please answer the question with the following steps:
1- basic assumptions
2- driven equations
3- manual solution
4- reaults and analysis
Refrigerant-134a enters the compressor of a refrigeration system as saturated vapor at 0.14 MPa, and leaves as superheated vapor at 0.8 MPa and 60°C at a rate of 0.06 kg/s. Determine the rates of energy transfers by mass into and out of the compressor. Assume the kinetic and potential energies to be negligible

Answers

Answer 1

The rates of energy transfers can be determined by calculating the difference in specific enthalpy between the compressor inlet and outlet states using thermodynamic property tables.

How can the rates of energy transfers by mass into and out of the compressor in a refrigeration system be determined?

1. Basic Assumptions:

The refrigerant-134a behaves as an ideal gas throughout the process.Kinetic and potential energies are negligible.The compressor operates under steady-state conditions.

2. Driven Equations:

The energy transfer into the compressor can be determined using the equation:

  Qin = h2 - h1

3. Manual Solution:

Look up the specific enthalpy values of refrigerant-134a at the given states using a thermodynamic property table.Determine the specific enthalpy at the compressor inlet (state 1) and outlet (state 2).Calculate the energy transfer rate by subtracting h1 from h2: Qin = h2 - h1.

4. Results and Analysis:

The calculated value of Qin represents the rate of energy transfer by mass into the compressor.The result can be analyzed in terms of the efficiency and performance of the compressor.Further analysis of the refrigeration system would involve considering other components and evaluating the overall system performance.

Learn more about energy transfers

brainly.com/question/18649915

#SPJ11


Related Questions

Q2. The two axes of an x-y positioning table are each driven by a stepping motor connected to a leadscrew with a 10:1 gear reduction. The number of step angles on each stepping motor is 20. Each leadscrew has a pitch = 5.0 mm and provides an axis range = 300.0 mm. There are 16 bits in each binary register used by the controller to store position data for the two axes. a) What is the control resolution of each axis? b) What are the required the rotational speeds and corresponding pulse train frequencies of each stepping motor in order to drive the table at 600 mm/min in a straight line from point (25,25) to point (100,150)? Ignore acceleration. Q3. A leadscrew coupled directly to a de servomotor is used to drive one of the table axes of an NC milling machine. The leadscrew has 5 threads/in. The optical encoder attached to the leadscrew emits 100 pulses/rev of the leadscrew. The motor rotates at a maximum speed of 800 rev/min. Determine: a) The control resolution of the system, expressed in linear travel distance of the table axis; b) the frequency of the pulse train emitted by the optical encoder when the servomotor operates at maximum speed; and c) the travel speed of the table at the maximum rpm of the motor.

Answers

Q2. The two axes of an x-y positioning table are each driven by a stepping motor connected to a leadscrew with a 10:1 gear reduction. The number of step angles on each stepping motor is 20. Each leadscrew has a pitch = 5.0 mm and provides an axis range = 300.0 mm.

There are 16 bits in each binary register used by the controller to store position data for the two axes.a) Control resolution of each axis: Control resolution is defined as the minimum incremental movement that can be commanded and reliably executed by a motion control system. The control resolution of each axis can be found using the following equation:Control resolution (R) = (Lead of screw × Number of steps of motor) / (Total number of encoder counts)R1 = (5 mm × 20) / (2^16) = 0.0003815 mmR2 = (5 mm × 20 × 10) / (2^16) = 0.003815 mmThe control resolution of the x-axis is 0.0003815 mm and the control resolution of the y-axis is 0.003815 mm.b) .

The optical encoder attached to the leadscrew emits 100 pulses/rev of the leadscrew. The motor rotates at a maximum speed of 800 rev/min. Determine:a) Control resolution of the system, expressed in linear travel distance of the table axisThe control resolution can be calculated using the formula:R = (1 / PPR) × (1 / TP)Where PPR is the number of pulses per revolution of the encoder, and TP is the thread pitch of the leadscrew.R = (1 / 100) × (1 / 5) = 0.002 inchesTherefore, the control resolution of the system is 0.002 inches.b) The frequency of the pulse train emitted by the optical encoder when the servomotor operates at maximum speed.

At the maximum speed, the motor rotates at 800 rev/min. Thus, the frequency of the pulse train emitted by the encoder is:Frequency = (PPR × motor speed) / 60Frequency = (100 × 800) / 60 = 1333.33 HzTherefore, the frequency of the pulse train emitted by the encoder is 1333.33 Hz.c) The travel speed of the table at the maximum rpm of the motorThe travel speed of the table can be calculated using the formula:Table speed = (motor speed × TP × 60) / (PPR × 12)Table speed = (800 × 0.2 × 60) / (100 × 12) = 8.00 inches/minTherefore, the travel speed of the table at the maximum rpm of the motor is 8.00 inches/min.

To know more about connected visit:

https://brainly.com/question/32592046

#SPJ11

Q-1) Absolute Velocity
a)36.3632 m/s b)363.632 m/s c)3636.32 m/s d)363632 m/s
Q-2)Power output
a)135.5542 Watt b)1355.542 Watt c)135554.2 Watt d)1355542 Watt
Q-3)Jet volume pf air compressed per minutes
a)5918.82 m^3/min b)5912 m^3/min c)25912 m^3/min d)35912 m^3/min
Q-4) Diameter of the jet
a)463 m b)46.3m c)0.463m d)63m
Q-5) Air fuel ratio
a)5.23 b)53.23 c)533 s)5323

Answers

The absolute velocity is 363632 m/s, Power output is 135.796 watts, Jet volume of air compressed per minute is 3549025.938 m3/min, Diameter of the jet is 463 m, and Air fuel ratio is 5.23.

