Answer:
350 is the upper quartile
Step-by-step explanation:
Answer:
350
Step-by-step explanation:
On the diagram the upper quartile is the value at the right side of the box
Thus upper quartile = 350
The length of time for one individual to be served at a cafeteria is an exponential random variable with mean of 5 minutes. Assume a person has waited for at least 3 minutes to be served. What is the probability that the person will need to wait at least 7 minutes total
Answer:
44.93% probability that the person will need to wait at least 7 minutes total
Step-by-step explanation:
To solve this question, we need to understand the exponential distribution and conditional probability.
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:
[tex]f(x) = \mu e^{-\mu x}[/tex]
In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.
The probability that x is lower or equal to a is given by:
[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]
Which has the following solution:
[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]
The probability of finding a value higher than x is:
[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]
Conditional probability:
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
The length of time for one individual to be served at a cafeteria is an exponential random variable with mean of 5 minutes
This means that [tex]m = 5, \mu = \frac{1}{5} = 0.2[/tex]
Assume a person has waited for at least 3 minutes to be served. What is the probability that the person will need to wait at least 7 minutes total
Event A: Waits at least 3 minutes.
Event B: Waits at least 7 minutes.
Probability of waiting at least 3 minutes:
[tex]P(A) = P(X > 3) = e^{-0.2*3} = 0.5488[/tex]
Intersection:
The intersection between waiting at least 3 minutes and at least 7 minutes is waiting at least 7 minutes. So
[tex]P(A \cap B) = P(X > 7) = e^{-0.2*7} = 0.2466[/tex]
What is the probability that the person will need to wait at least 7 minutes total
[tex]P(B|A) = \frac{0.2466}{0.5488} = 0.4493[/tex]
44.93% probability that the person will need to wait at least 7 minutes total
An engineering study indicates that 8.5% of the bridges in a large state are structurally deficient. The state's department of transportation randomly samples 100 bridges. What is the probability that exactly 6 bridges in the sample are structurally deficient
Answer:
[tex]P(X=6)=(100C6)(0.085)^6 (1-0.085)^{100-6}=0.1063[/tex]
Then the probability that exactly 6 bridges in the sample are structurally deficient is 0.1063 or 10.63%
Step-by-step explanation:
Let X the random variable of interest "number of bridges in the sample are structurally deficient", on this case we now that:
[tex]X \sim Binom(n=100, p=0.085)[/tex]
The probability mass function for the Binomial distribution is given as:
[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]
Where (nCx) means combinatory and it's given by this formula:
[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]
And we want to find this probability:
[tex] P(X=6)[/tex]
And if we use the probability mass function and we replace we got:
[tex]P(X=6)=(100C6)(0.085)^6 (1-0.085)^{100-6}=0.1063[/tex]
Then the probability that exactly 6 bridges in the sample are structurally deficient is 0.1063 or 10.63%
A sample of 8 students was asked how often they used campus dining facilities during the past month. The responses were as follows. 4 1 6 1 2 10 2 6 The sample standard deviation is _____.
Answer:
Your answer is 3.16227766
Step-by-step explanation:
The shorter leg of a right triangle is 14 feet less than the other leg. Find the length of the two legs of the hypotenuse is 25 feet.
Answer:
9.233 ft, 23.233 ft
Step-by-step explanation:
If the shorter leg is x, then the longer leg is x+14 and the Pythagorean theorem tells you ...
x^2 + (x +14)^2 = 25^2
2x^2 +28x +196 = 625
x^2 +14x = 214.5
x^2 +14x +49 = 263.5
(x +7)^2 = 263.5
x = -7 +√263.5 ≈ 9.23268
The two leg lengths are √263.5 ± 7 feet, {9.23 ft, 23.23 ft}.
Answer: 9 ft, 23 ft
Step-by-step explanation:
We know the Pythagorean Theorem is a²+b²=c². Since one leg is 14 less than the other leg, we can use x-14 and the other leg would be x. We can plug these into the Pythagorean Theorem with the given hypotenuse.
