilateral is a rhombus because it has all four sides equal.
We know the property that the opposite sides of the rhombus are equal.
The measure of the opposite angle is 116°
x = measure of opposite angle
x = 116°
Then, the value of x is 116°
Therefore, the value of x is 116°
Answer:
In the diagram, the measurement of x is 87°
Step-by-step explanation:
In this diagram, this shape is a quadrilateral. This quadrilateral in this picture is known as rhombus. In a rhombus, the consecutive angles are supplementary meaning they have a sum of 180°. Consecutive means the angles are beside each other. So, we will subtract 93 from 180 to find the value of x.
180 - 93 = 87
The measurement of x is 87°
what is 3(C - 5) = 48
Answer:
c=21
Step-by-step explanation:
[tex]3(c-5)=48\\3c-15=48\\3c=48+15\\3c=63\\c=63/3\\c=21[/tex]
Hope this helps,
plx give brainliest
Answer:
c=21
Step-by-step explanation:
3(c−5)=48
Divide both sides by 3.
c-5=48/3
Divide 48 by 3 to get 16.
c−5=16
Add 5 to both sides.
c=16+5
Add 16 and 5 to get 21.
c=21
A line with points (-4.0) and (-3.1)
has a slope of?
Slope is the change in y over the change in x
Slope = (1-0) /( -3 - -4)
Slope = 1/1
Slope = 1
i need help please!!!
Answer:
1 = 95
2 = 77
3 = 85
4 = 103
Step-by-step explanation:
Inscribed angles are half their arc that their 2 lines intersect.
Point p is the centroid of jkl. Kr=72 and Pq=30 what is kp?
Answer:
B (48)
Step-by-step explanation:
One particular property of medians is the 2/3 ratio. Basically, the centroid separates the median into two line segments, and the longer line segment is 2/3 of the median length. So, 72 x 2/3 is 48.
Select the correct answer from each drop-down menu.
The given equation has been solved in the table.
Answer: a) additive inverse (addition)
b) multiplicative inverse (division)
Step-by-step explanation:
Step 2: 6 is being added to both sides
Step 4: (3/4) is being divided from both sides
It is difficult to know what options are provided in the drop-down menu without seeing them. If I was to complete a proof and justify each step, then the following justifications would be used:
Step 2: Addition Property of Equality
Step 4: Division Property of Equality
can I get some help please?
━━━━━━━☆☆━━━━━━━
▹ Answer
2,013 cartons
▹ Step-by-Step Explanation
72,468 ÷ 36 = 2,013 cartons
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Answer:
72,468 eggs divided by 36 eggs per carton=2,013 cartons
Step-by-step explanation:
I need help asap I don't understand this
Answer:
[tex]\boxed{\sf \ \ \ a=-2, \ b = 1 \ \ \ }[/tex]
Step-by-step explanation:
Hello,
saying that the function is continuous means that you cannot have a "jump" in the graph of the function
so we want
a*(-3)+b=7 and a*4+b=-7
it comes
(1) -3a + b = 7
(2) 4a + b = -7
(2)-(1) gives 4a + b + 3a - b =7a = -7-7 = -14
so a = -14/7 = -2
we replace in (1)
b = 7 + 3*(-2) = 7 - 6 = 1
hope this helps
given that 3*6=12 and 2*5=9, then a*b may be defined as
Answer:
I noticed a pattern:
3 * 2 + 6 = 12 and 2 * 2 + 5 = 9
This means that a*b = 2a + b.
me Left:1:23:57
Mandeep Sharma: Attempt 1
Question 1 (2 points)
A scientist records the internal temperature of a kiln that has been turned off for maintenance after
a limestone calcination reaction as 794 °C. He then leaves the room to allow the kiln cool further.
The room temperature is 25°C. An equation that models the temperature of the cooling kiln (T in °C,
t in min) is as follows:
T(t) = 1.0.73l/3.7 + 25
How fast is the reaction cooling rate (%T lost/min) to the nearest whole number?
Your Answer:
Answer
Answer:
c and I will talk to you later today or tomorrow morning and then I will
Step-by-step explanation:
email to you later today to see you and the kids are doing well and that you
In 1998, the average price for bananas was 51 cents per pound. In 2003, the following 7 sample prices (in cents) were obtained from local markets:
50, 53, 55, 43, 50, 47, 58.
Is there significant evidence to suggest that the average retail price of bananas is different than 51 cents per pound? Test at the 5% significance level.
Answer:
[tex]t=\frac{50.857-51}{\frac{5.014}{\sqrt{7}}}=-0.075[/tex]
The degrees of freedom are given by:
[tex]df=n-1=7-1=6[/tex]
The p value for this case would be given:
[tex]p_v = 2*P(t_6 <-0.075)=0.943[/tex]
The p value for this case is lower than the significance level so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from 51
Step-by-step explanation:
Info given
50, 53, 55, 43, 50, 47, 58.
We can calculate the sample mean and deviation with this formula:
[tex]\bar X=\frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex]s=\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2)}{n-1}}[/tex]
represent the mean height for the sample
[tex]s=5.014[/tex] represent the sample standard deviation for the sample
[tex]n=7[/tex] sample size
represent the value that we want to test
[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.
t would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the p value
Hypothesis to test
We want to test if the true mean is equal to 51, the system of hypothesis would be:
Null hypothesis:[tex]\mu = 51[/tex]
Alternative hypothesis:[tex]\mu \neq 51[/tex]
The statistic is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
Replacing we got:
[tex]t=\frac{50.857-51}{\frac{5.014}{\sqrt{7}}}=-0.075[/tex]
The degrees of freedom are given by:
[tex]df=n-1=7-1=6[/tex]
The p value for this case would be given:
[tex]p_v = 2*P(t_6 <-0.075)=0.943[/tex]
The p value for this case is lower than the significance level so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from 51
the linear equation y=2x represents the cost y of x pounds of pears. which order pair lies on the graph of the equation? A. (2,4) B. (1,0) C.(10,5) D. (4,12)
Answer:
A. (2, 4)
Step-by-step explanation:
The ordered pairs represent (x, y). Since you have y =2x, this is the same as ...