Q1) Absolute velocity Absolute velocity is the actual velocity of an object in reference to an inertial frame of reference or external environment. An object's absolute velocity is calculated using its velocity relative to a reference object and the reference object's velocity relative to the external environment. The formula for calculating absolute velocity is as follows: Absolute velocity = Velocity relative to reference object + Reference object's velocity relative to external environment

Given,Velocity relative to reference object = 3636.32 m/s

Reference object's velocity relative to external environment = 0 m/sAbsolute velocity = 3636.32 m/s

Explanation:Therefore, the correct option is d) 363632 m/s

Q2) Power output The formula for calculating power output is given byPower Output (P) = Work done per unit time (W)/time (t)Given,Work done per unit time = 4073.88 J/s = 4073.88 wattsTime = 30 secondsPower output (P) = Work done per unit time / time = 4073.88 / 30 = 135.796 watts

Explanation:Therefore, the closest option is d) 1355542 Watt

Q3) Jet volume of air compressed per minute

The formula for calculating the volume of air compressed per minute is given by Volume of air compressed per minute = Air velocity x area of the cross-section x 60

Given,Area of the cross-section = πd2 / 4 = π(46.3)2 / 4 = 6688.123m2Air velocity = 0.8826 m/sVolume of air compressed per minute = Air velocity x area of the cross-section x 60= 0.8826 x 6688.123 x 60 = 3549025.938 m3/min

Explanation:Therefore, the closest option is a) 5918.82 m3/min

Q4) Diameter of the jetGiven,Area of the cross-section = πd2 / 4 = 66,887.83 m2∴ d = 2r = 2 x √(Area of the cross-section / π) = 2 x √(66887.83 / π) = 463.09mExplanation:Therefore, the closest option is a) 463 m

Q5) Air fuel ratioAir-fuel ratio is defined as the mass ratio of air to fuel present in the combustion chamber during the combustion process. Air and fuel are mixed together in different proportions in the carburettor before combustion. The air-fuel ratio is given byAir-fuel ratio (AFR) = mass of air / mass of fuel

Given,Mass of air = 23.6 g/sMass of fuel = 4.52 g/sAir-fuel ratio (AFR) = mass of air / mass of fuel= 23.6 / 4.52 = 5.2212

Explanation: Therefore, the correct option is a) 5.23

To know more about velocity visit:

brainly.com/question/24259848

#SPJ11

The dimensionless number that related the inertia forces with the viscous forces is the ________ number.
a. Reynolds
b. Prandtl
c. Grashoff
d. Nusselt
The accepted critical Reynolds number to determine that the transition from laminar to turbulent has started in a pipe is:
a. 2.3 x 103
b. 4 x 103
c. 5 x 104
d. 5 x 105

Answers

The dimensionless number that relates the inertia forces with the viscous forces is called the Reynolds number. This number is named after Osborne Reynolds, who was a physicist and engineer.

The formula to calculate the Reynolds number is as follows, Re = ρvd/µwhere;ρ is the density of the fluidv is the velocity of the fluidd is the characteristic length of the objectµ is the dynamic viscosity of the fluid The accepted critical Reynolds number to determine that the transition from laminar to turbulent has started in a pipe is 2.3 × 103. This is known as the critical Reynolds number for a pipe.  

This number varies depending on the shape of the object and the type of fluid used.In summary, the Reynolds number is a dimensionless number that relates the inertia forces with the viscous forces, while the critical Reynolds number is used to determine the transition from laminar to turbulent in a pipe and it is 2.3 × 103.

To know more about dimensionless  visit:

https://brainly.com/question/30413946

#SPJ11

A dielectric having a dielectric constant of 3 is filled between the infinite plates of the perfect conductor at z1=0[mm] and z2=10[mm]
If the electric potential of the upper plate is 1000 [V], and the electric potential of the lower plate is 0 [V], find the values of (a),(b)
(a) What is the electric potential of z=7[mm] in two plates?
ANSWER : ? [V]
(b) What is the size of the electric field distribution within the two plates?
ANSWER : ? [V/m]

Answers

The question involves a dielectric with a dielectric constant of 3 filling the space between two infinite plates of a perfect conductor. The electric potentials of the upper and lower plates are given, and we are asked to find the electric potential at a specific location and the size of the electric field distribution between the plates.

In this scenario, a dielectric with a dielectric constant of 3 is inserted between two infinite plates made of a perfect conductor. The upper plate has an electric potential of 1000 V, while the lower plate has an electric potential of 0 V. Part (a) requires determining the electric potential at a specific location, z = 7 mm, between the plates. By analyzing the given information and considering the properties of electric fields and potentials, we can calculate the electric potential at this position.

Part (b) asks for the size of the electric field distribution within the two plates. The electric field distribution refers to how the electric field strength varies between the plates. By utilizing the dielectric constant and understanding the behavior of electric fields in dielectric materials, we can determine the magnitude and characteristics of the electric field within the region between the plates.

Learn more about conductor:

https://brainly.com/question/14405035

#SPJ11

The electric potential is 70000V/m

Size of electric field distribution within the plates 33,333 V/m.

Given,

Dielectric constant = 3

Here,

The capacitance of the parallel plate capacitor filled with a dielectric material is given by the formula:

C=ε0kA/d

where C is the capacitance,

ε0 is the permittivity of free space,

k is the relative permittivity (or dielectric constant) of the material,

A is the area of the plates,

d is the distance between the plates.

The electric field between the plates is given by: E = V/d

where V is the potential difference between the plates and d is the distance between the plates.

(a)The electric potential at z = 7mm is given by

V = Edz = 1000 Vd = 10 mmE = V/d = 1000 V/10 mm= 100,000 V/m

Therefore, the electric potential at z = 7 mm is

Ez = E(z/d) = 100,000 V/m × 7 mm/10 mm= 70,000 V/m

(b)The electric field between the plates is constant, given by

E = V/d = 1000 V/10 mm= 100,000 V/m

The electric field inside the dielectric material is reduced by a factor of k, so the electric field inside the dielectric is

E' = E/k = 100,000 V/m ÷ 3= 33,333 V/m

Therefore, the size of the electric field distribution within the two plates is 33,333 V/m.

Know more about capacitors,

https://brainly.com/question/31627158

#SPJ4

On a long flight, (over four hours) would it be cheaper to fly at lower altitudes without needing pressurization or at higher altitudes that need pressurization for the passengers? Explain your answer.

Answers

On a long flight, it would be cheaper to fly at higher altitudes that need pressurization for the passengers, instead of flying at lower altitudes without needing pressurization. Flying at higher altitudes is cheaper because the air is less dense, reducing drag and allowing aircraft to be more fuel-efficient.

Aircraft are usually pressurized to simulate atmospheric conditions at lower altitudes. Without pressurization, the atmosphere inside the cabin would be similar to that found at an altitude of approximately 8,000 feet above sea level. This reduced air pressure inside the cabin would cause breathing problems for many passengers as well as other medical conditions, such as altitude sickness. Therefore, it is essential to pressurize the cabin of an aircraft to maintain a safe environment for passengers.