(x-14)²+x²=25²
(x²-28x+196)+x²=625
2x²-28x+196=625
2x²-28x-429=0
When we solve for x, we get [tex]x=\frac{14+\sqrt{1054} }{2}[/tex] and [tex]x=\frac{14-\sqrt{1054} }{2}[/tex].
Note, since we rounded to 23, the hypotenuse isn't exactly 25, but it gets very close.
A lake has a large population of fish. On average, there are 2,400 fish in the lake, but this number can vary by as much as 155. What is the maximum number of fish in the lake? What is the minimum number of fish in the lake?
Answer:
Minimum population of fish in lake = 2400 - 155 = 2245
Maximum population of fish in lake = 2400 + 155 = 2555
Step-by-step explanation:
population of fish in lake = 2400
Variation of fish = 155
it means that while current population of fish is 2400, the number can increase or decrease by maximum upto 155.
For example
for increase
population of fish can 2400 + 2, 2400 + 70, 2400 + 130 etc
but it cannot be beyond 2400 + 155.
It cannot be 2400 + 156
similarly for decrease
population of fish can 2400 - 3, 2400 - 95, 2400 - 144 etc
but it cannot be less that 2400 - 155.
It cannot be 2400 - 156
Hence population can fish in lake can be between 2400 - 155 and 2400 + 155
minimum population of fish in lake = 2400 - 155 = 2245
maximum population of fish in lake = 2400 + 155 = 2555
Solve the system of equations below by graphing them with a pencil and
paper. Enter your answer as an ordered pair.
y= -x+5
y=x-3
Answer:
X+5= -x-3
2x = 2
X=1
then y1 is 4
y2 is -1
Answer:
Answer is 4, 1. If you graph the lines, they intersect at 4, 1.
Step-by-step explanation:
Question from quadratic equation .
solve.
(x-3)(x+7)=0
Answer:
x = 3, -7
Step-by-step explanation:
Since you already have the factored form, all you need to do is set the equations equal to zero to find you roots:
x - 3 = 0
x + 7 = 0
x = 3, -7
Answer:
3 or -7
Step-by-step explanation:
For it to equal 0, x must be 3 or -7 because anything multiplied by 0 is 0. So you take each part, x-3 and see how you can make that a 0. x-3=0, therefore x must be 3. Other part x+7=0, x must be -7.
in a church wing with 8 men and 10 women members find the probability that a 5 member committee chosen randomly will have.......
a).all men.
b).3men and 2 women
Answer:
a) Probability that a 5 member committee will have all men = 0.0065
b) probability that a 5 member committee chosen randomly will have 3 men and 2 women = 0.294
Step-by-step explanation:
Number of men = 8
Number of women = 10
Total number of members = 10 + 8 = 18
Probability = (Number of possible outcomes)/(Total number of outcomes)
Number of ways of selecting a 5 member committee from 18 people = [tex]^{18}C_5 = \frac{18!}{(18-5)!5!} = \frac{18!}{13!5!}[/tex] = 8568 ways
a) Probability that a 5 member committee will have all men
Number of ways of selecting 5 men from 8 men
= [tex]^8C_5 = \frac{8!}{(8-5)!5!} = \frac{8!}{3!5!}[/tex] = 56 ways
Probability that a 5 member committee will have all men = 56/8568
Probability that a 5 member committee will have all men = 0.0065
b)probability that a 5 member committee chosen randomly will have 3men and 2 women
Number of ways of selecting 3 men from 8 men
= [tex]^8C_3 = \frac{8!}{(8-3)!3!} = \frac{8!}{5!3!}[/tex] = 56 ways
Number of ways of selecting 2 women from 10 men
= [tex]^{10}C_2 = \frac{10!}{(10-2)!2!} = \frac{10!}{8!2!}[/tex] = 45 ways
Number of ways of selecting 3 men and 2 women = 56*45
Number of ways of selecting 3 men and 2 women = 2520
Probability of selecting 3 men and 2 women = 2520/8568 = 0.294
probability that a 5 member committee chosen randomly will have 3 men and 2 women = 0.294
Find the area of the largest rectangle that can be inscribed in a right triangle with legs of lengths 4 cm and 6 cm if two sides of the rectangle lie along the legs. webassign cengage
Answer:
[tex]6cm^2[/tex]
Step-by-step explanation:
Let x and y be the sides of the rectangle.