(x, 2x)
That is, the second number in the pair needs to be twice the first number in the pair. Since you know your times tables, you know that this is not the case for (1, 0), (10, 5) or (4, 12). Those values of x would give (1, 2), (10, 20), (4, 8).
It is the case that you have (x, 2x) for (2, 4).
The point (2, 4) lies on the graph of y = 2x.
Gwen has $20, $10, and $5 bills in her purse worth a total of $220. She has 15 bills in all. There are 3 more $20 bills than there are $10 bills. How many of each does she have?
Answer:
x = 8 ( 20$ bills)
y = 5 ( 10 $ bills)
z = 2 ( 5 $ bills)
Step-by-step explanation:
Let call x, y, and z the number of bill of 20, 10, and 5 $ respectively
then according to problem statement, we can write
20*x + 10*y + 5*z = 220 (1)
We also know the total number of bills (15), then
x + y + z = 15 (2)
And that quantity of 20 $ bill is equal to
x = 3 + y (3)
Now we got a three equation system we have to solve for x, y, and z for which we can use any valid procedure.
As x = 3 + y by substitution in equation (2) and (1)
( 3 + y ) + y + z = 15 ⇒ 3 + 2*y + z = 15 ⇒ 2*y + z = 12
20* ( 3 + y ) + 10*y + 5*z = 220 ⇒ 60 + 20*y + 10*y + 5*z = 220
30*y + 5*z = 160 (a)
Now we have only 2 equations
2*y + z = 12 ⇒ z = 12 - 2*y
30*y + 5*z = 160 30*y + 5* ( 12 - 2*y) = 160
30*y + 60 - 10*y = 160
20*y = 100
y = 100/20 y = 5 Then by substitution in (a)
30*y + 5*z = 160
30*5 + 5*z = 160
150 + 5*z = 160 ⇒ 5*z = 10 z = 10/5 z = 2
And x
x + y + z = 15
x + 5 + 2 = 15
x = 8
Answer:
x=8 y=5 x=2
Step-by-step explanation:
Which functions have an axis of symmetry of x = -2? Check all that apply. A. f(x) = x^2 + 4x + 3 B. f(x) = x^2 - 4x - 5 C. f(x) = x^2 + 6x + 2 D. f(x) = -2x^2 - 8x + 1 E. f(x) = -2x^2 + 8x - 2
Answer:
A. f(x) = x^2 + 4x + 3
D. f(x) = -2x^2 - 8x + 1
Step-by-step explanation:
The axis of symmetry is found by h = -b/2a where ax^2 +bx +c
A. f(x) = x^2 + 4x + 3
h = -4/2*1 = -2 x=-2
B. f(x) = x^2 - 4x - 5
h = - -4/2*1 = 4/2 =2 x=2 not -2
C. f(x) = x^2 + 6x + 2
h = -6/2*1 = -3/2 = x=-3/2 not -2
D. f(x) = -2x^2 - 8x + 1
h = - -8/2*-2 = 8/-4 =-2 x=-2
E. f(x) = -2x^2 + 8x - 2
h = - 8/2*-2 = -8/-4 =2 x=2 not -2
Answer:
Hey there! The answer to this question is
A. f(x) = x^2 + 4x + 3
D. f(x) = -2x^2 - 8x + 1
What is the value of x?
Answer:
x=98°
Step-by-step explanation:
The angles of a triangle must equal 180°.
To get the third angle (G) you must do: 180°-53°-45°
That will give you 82°
Anglr G and angle x create a straight line which is 180°.
so to get the answer you must do 180°-G=x
180°-82°=98°
Therefore x=98°
A boat that can travel 18 mph in still water can travel 21 miles downstream in the same amount of time that it can travel 15 miles upstream. Find the speed (in mph) of the current in the river.
Hey there! I'm happy to help!
We see that if the river isn't moving at all the boat can move at 18 mph (most likely because it has an engine propelling it.)
We want to set up a proportion where our 21 miles downstream time is equal to our 15 miles upstream time so we can find the speed. A proportion is basically showing that two ratios are equal. Since our downstream distance and upstream distance can be done in the same amount of time, we will write it as a proportion.
We want to find the speed of the river. We will use r to represent the speed of the river. When going downstream, the boat will go faster, so it will have a higher mph. So, our speed going down is 18+r. When you are going upstream, it's the opposite, so it will be 18-r.
[tex]\frac{distance}{speed} =\frac{21}{18+r} = \frac{15}{18-r}[/tex]
So, how do we figure out what r is now? Well, one nice thing to know about proportions is that the product of the items diagonal from each other equals the product of the other items. Basically, that means that 15(18+r) is equal to 21(18-r). This is a very nice trick to solve proportions quickly. We see that we have made an equation and now we can solve it!
15(18+r)=21(18-r)
We use the distributive property to undo the parentheses.
270+15r=378-21r
We subtract 270 from both sides.
15r=108-21
We add 21 to both sides.
36r=108
We divide both sides by 36.
r=3
Therefore, the speed of the river is 3 mph.
You also could have noticed that 18mph to 21 mph is +3, and 18mph to 15 mph -3 in -3 mph, so the speed of the river is 3 mph. That would have been a quicker way to solve it XD!
Have a wonderful day!