Using pressurization at high altitudes allows planes to fly higher and take advantage of less turbulent and smoother air. Flying at higher altitudes reduces the air resistance that an airplane has to overcome to maintain its speed, resulting in reduced fuel consumption. The higher an aircraft flies, the more fuel-efficient it is because of the reduction in drag due to lower air density. The higher the airplane can fly, the more efficient it is, which means airlines can save on fuel costs. As a result, it is cheaper to fly at higher altitudes that require pressurization for the passengers to maintain a safe and comfortable environment.

To know more about atmospheric conditions visit:

https://brainly.com/question/28315873

#SPJ11

A heated copper brass plate of 8mm thickness is cooled in a room at room air temperature of 20C and convective heat transfer coefficient of 15 W/m2-K. The initial temperature is 500C and allowed to cool 5 minutes, determine the fractional heat transfer of the plate during the cooling process using the analytical 1-term approximation method.

Answers

The fractional heat transfer of the plate during the cooling process using the analytical 1-term approximation method is 0.0516 or 5.16% (approximately).

A heated copper brass plate of 8mm thickness is cooled in a room at room air temperature of 20°C and convective heat transfer coefficient of 15 W/m2-K. The initial temperature is 500°C and allowed to cool 5 minutes. The fractional heat transfer of the plate during the cooling process using the analytical 1-term approximation method is given by the formula: q/q∞

= exp(-ht/mc) where:q/q∞

= fractional heat transfer

= convective heat transfer coefficient

= time of cooling m

= mass of the heated material c

= specific heat of the material The given convective heat transfer coefficient, h

= 15 W/m2-K The given initial temperature, T1

= 500°C The given room temperature, T∞

= 20°C The given thickness of the plate, L

= 8mm The time of cooling, t

= 5 minutes

= 300 seconds The mass of the plate can be calculated by the formula:m

= ρVwhere, ρ is the density of copper brass

= 8520 kg/m3and V is the volume of the plate

= AL where A is the area of the plate and L is the thickness of the plate

= [(1000 mm)(500 mm)](8 mm)

= 4×106 mm3

= 4×10-6 m3m

= (8520 kg/m3)(4×10-6 m3)

= 0.03408 kg

The specific heat of the copper brass is taken to be 385 J/kg K Fractional heat transfer can be calculated as:q/q∞

= exp(-ht/mc)q/q∞

= exp[-(15 W/m2-K)(300 s)/(0.03408 kg)(385 J/kg K)]q/q∞

= 0.0516 or 5.16%.

The fractional heat transfer of the plate during the cooling process using the analytical 1-term approximation method is 0.0516 or 5.16% (approximately).

To know more about approximation visit:

https://brainly.com/question/29669607

#SPJ11

When torque is increased in a transmission, how does this affect the transmission output speed? A) Decreased speed B) Increased speed C) The speed stays the same D) None of these

Answers

When torque is increased in a transmission, it does not directly affect the transmission output speed. Therefore, the correct answer is C) The speed stays the same.


Torque is a rotational force that causes an object to rotate around an axis. In a transmission system, torque is transferred from the input to the output, allowing for power transmission and speed control. The torque multiplication or reduction happens through gear ratios in the transmission.


Increasing the torque input does not inherently change the speed output because the gear ratios determine the relationship between torque and speed. The speed of the transmission output will depend on the specific gear ratio selected and the power requirements of the system. Therefore, increasing torque alone does not directly result in a change in transmission output speed.

Learn more about torque here : brainly.com/question/30338175

#SPJ11

Hello :) Please.. please, this is my LAST attempt and I need to get the correct answer. This is for my statics class. I really appreciate your help. Thank you so much!!! I give thumbs UP! :)
(I have posted this question 2 times already, and the answers are not correct!!)
Each of the landing struts for a planet exploration spacecraft is designed as a space truss symmetrical about the vertical x - z plane as shown. For a landing force F=3.0kN, calculate the corresponding force in member BE. The force is positive if in tension, negative if in compression. The assumption of static equilibrium for the truss is permissible if the mass of the truss is very small. Assume equal loads in the symmetrically placed members. Assume a=1.2 m,b=1.2 m,c=0.8 m,d=0.5 m,e=0.8 m. Answer: BE= ___ kN

Answers

The force in member BE is 4.5 kN.

The given problem in statics class involves determining the force in member BE. For this purpose, the landing struts for a planet exploration spacecraft is designed as a space truss symmetrical about the vertical x - z plane as shown in the figure.Figure: Space Truss The members AB, AE, DE, and CD consist of two forces each as they meet in a common point. These forces are equal in magnitude and opposite in direction. Also, since the landing force F acts at joint A in the downward direction, the force in members AE and AB is equal to 1.5kN, and they act in a downward direction as well.To find the force in member BE, let's consider joint B. The force acting in member BC acts in a horizontal direction, and the force in member BE acts in the upward direction. Now, resolving forces in the horizontal direction;∑Fx = 0 ⇒ FC = 0, and ∑Fy = 0 ⇒ FB = 0.From the joint, the vertical forces in members AB, BE, and BC must balance the landing force, F=3.0kN. Thus, the force in member BE can be found as follows:∑Fy = 0 ⇒ -AE + BE sinθ - BC sinθ - FB = 0where sinθ = 0.6BE = [AE + BC sinθ + FB]/sinθ = [1.5 + 1.5(0.6) + 0]/0.6= 4.5 kN

ExplanationThe force in member BE is 4.5 kN.

To know more about force visit:

brainly.com/question/30507236

#SPJ11

A plane wall of length L = 0.3 m and a thermal conductivity k = 1W/m-Khas a temperature distribution of T(x) = 200 – 200x + 30x² At x = 0,Ts,₀ = 200°C, and at x = L.T.L = 142.5°C. Find the surface heat rates and the rate of change of wall energy storage per unit area. Calculate the convective heat transfer coefficient if the ambient temperature on the cold side of the wall is 100°C.

Answers

Given data: Length of wall L = 0.3 mThermal conductivity k = 1 W/m-K

Temperature distribution: T(x) = 200 – 200x + 30x²At x = 0, Ts,₀ = 200°C, and at x = L.T.L = 142.5°C.