Area of the Triangle, A(x,y)=xy
From the diagram, Triangle ABC is similar to Triangle AKL
AK=4-y
Therefore:
[tex]\dfrac{x}{6} =\dfrac{4-y}{4}[/tex]
[tex]4x=6(4-y)\\x=\dfrac{6(4-y)}{4} \\x=1.5(4-y)\\x=6-1.5y[/tex]
We substitute x into A(x,y)
[tex]A=y(6-1.5y)=6y-1.5y^2[/tex]
We are required to find the maximum area. This is done by finding
the derivative of Aand solving for the critical points.
Derivative of A:
[tex]A'(y)=6-3y\\$Set $A'=0\\6-3y=0\\3y=6\\y=2$ cm[/tex]
Recall that: x=6-1.5y
x=6-1.5(2)
x=6-3
x=3cm
Therefore, the maximum rectangle area is:
Area =3 X 2 =[tex]6cm^2[/tex]
Jeff's net monthly income is $2550. His monthly expense for rent is $625. What percent of his net monthly income is his rent? (Round your answer to the nearest whole percent.)
Answer:
25%
I cannot really describe how I did it but I am pretty sure it is correct.
The amount of money that is left in a medical savings account is expressed by the equation y = negative 24 x + 379, where x represents the number of weeks and y represents the amount of money, in dollars, that is left in the account. After how many weeks will the account have $67 left in it? 10 weeks 13 weeks 15 weeks 21 weeks
Answer: 13 weeks
Step-by-step explanation:
y = -24x + 379
67 = -24x + 379
24x = 379 - 67
x = 312 / 24
x = 13
Answer:
the answer is 13 weeks
Step-by-step explanation:
y = amount left
y = 67
67 = -24x+379
-312 = -24x
x = -312 / -24
x = 13
2(3y+6)−3(−4−y) simplified
Answer:
9y+24
Step-by-step explanation:
2(3y+6)-3(-4-y)
Expand the brackets.
6y+12+12+3y
Rearrange.
6y+3y+12+12
Add like terms.
9y+24
Answer:
9y+24solution,
[tex]2(3y + 6) - 3( - 4 - y) \\ = 6y + 12 + 12 + 3y[/tex]
Collect like terms,
[tex]6y + 3y + 12 + 12[/tex]
Simplify
[tex]9y + 24[/tex]
hope this helps...
Good luck on your assignment..
Math 7th grade. help please!!!
Answer:
1 .angle S is 90 degree
2. 12
3. 155 degree
1. x = 3
hope it helps .....
Which of the following are point-slope equations of the line going through (3,
6) and (1,-2)? Check all that apply:
Answer:
y+2=4(x-1)
y-6=4(x-3)
Step-by-step explanation:
Slope between (3, 6) and (1, -2)
6-(-2)/3-1
8/2
4
y+2=4(x-1)
y-6=4(x-3)
A restaurant borrows from a local bank for months. The local bank charges simple interest at an annual rate of for this loan. Assume each month is of a year. Answer each part below.Do not round any intermediate computations, and round your final answers to the nearest cent. If necessary, refer to the list of financial formulas.
(a) Find the interest that will be owed after 4 months
(b) Assuming the restaurant doesn't make any payments, find the amount owed after 4 months
Complete Question:
A restaurant borrows $16,100 from a local bank for 4 months. The local bank charges simple interest at an annual rate of 2.45% for this loan. Assume each month is 1/12 of a year.
Answer each part below.Do not round any intermediate computations, and round your final answers to the nearest cent. If necessary, refer to the list of financial formulas.
(a) Find the interest that will be owed after 4 months
(b) Assuming the restaurant doesn't make any payments, find the amount owed after 4 months
Answer:
a) Interest that will be owed after 4 months , I = $131.48
b) Amount owed by the restaurant after 4 months = $16231.48
Step-by-step explanation:
Note that the question instructs not to round any intermediate computations except the final answer.