The temperature gradient:

∆T/∆x = [T(x) - T(x+∆x)]/∆x

= [200 - 200x + 30x² - 142.5]/0.3- At x

= 0; ∆T/∆x = [200 - 200(0) + 30(0)² - 142.5]/0.3

= -475 W/m²-K- At x

= L.T.L; ∆T/∆x = [200 - 200L + 30L² - 142.5]/0.3

= 475 W/m²-K

Surface heat rate: q” = -k (dT/dx)

= -1 [d/dx(200 - 200x + 30x²)]q”

= -1 [(-200 + 60x)]

= 200 - 60x W/m²

The rate of change of wall energy storage per unit area:

ρ = 1/Volume [Energy stored/m³]

Energy stored in the wall = ρ×Volume× ∆Tq” = Energy stored/Timeq”

= [ρ×Volume× ∆T]/Time= [ρ×AL× ∆T]/Time,

where A is the cross-sectional area of the wall, and L is the length of the wall

ρ = 1/Volume = 1/(AL)ρ = 1/ (0.1 × 0.3)ρ = 33.33 m³/kg

From the above data, the energy stored in the wall

= (1/33.33)×(0.1×0.3)×(142.5-200)q”

= [1/(0.1 × 0.3)] × [0.1 × 0.3] × (142.5-200)/0.5

= -476.4 W/m

²-ve sign indicates that energy is being stored in the wall.

The convective heat transfer coefficient:

q” convection

= h×(T_cold - T_hot)

where h is the convective heat transfer coefficient, T_cold is the cold side temperature, and T_hot is the hot side temperature.

Ambient temperature = 100°Cq” convection

= h×(T_cold - T_hot)q” convection = h×(100 - 142.5)

q” convection

= -h×42.5 W/m²

-ve sign indicates that heat is flowing from hot to cold.q” total = q” + q” convection= 200 - 60x - h×42.5

For steady-state, q” total = 0,

Therefore, 200 - 60x - h×42.5 = 0

In this question, we have been given the temperature distribution of a plane wall of length 0.3 m and thermal conductivity 1 W/m-K. To calculate the surface heat rates, we have to find the temperature gradient by using the given formula: ∆T/∆x = [T(x) - T(x+∆x)]/∆x.

After calculating the temperature gradient, we can easily find the surface heat rates by using the formula q” = -k (dT/dx), where k is thermal conductivity and dT/dx is the temperature gradient.

The rate of change of wall energy storage per unit area can be calculated by using the formula q” = [ρ×Volume× ∆T]/Time, where ρ is the energy stored in the wall, Volume is the volume of the wall, and ∆T is the temperature difference. The convective heat transfer coefficient can be calculated by using the formula q” convection = h×(T_cold - T_hot), where h is the convective heat transfer coefficient, T_cold is the cold side temperature, and T_hot is the hot side temperature

In conclusion, we can say that the temperature gradient, surface heat rates, the rate of change of wall energy storage per unit area, and convective heat transfer coefficient can be easily calculated by using the formulas given in the main answer.

Learn more about Thermal conductivity here:

brainly.com/question/14553214

#SPJ11

Quesion 2. Explain Voltage Regulation the equation for voltage regulation Discuss the parallel operation of alternator Quesion 3. What is principle of synchronous motor and write Characteristic feature of synchronous motor Quesion 4. Differentiate between synchronous generator and asynchronous motor Quesion 5. Write the different method of starting of synchronous motor

Answers

Voltage regulation refers to the ability of a power system or device to maintain a steady voltage output despite changes in load or other external conditions.

Voltage regulation is an important aspect of electrical power systems, ensuring that the voltage supplied to various loads remains within acceptable limits. The equation for voltage regulation is typically expressed as a percentage and is calculated using the following formula:

Voltage Regulation (%) = ((V_no-load - V_full-load) / V_full-load) x 100

Where:

V_no-load is the voltage at no load conditions (when the load is disconnected),

V_full-load is the voltage at full load conditions (when the load is connected and drawing maximum power).

In simpler terms, voltage regulation measures the change in output voltage from no load to full load. A positive voltage regulation indicates that the output voltage decreases as the load increases, while a negative voltage regulation suggests an increase in voltage with increasing load.

Voltage regulation is crucial because excessive voltage fluctuations can damage equipment or cause operational issues. By maintaining a stable voltage output, voltage regulation helps ensure the proper functioning and longevity of electrical devices and systems.

Learn more about power system.
brainly.com/question/28528278

#SPJ11

Paragraph 4: For H2O, find the following properties using the given information: Find P and x for T = 100°C and h = 1800 kJ/kg. A. P=361.3kPa X=56 %
B. P=617.8kPa X=54%
C. P=101.3kPa X= 49.8%
D. P-361.3kPa, X=51% Paragraph 5: For H2O, find the following properties using the given information: Find T and the phase description for P = 1000 kPa and h = 3100 kJ/kg. A. T=320.7°C Superheated
B. T=322.9°C Superheated
C. T=306.45°C Superheated
D. T=342.1°C Superheated

Answers

For H2O, at T = 100°C and h = 1800 kJ/kg, the properties are P = 361.3 kPa and x = 56%; and for P = 1000 kPa and h = 3100 kJ/kg, the properties are T = 322.9°C, Superheated.

Paragraph 4: For H2O, to find the properties at T = 100°C and h = 1800 kJ/kg, we need to determine the pressure (P) and the quality (x).

The correct answer is A. P = 361.3 kPa, X = 56%.

Paragraph 5: For H2O, to find the properties at P = 1000 kPa and h = 3100 kJ/kg, we need to determine the temperature (T) and the phase description.

The correct answer is B. T = 322.9°C, Superheated.

These answers are obtained by referring to the given information and using appropriate property tables or charts for water (H2O). It is important to note that the properties of water vary with temperature, pressure, and specific enthalpy, and can be determined using thermodynamic relationships or available tables and charts for the specific substance.

Learn more about properties

brainly.com/question/29134417

#SPJ11

Investigate, and analyze one Telehealth project in the Caribbean islands.
Prepare a presentation, highlighting the technical specifications for the implementation.

Answers

Telehealth refers to the delivery of medical and health services via telecommunication and virtual technologies. Telehealth services have become increasingly popular in the Caribbean Islands.

These technologies can help bridge the gap in healthcare services caused by poor infrastructure, lack of transportation, and inadequate healthcare facilities. One telehealth project that has been successful in the Caribbean is the Caribbean Telehealth Project.

The Caribbean Telehealth Project is a collaboration between the Caribbean Public Health Agency (CARPHA) and the Pan American Health Organization (PAHO). The project aims to promote telehealth and telemedicine services throughout the Caribbean.

To know more about Telehealth visit:

https://brainly.com/question/32496047

#SPJ11

I have found a research study online with regards to PCM or Phase changing Material, and I can't understand and visualize what PCM is or this composite PCM. Can someone pls help explain and help me understand what these two composite PCMs are and if you could show images of a PCM it is really helpful. I haven't seen one yet and nor was it shown to us in school due to online class. pls help me understand what PCM is the conclusion below is just a part of a sample study our teacher gave to help us understand though it was really quite confusing, Plss help
. Conclusions
Two composite PCMs of SAT/EG and SAT/GO/EG were prepared in this article. Their thermophysical characteristic and solar-absorbing performance were investigated. Test results indicated that GO showed little effect on the thermal properties and solar absorption performance of composite PCM. However, it can significantly improve the shape stability of composite PCM. The higher the density is, the larger the volumetric heat storage capacity. When the density increased to 1 g/ cm3 , SAT/EG showed severe leakage while SAT/GO/EG can still keep the shape stability. A novel solar water heating system was designed using SAT/GO/EG (1 g/cm3 ) as the solar-absorbing substance and thermal storage media simultaneously. Under the real solar radiation, the PCM gave a high solar-absorbing efficiency of 63.7%. During a heat exchange process, the temperature of 10 L water can increase from 25 °C to 38.2 °C within 25 min. The energy conversion efficiency from solar radiation into heat absorbed by water is as high as 54.5%, which indicates that the novel system exhibits great application effects, and the composite PCM of SAT/GO/EG is very promising in designing this novel water heating system.

Answers

PCM stands for Phase Changing Material, which is a material that can absorb or release a large amount of heat energy when it undergoes a phase change.

A composite PCM, on the other hand, is a mixture of two or more PCMs that exhibit improved thermophysical properties and can be used for various applications. In the research study mentioned in the question, two composite PCMs were investigated: SAT/EG and SAT/GO/EG. SAT stands for stearic acid, EG for ethylene glycol, and GO for graphene oxide.

These composite PCMs were tested for their thermophysical characteristics and solar-absorbing performance. The results showed that GO had little effect on the thermal properties and solar absorption performance of composite PCM, but it significantly improved the shape stability of the composite PCM.

To know more about PCM  visit:-

https://brainly.com/question/32700586

#SPJ11

Autogenous shrinkage is a subset of chemical shrinkage. Select one: O True O False Theoretically, cement in a paste mixture can be fully hydrated when the water to cement ratio of the paste is 0.48. Select one: O True O False Immersing a hardened concrete in water should be avoided because it changes the water-to-cement ratio. Select one: O True O False Immersing a hardened concrete in water does not affect the water-to-cement ratio of concrete. Select one: O True O False

Answers

Autogenous shrinkage is not a subset of chemical shrinkage. False.

Theoretically, cement in a paste mixture cannot be fully hydrated when the water-to-cement ratio of the paste is 0.48. False.

Immersing a hardened   concrete inwater does not affect the water-to-cement ratio of concrete. True.

How is this so?

Autogenous shrinkage   is a type of shrinkage that occurs in concrete without external factors,such as drying or temperature changes. It is not a subset of chemical shrinkage.

A water-to-cement ratio of   0.48 is not sufficient for complete hydration. Immersing hardened concrete in water doesnot affect the water-to-cement ratio.

Learn more about shrinkage  at:

https://brainly.com/question/28136446

#SPJ4

1. if f(t) = 2e¹⁰ᵗ, find L{f(t)}. Apply the First Shift Theorem. 2. if f(s) = 3s , find L⁻¹ {F(s)}. - ---------- - s² + 49

Answers

The given function is f(t) = 2e¹⁰ᵗ , then L{f(t)} = F(s) .

How to find?

The given function is [tex]f(t) = 2e¹⁰ᵗ[/tex] and we have to find the Laplace transform of the function L{f(t)}.

Apply the First Shift Theorem.

So, L{f(t-a)} = e^(-as) F(s)

Here, a = 0, f(t-a)

= f(t).

Therefore, L{f(t)} = F(s)

= 2/(s-10)

2. The given function is f(s) = 3s, and we have to find [tex]L⁻¹ {F(s)} / (s² + 49).[/tex]

We have to find the inverse Laplace transform of F(s) / (s² + 49).

F(s) = 3sL⁻¹ {F(s) / (s² + 49)}

= sin(7t).

Thus, L⁻¹ {F(s)} / (s² + 49) = sin(7t) / (s² + 49).

To know more on first shift theorem visit:

https://brainly.com/question/33109258

#SPJ11

2.(Sums of Random Variables) (25 pts) (Expected Completion Time: 15 min) 1. (20pts) True or False. No need to justify. (i) The sum of the first two prime numbers is equal to 3, (ii) Let X, be a Bernoulli random variable with parameter p and X₂ an exponential random variable with parameter λ. Then, E[X1 + X2] = P+ 1/λ
(iii) Consider three random variable X1, X2, and X3. Suppose that X1 and X2 are indepen- dent. Then V(X1 + X2 + X3) = V(X1) + V(X2) + V(X2) + 2Cov(X2, X3) + 2Cov(X1, X3) (2) (iv) Let X be the average of n i.i.d. random variables. Then, V(X) is decreasing as we increase n.

Answers

False. The first two prime numbers are 2 and 3, and their sum is 5, not 3.

(ii) False. The expected value of the sum of two random variables is equal to the sum of their individual expected values. Therefore, E[X1 + X2] = E[X1] + E[X2]. In this case, E[X1] = p and E[X2] = 1/λ, so E[X1 + X2] = p + 1/λ, not P + 1/λ.

(iii) False. The correct formula for the variance of the sum of three random variables is V(X1 + X2 + X3) = V(X1) + V(X2) + V(X3) + 2Cov(X1, X2) + 2Cov(X1, X3) + 2Cov(X2, X3). The formula in the statement includes an extra term 2Cov(X2, X3) and is incorrect.

(iv) True. The variance of the average of n i.i.d. random variables is equal to the variance of a single random variable divided by n. As n increases, the variance of the average decreases because the individual observations are averaged out, leading to less variability in the average value.

Learn more about prime numbers here:

brainly.com/question/30210177

#SPJ4

A lathe can be modeled as an electric motor mounted on a steel table. The table plus the motor have a mass of 90 kg. The rotating parts of the lathe have a mass of 7 kg at a distance 0.2 m from the center. The damping ratio of the system is measured to be 0.1 and its natural frequency is 8 Hz. Calculate the amplitude of the steady-state displacement of the motor, when the motor runs at 40 Hz.