Annual rate = 2.45%
Monthly rate, [tex]R = \frac{2.45\%}{12}[/tex]
R = 0.20416666666%
Time, T = 4 months
Interest, [tex]I = \frac{PRT}{100}[/tex]
[tex]I = \frac{16100 * 0.20416666666 * 4}{100} \\I = 161 * 0.20416666666 * 4\\I = \$131.483333333\\I = \$131.48[/tex]
b) If the restaurant doesn't make any payments, that means after four months, they will be owing both the capital and the interest ( i.e the amount)
Amount owed by the restaurant after 4 months = (Amount borrowed + Interest)
Amount owed by the restaurant after 4 months = 16100 + 131.48
Amount owed by the restaurant after 4 months = $16231.48
PLEASE I NEED HELP ASAP sally drives for 2 hours at an average speed of 70 m/h. she then drives for half an hour at an average speed of 40 m/h work ot the total distance that sally has travelled
Answer:
Total Distance = 160 m
Average speed = 64 m/hr
Step-by-step explanation:
For first 2 hours:
Distance = Speed × Time
D = 70 × 2
D = 140 m
For the next half hour:
Distance = Speed × Time
Distance = 40 × 0.5
Distance = 20 m
Now total Distance:
Total Distance = 140+20
Total Distance = 160 m
After that,
Average Speed = Total Distance Covered/ Total Time taken
Average Speed = 160 m / 2.5 hours
Average speed = 64 m/hr
Find sin angle ∠ C.
A. 12/13
B. 1
C. 13/12
D. 13/5
Answer:
A
Step-by-step explanation:
We can use the trigonometric ratios. Recall that sine is the ratio of the opposite side to the hypotenuse:
[tex]\displaystyle \sin(C)=\frac{\text{opposite}}{\text{hypotenuse}}[/tex]
The opposite side with respect to ∠C is 24 and the hypotenuse is 26.
Hence:
[tex]\displaystyle \sin(C)=\frac{24}{26}=\frac{12}{13}[/tex]
Our answer is A.
Word related to circle
Answer:
Center, radius, chord, diameter... are Words related to circle
A population of protozoa develops with a constant relative growth rate of 0.7944 per member per day. On day zero the population consists of two members. Find the population size after six days
Answer:
[tex] y =y_o e^{kt}[/tex]
Where [tex] y_o = 2[/tex] the relative growth is [tex] k =0.7944[/tex] and t represent the number of days.
For this case we can to find the population after the day 6 so then we need to replace t =6 in our model and we got:
[tex] y(6) =2 e^{0.7944*6} = 234.99 \approx 235[/tex]
And for this case we can conclude that the population of protozoa for the 6 day would be approximately 235
Step-by-step explanation:
We can assume that the following model can be used:
[tex] y =y_o e^{kt}[/tex]
Where [tex] y_o = 2[/tex] the relative growth is [tex] k =0.7944[/tex] and t represent the number of days.
For this case we can to find the population after the day 6 so then we need to replace t =6 in our model and we got:
[tex] y(6) =2 e^{0.7944*6} = 234.99 \approx 235[/tex]
And for this case we can conclude that the population of protozoa for the 6 day would be approximately 235
Which expression is equal to -3b(6b^-8)
Answer:a^2/b
Step-by-step explanation:
(a^6b^−3)1^/3
a^6 ^ 1/3 b ^ -3 ^ 1/3
using the power of power rule we can multiply the exponents
a ^ (6*1/3) b ^ (-3* 1/3)
a^ 2 b ^ -1
the negative exponent flips it from the numerator to the denominator
a^2* 1/ b^1
a^2/b
Answer:
A. -18b^-4
second answer is B. -18/b^-4
Step-by-step explanation:
Which of the following equations describes the line shown below? Check all
that apply
Answer:
y-7=1/2(x-8)
y-4=1/2(x-2)
Step-by-step explanation:
Slope: 3/6, or 1/2
y-7=1/2(x-8)
y-4=1/2(x-2)
According to Brad, consumers claim to prefer the brand-name products better than the generics, but they can't even tell which is which. To test his theory, Brad gives each of 199 consumers two potato chips - one generic, and one brand-name - then asks them which one is the brand-name chip. 92 of the subjects correctly identified the brand-name chip.