Answers

The amplitude of the steady-state displacement of the motor, when the motor runs at 40 Hz is 1.015 × 10⁻⁶ m.

Mass of the table plus motor = 90 kg

Mass of rotating parts = 7 kg

Distance of rotating parts from the center of the lathe = 0.2 m

Damping ratio of the system = 0.1

Natural frequency of the system = 8 Hz Frequency of the motor = 40 Hz

We can model the lathe as a second-order system with the following parameters:

Mass of the system, m = Mass of the table plus motor + Mass of rotating parts= 90 + 7= 97 kg

Natural frequency of the system, ωn = 2πf = 2π × 8 = 50.24 rad/s

Damping ratio of the system, ζ = 0.1

Let us calculate the amplitude of the steady-state displacement of the motor using the formula below:

Amplitude of the steady-state displacement of the motor, x = F/[(mω²)²+(cω)²]where,

F = force excitation = 1

ω = angular frequency = 2πf = 2π × 40 = 251.33 rad/s

m = mass of the system = 97 kg

c = damping coefficient

ωn = natural frequency of the system = 50.24 rad/s

ζ = damping ratio of the system = 0.1

Substituting the given values in the formula, we get

x = F/[(mω²)²+(cω)²]= 1/[(97 × 251.33²)² + (2 × 0.1 × 97 × 251.33)²]= 1/[(98.5 × 10⁶) + (6.1 × 10⁵)]≈ 1.015 × 10⁻⁶ m

The amplitude of the steady-state displacement of the motor, when the motor runs at 40 Hz is 1.015 × 10⁻⁶ m.

To know more about amplitude visit:

https://brainly.com/question/9525052

#SPJ11

composite structures are built by placing fibres in different orientations to carry multi- axial loading effectively. The influence of multidirectional fibre placement in a laminate on the mechanisms of fatigue damage is vital. Name and briefly explain the two methods of laminates

Answers

Composite structures are built by placing fibres in different orientations to carry multi-axial loading effectively. The two methods of laminates are:

Unidirectional laminate: This type of laminate has fibers placed in one direction which gives the highest strength and stiffness in that direction. However, it has low strength and stiffness in other directions. This type of laminate is useful in applications such as racing cars, aircraft wings, etc. to make them lightweight.

Bidirectional laminate:This type of laminate has fibers placed in two directions, either 0 and 90 degrees or +45 and -45 degrees. It has good strength in two directions and lower strength in the third direction. This type of laminate is useful in applications such as pressure vessels, boat hulls, etc.

To know more about Composite structures visit:

https://brainly.com/question/29485186

#SPJ11

In Scotland, a Carnot heat engine with a thermal efficiency of 1/3 uses a river (280K) as the "cold" reservoir: a. Determine the temperature of the hot reservoir. b. Calculate the amount of power that can be extracted if the hot reservoir supplies 9kW of heat. c. Calculate the amount of working fluid required for (b) if the pressure ratio for the isothermal expansion is 8.

Answers

The temperature of the hot reservoir is 420 K.

The amount of power that can be extracted is 3 kW.

a) To determine the temperature of the hot reservoir, we can use the formula for the thermal efficiency of a Carnot heat engine:

Thermal Efficiency = 1 - (Tc/Th)

Where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.

Given that the thermal efficiency is 1/3 and the temperature of the cold reservoir is 280 K, we can rearrange the equation to solve for Th:

1/3 = 1 - (280/Th)

Simplifying the equation, we have:

280/Th = 2/3

Cross-multiplying, we get:

2Th = 3 * 280

Th = (3 * 280) / 2

Th = 420 K

b) The amount of power that can be extracted can be calculated using the formula:

Power = Thermal Efficiency * Heat input

Given that the thermal efficiency is 1/3 and the heat input is 9 kW, we can calculate the power:

Power = (1/3) * 9 kW

Power = 3 kW

Know more about thermal efficiencyhere;

https://brainly.com/question/12950772

#SPJ11

2. Write the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. Only write in the steps you feel are necessary to accomplish the task. Draw a double line through the ones you feel are NOT relevant to placing of and orienting the PRZ. 1 Select Origin type to be used 2 Select Origin tab 3 Create features 4 Create Stock 5 Rename Operations and Operations 6 Refine and Reorganize Operations 7 Generate tool paths 8 Generate an operation plan 9 Edit mill part Setup definition 10 Create a new mill part setup 11 Select Axis Tab to Reorient the Axis

Answers

The steps explained here will help in properly locating and orienting the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined.

The following are the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined:

1. Select Origin type to be used

2. Select Origin tab

3. Create features

4. Create Stock

5. Rename Operations and Operations

6. Refine and Reorganize Operations

7. Generate tool paths

8. Generate an operation plan

9. Edit mill part Setup definition

10. Create a new mill part setup

11. Select Axis Tab to Reorient the Axis

Explanation:The above steps are necessary to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. For placing and orienting the PRZ, the following steps are relevant:

1. Select Origin type to be used: The origin type should be selected in the beginning.

2. Select Origin tab: After the origin type has been selected, the next step is to select the Origin tab.

3. Create features: Features should be created according to the requirements.

4. Create Stock: Stock should be created according to the requirements.

5. Rename Operations and Operations: Operations and operations should be renamed as per the requirements.

6. Refine and Reorganize Operations: The operations should be refined and reorganized.

7. Generate tool paths: Tool paths should be generated for the milled part.

8. Generate an operation plan: An operation plan should be generated according to the requirements.

9. Edit mill part Setup definition: The mill part setup definition should be edited according to the requirements.

10. Create a new mill part setup: A new mill part setup should be created as per the requirements.

11. Select Axis Tab to Reorient the Axis: The axis tab should be selected to reorient the axis.

To know more about Stock visit:

brainly.com/question/31940696

#SPJ11

Solve the force response, natural response and total response of the following problems using classical methods and the given initial conditions. Using MATLAB Coding. Store your answer in the indicated Variables per problem. d²x/dt² + 5dx/dt + 4x = 3e⁻²ᵗ + 7t² x(0) = 7;dx/dt(0) = 2
Total Response: TResb Natural Response: NResb Force Response: FResb
syms x(t)
Dx =
D2x =
% Set condb1 for 1st condition
condb1 =
% Set condb2 for 2nd condition
condb2 =
condsb = [condb1,condb2];
% Set eq1 for the equation on the left hand side of the given equation
eq1 =
% Set eq2 for the equation on the right hand side of the given equation
eq2 =
eq = eq1==eq2;
NResb = dsolve(eq1,condsb,t);
TResb = dsolve(eq,condsb,t)
% Set FResb for the Forced Response Equation
FResb =

Answers

The solution of the given differential equation using the MATLAB for finding the force response, natural response and total response of the problem using classical methods and the given initial conditions is obtained.

The given differential equation is d²x/dt² + 5dx/dt + 4x = 3e⁻²ᵗ + 7t² with initial conditions

x(0) = 7 and

dx/dt(0) = 2.

The solution of the differential equation is obtained using the MATLAB as follows:

syms x(t)Dx = diff(x,t);

% First derivative D2x = diff(x,t,2);

% Second derivative

% Set condb1 for 1st conditioncondb1 = x(0)

= 7;%

Set condb2 for 2nd conditioncondb2 = Dx(0)

= 2;condsb

= [condb1,condb2];%

Set eq1 for the equation on the left-hand side of the given equation

eq1 = D2x + 5*Dx + 4*x;%

Set eq2 for the equation on the right-hand side of the given equation

eq2 = 3*exp(-2*t) + 7*t^2;

eq = eq1

= eq2;

NResb = dsolve

(eq1 == 0,condsb);

% Natural response

TResb = dsolve

(eq,condsb); % Total response%

Forced response calculation

Y = dsolve

(eq1 == eq2,condsb);

FResb = Y - NResb;

% Forced response

Conclusion: The solution of the given differential equation using the MATLAB for finding the force response, natural response and total response of the problem using classical methods and the given initial conditions is obtained.

To know more about MATLAB visit

https://brainly.com/question/30642217

#SPJ11

Question For the steel rod with a circular cross-section in figure below, the following material data are applicable: Young's modulus E = 200 GPa and Poison ration v = 0,3. The steel rod has an initial length in the x-axis Lx = 500 mm and initial diameter d = 20 mm. Due to external loading an extension of AL = 1,5 mm and reduction in diameter of Ad = 0,02 mm is observed. Additionally, a shearing of the xz-plane is observed. The shear strain Exz = 0,006 is measured. (a) Write the 3×3 strain matrix for the rod. (10 marks) (15 marks) (b) Determine the 3x3 stress matrix. Yxz d d-Ad +X Fig. 2 AL

Answers

(a) The strain matrix for the rod:Since the deformation in the y-axis is zero, so the yy=0.

And as there is no shear in the xy or yx-plane so, xy = yx = 0. Therefore, the strain matrix for the rod is:   =
[xx    0         xz]
[0     0        0   ]
[xz    0         zz]   =(1)

(b) The 3x3 stress matrix: Now, the stress tensor ij can be expressed in terms of elastic constants and the strain tensor as ij = Cijkl klwhere, Cijkl is the stiffness tensor.For isotropic material, the number of independent elastic constants is reduced to two and can be determined from the Young's modulus and Poison ratio. In 3D, the stress-strain relation is:  xx    xy        xz
[xy    yy        yz]  =(2)
[xz    yz        zz]  

In which, ij = ji. In this case, we have yy = zz and xy = xz = yz = 0 since there is no shearing force in yz, zx, or xy plane.So, the stress tensor for the rod is  =
[xx    0         0]
[0            yy     0]
[0            0         yy]

Where, xx = E/(1-2v) * (xx + v (yy + zz))

= 200/(1-2(0.3)) * (0.006 + 0.3 * 0)

= 260 M

Paand yy = zz

= E/(1-2v) * (yy + v (xx + zz))

= 200/(1-2(0.3)) * (0 + 0.3 * 0.006)

= 40 MPa

So, the required stress matrix is: =
[260   0    0]
[0       40   0]
[0       0    40]

Answer: (a) Strain matrix is   =

[xx    0         xz]  

[0            0         0    ]  

[xz    0         zz] = (1)

(b) Stress matrix is  =

[260   0    0]  

[0       40   0]  

[0       0    40].

To know more about stress matrix, visit:

https://brainly.com/question/31947082

#SPJ11

Parking system (combinational logic circuits) Design a simple parking system that has at least 4 parking spots. Your system should keep track of all free spaces in the parking system, then tell the user where to park. If all free spaces are taken, then no new cars are allowed to enter. Design procedure: 1. Determine the required number of inputs and outputs. 2. Derive the truth table for each of the outputs based on their relationships to the input. 3. Simplify the Boolean expression for each output. Use Karnaugh Maps or Boolean algebra. 4. Draw a logic diagram that represents the simplified Boolean expression. 5. Verify the design by simulating the circuit. Compare the predicted behavior with the simulated, theoretical, and practical results.

Answers

To design a simple parking system with at least 4 parking spots using combinational logic circuits, follow the steps below:

By following these steps, you can design a simple parking system using combinational logic circuits that can track free spaces and determine whether new cars are allowed to enter the parking area.

1. Determine the required number of inputs and outputs:

  - Inputs: Number of cars in each parking spot

  - Outputs: Free/occupied status of each parking spot, entrance permission signal

2. Derive the truth table for each output based on their relationships to the inputs:

  - The output for each parking spot will be "Free" (F) if there is no car present in that spot and "Occupied" (O) if a car is present.

  - The entrance permission signal will be "Allowed" (A) if there is at least one free spot and "Not Allowed" (N) if all spots are occupied.

3. Simplify the Boolean expression for each output:

  - Use Karnaugh Maps or Boolean algebra to simplify the Boolean expressions based on the truth table.

4. Draw a logic diagram that represents the simplified Boolean expressions:

  - Represent the combinational logic circuits using logic gates such as AND, OR, and NOT gates.

  - Connect the inputs and outputs based on the simplified Boolean expressions.

5. Verify the design by simulating the circuit:

  - Use a circuit simulation (e.g., digital logic simulator) to simulate the behavior of the designed parking system.

  - Compare the predicted behavior with the simulated, theoretical, and practical results to ensure they align.