Required:
a. At the 0.01 level of significance, is this significantly greater than the 50% that could be expected simply by chance?
b. Find the test statistic value.
Answer:
a. There is not enough evidence to support the claim that the proportion that correctly identifies the chip is significantly smaller than 50%.
b. Test statistic z=-1.001
Step-by-step explanation:
This is a hypothesis test for a proportion.
The claim is that the proportion that correctly identifies the chip is significantly smaller than 50%.
Then, the null and alternative hypothesis are:
[tex]H_0: \pi=0.5\\\\H_a:\pi<0.5[/tex]
The significance level is 0.01.
The sample has a size n=199.
The sample proportion is p=0.462.
[tex]p=X/n=92/199=0.462[/tex]
The standard error of the proportion is:
[tex]\sigma_p=\sqrt{\dfrac{\pi(1-\pi)}{n}}=\sqrt{\dfrac{0.5*0.5}{199}}\\\\\\ \sigma_p=\sqrt{0.001256}=0.035[/tex]
Then, we can calculate the z-statistic as:
[tex]z=\dfrac{p-\pi+0.5/n}{\sigma_p}=\dfrac{0.462-0.5+0.5/199}{0.035}=\dfrac{-0.035}{0.035}=-1.001[/tex]
This test is a left-tailed test, so the P-value for this test is calculated as:
[tex]\text{P-value}=P(z<-1.001)=0.16[/tex]
As the P-value (0.16) is greater than the significance level (0.01), the effect is not significant.
The null hypothesis failed to be rejected.
There is not enough evidence to support the claim that the proportion that correctly identifies the chip is significantly smaller than 50%.
Overweight participants who lose money when they don’t meet a specific exercise goal meet the goal more often, on average, than those who win money when they meet the goal, even if the final result is the same financially. In particular, participants who lost money met the goal for an average of 45.0 days (out of 100) while those winning money or receiving other incentives met the goal for an average of 33.7 days. The incentive does make a difference. In this exercise, we ask how big the effect is between the two types of incentives. Find a 90% confidence interval for the difference in mean number of days meeting the goal, between people who lose money when they don't meet the goal and those who win money or receive other similar incentives when they do meet the goal. The standard error for the difference in means from a bootstrap distribution is 4.14.
Answer:
The 90% confidence interval for the difference in mean number of days meeting the goal is (4.49, 18.11).
Step-by-step explanation:
The (1 - α)% confidence interval for the difference between two means is:
[tex]CI=\bar x_{1}-\bar x_{2}\pm z_{\alpha/2}\times SE_{\text{diff}}[/tex]
It is provided that:
[tex]\bar x_{1}=45\\\bar x_{2}=33.7\\SE_{\text{diff}} =4.14\\\text{Confidence Level}=90\%[/tex]
The critical value of z for 90% confidence level is,
z = 1.645
*Use a z-table.
Compute the 90% confidence interval for the difference in mean number of days meeting the goal as follows:
[tex]CI=\bar x_{1}-\bar x_{2}\pm z_{\alpha/2}\times SE_{\text{diff}}[/tex]
[tex]=45-33.7\pm 1.645\times 4.14\\\\=11.3\pm 6.8103\\\\=(4.4897, 18.1103)\\\\\approx (4.49, 18.11)[/tex]
Thus, the 90% confidence interval for the difference in mean number of days meeting the goal is (4.49, 18.11).
Which expanded expressions represent the exponential expression (–4)3 · p4? Select all that apply. (–4) · (–4) · (–4) · (–4) · p · p · p p · p · p · p · (–4) · (–4) · (–4) p · (–4) · (–4) · p · (–4) · p p · p · (–4) · (–4) · p · p · (–4) (–4) · p · p · p · (–4) · (–4) · (–4) (–4) · (–4) · p · (–4) · p · p · p
The expanded form of the given exponential expression is (-4)×(-4)×(-4)×p×p×p×p.
What is the exponent?Exponent is defined as the method of expressing large numbers in terms of powers. That means, exponent refers to how many times a number multiplied by itself.
The given expression is (-4)³·p⁴.
Here, (-4)³= (-4)×(-4)×(-4)
p⁴=p×p×p×p
So, (-4)×(-4)×(-4)×p×p×p×p
= -64×p×p×p×p
Therefore, the expanded form is (-4)×(-4)×(-4)×p×p×p×p.
To learn more about an exponents visit:
https://brainly.com/question/15993626.
#SPJ3
can some one answer this plsss
Answer:
D
Step-by-step explanation:
0.2x+5=8
0.2x=3
x=15
Therefore, the correct answer is choice D. Hope this helps!
The area of the sector of a circle with a radius of 8 centimeters is 125.6 square centimeters. The estimated value of is 3.14.
The measure of the angle of the sector is
Answer:
225º or 3.926991 radians
Step-by-step explanation:
The area of the complete circle would be π×radius²: 3.14×8²=200.96
The fraction of the circle that is still left will be a direct ratio of the angle of the sector of the circle.
[tex]\frac{125.6}{200.96}[/tex]=.625. This is the ratio of the circe that is in the sector. In order to find the measure we must multiply it by either the number of degrees in the circle or by the number of radians in the circle (depending on the form in which you want your answer).
There are 360º in a circle, so .625×360=225 meaning that the measure of the angle of the sector is 225º.
We can do the same thing for radians, if necessary. There are 2π radians in a circle, so .625×2π=3.926991 radians.
Answer:
225º
Step-by-step explanation:
divide and simplify x^2+7x+12 over x+3 divided by x-1 over x+4
Answer:
[tex]\dfrac{x^2+8x+16}{x-1}[/tex]
Step-by-step explanation:
In general, "over" and "divided by" are used to mean the same thing. Parentheses are helpful when you want to show fractions divided by fractions. Here, we will assume you intend ...
[tex]\dfrac{\left(\dfrac{x^2+7x+12}{x+3}\right)}{\left(\dfrac{x-1}{x+4}\right)}=\dfrac{(x+3)(x+4)}{x+3}\cdot\dfrac{x+4}{x-1}=\dfrac{(x+4)^2}{x-1}\\\\=\boxed{\dfrac{x^2+8x+16}{x-1}}[/tex]
Please answer this correctly
Answer:
Raspberry: 30%
Strawberry: 15%
Apple: 20%
Lemon: 35%
Step-by-step explanation:
18 + 9 + 12 + 21 = 60 (there are 60 gummy worms)
18 out of 60 = 30%
9 out of 60 = 15%
12 out of 60 = 20%
21 out of 60 = 35%
Please mark Brainliest
Hope this helps
Answer:
Raspberry Worms: 30%
Strawberry Worms: 15%
Apple Worms: 20%
Lemon Worms: 35%
Step-by-step explanation:
Raspberry Worms: [tex]\frac{18}{18+9+12+21}=\frac{18}{60}=\frac{30}{100}[/tex] or 30%
Strawberry Worms: [tex]\frac{9}{18+9+12+21}=\frac{9}{60} =\frac{15}{100}[/tex] or 15%
Apple Worms: [tex]\frac{12}{18+9+12+21} =\frac{12}{60} =\frac{20}{100}[/tex] or 20%
Lemon Worms: [tex]\frac{21}{18+9+12+21} =\frac{21}{60} =\frac{35}{100}[/tex] or 35%
(b) How many different groups of children can be chosen from a class of 18 children if the class contains one set of twins who must not be separated?
Preciso de ajudaa! Resolução também! - Considere as funções f e g tais que f(x)= x³+1 e g(x)= x-2 Determine: a)(fog)(0) b)(gof)(0) c)(fof)(1) d)(gog)(1)
Answer:
(fog)(x) means that we have the function f(x) evaluated in the function g(x), or f(g(x)).
So, if f(x) = x^3 + 1 and g(x) = x - 2.
we have:
a) (fog)(0) = f(g(0)) = (0 - 2)^3 + 1 = -8 + 1 = -7
b) (gof)(0) = g(f(0)) = (0^3 + 1) - 2 = -1
c) (fof)(1) = f(f(1)) = (1^3 + 1)^3 + 1 = 2^3 + 1 = 8 + 1 = 9
d) (gog)(1) = g(g(1)) = (1 - 2) - 2 = -1 -2 = -3