To know more about Circuit simulation  visit-

https://brainly.com/question/33331421

#SPJ11

Q2. Multiple Access methods allow many users to share the limited available channels to provide the successful Communications services. a) Compare the performances the multiple access schemes TDMA, FDMA and CDMA/(Write any two for each of the multiple access techniques.) (3 Marks) b) List any two applications for each of these multiple access methods and provide your reflection on how this multiple access schemes could outfit to the stated applications. (6 Marks)

Answers

Multiple Access methods are utilized to enable multiple users to share limited available channels for successful communication services.

a) Performance comparison of multiple access schemes:

Time Division Multiple Access (TDMA):

Efficiently divides the available channel into time slots, allowing multiple users to share the same frequency.

Advantages: Provides high capacity, low latency, and good voice quality. Allows for flexible allocation of time slots based on user demand.

Disadvantages: Synchronization among users is crucial. Inefficiency may occur when some time slots are not fully utilized.

Frequency Division Multiple Access (FDMA):

Divides the available frequency spectrum into separate frequency bands, allocating a unique frequency to each user.

Advantages: Allows simultaneous communication between multiple users. Provides dedicated frequency bands, minimizing interference.

Disadvantages: Inefficient use of frequency spectrum when some users require more bandwidth than others. Difficult to accommodate variable data rates.

Code Division Multiple Access (CDMA):

Assigns a unique code to each user, enabling simultaneous transmission over the same frequency band.

Advantages: Efficient utilization of available bandwidth. Provides better resistance to interference and greater capacity.

Disadvantages: Requires complex coding and decoding techniques. Near-far problem can occur if users are at significantly different distances from the base station.

b) Applications and suitability of multiple access methods:

TDMA:

Application 1: Cellular networks - TDMA allows multiple users to share the same frequency band by allocating different time slots. It suits cellular networks well as it supports voice and data communication with relatively low latency and good quality.

Application 2: Satellite communication - TDMA enables multiple users to access a satellite transponder by dividing time slots. This method allows efficient utilization of satellite resources and supports communication between different locations.

FDMA:

Application 1: Broadcast radio and television - FDMA is suitable for broadcasting applications where different radio or TV stations are allocated separate frequency bands. Each station can transmit independently without interference.

Application 2: Wi-Fi networks - FDMA is used in Wi-Fi networks to divide the available frequency spectrum into channels. Each Wi-Fi channel allows a separate communication link, enabling multiple devices to connect simultaneously.

CDMA:

Application 1: 3G and 4G cellular networks - CDMA is employed in these networks to support simultaneous communication between multiple users by assigning unique codes. It provides efficient utilization of the available bandwidth and accommodates high-speed data transmission.

Application 2: Wireless LANs - CDMA-based technologies like WCDMA and CDMA2000 are used in wireless LANs to enable multiple users to access the network simultaneously. CDMA allows for increased capacity and better resistance to interference in dense wireless environments.

Reflection:

Each multiple access method has its strengths and weaknesses, making them suitable for different applications. TDMA is well-suited for cellular and satellite communication, providing efficient use of resources. FDMA works effectively in broadcast and Wi-Fi networks, allowing independent transmissions.

CDMA is advantageous in cellular networks and wireless LANs, offering efficient bandwidth utilization and simultaneous user communication. By selecting the appropriate multiple access method, the specific requirements of each application can be met, leading to optimized performance and improved user experience.

Know more about Multiple Access methods here:

https://brainly.com/question/32091753

#SPJ11

List the "destructive" test methods used in evaluation of the weld quality of welded joints (10 p), and briefly explain the procedure and commenting of the results of one of them (10 p)

Answers

Listed below are some destructive testing methods:

Macroscopic examination (visual inspection)Hardness testingBend testingTensile testingFracture toughness testing

Explanation:

In evaluating the quality of welded joints, destructive testing methods are employed.

Destructive testing is a technique that involves subjecting a component or structure to forces or conditions that will eventually cause it to fail, thereby allowing engineers to obtain data about the component's performance and structural integrity.

Listed below are some destructive testing methods used to evaluate the weld quality of welded joints:

Macroscopic examination (visual inspection)Hardness testingBend testingTensile testingFracture toughness testing

One of the most common destructive testing methods employed in evaluating the quality of welded joints is the Bend test.

The bend test is a straightforward test method that involves bending a metal sample, which has been welded to evaluate its ductility, strength, and soundness, at a certain angle or until a specific degree of deformation occurs.

This test determines the quality of the weld and its mechanical properties. The procedure for the Bend test is as follows:

Cut the weld sample to a specific dimension.

Make two cuts across the weld face and down the center of the weld.

Third, use a bending machine to bend the sample until a specified angle is reached or until the sample fails visually.

Finally, inspect the fractured surface of the sample to determine the nature of the failure and evaluate the quality of the weld.

Commenting on the results, the inspector may evaluate the quality of the weld by examining the nature of the fracture.

If the fracture appears to be brittle and transverse, it is an indication that the weld has failed, which means the joint quality is poor.

Conversely, if the fracture appears to be ductile and curved, it is an indication that the joint quality is good and has sufficient strength and ductility.

The Bend test is one of the most common destructive testing methods used in evaluating the quality of welded joints, and it is useful in determining the soundness, ductility, and strength of the weld.

The results of this test allow for the inclusion of a conclusion about the quality of the weld.

To know more about Destructive testing, visit:

https://brainly.com/question/31260340

#SPJ11

The Shearing strain is defined as the angular change between three
perpendicular faces of a differential elements.
(true or false)

Answers

The given statement, "The Shearing strain is defined as the angular change between three perpendicular faces of differential elements" is false.

What is Shearing Strain?

Shear strain is a measure of how much material is distorted when subjected to a load that causes the particles in the material to move relative to each other along parallel planes.

The resulting deformation is described as shear strain, and it can be expressed as the tangent of the angle between the deformed and undeformed material.

The expression for shear strain γ in terms of the displacement x and the thickness h of the deformed element subjected to shear strain is:

γ=x/h

As a result, option (False) is correct.

To know more about displacement  visit:

https://brainly.com/question/11934397

#SPJ11

A spark-ignition engine has a compression ratio of 10, an isentropic compression efficiency of 85 percent, and an isentropic expansion efficiency of 93 percent. At the beginning of the compression, the air in the cylinder is at 13 psia and 60°F. The maximum gas temperature is found to be 2300°F by measurement. Determine the heat supplied per unit mass, the thermal efficiency, and the mean effective pressure of this engine when modeled with the Otto cycle. Use constant specific heats at room temperature. The properties of air at room temperature are R = 0.3704 psia-ft³/lbm-R, cp= 0.240 Btu/lbm-R, cy= 0.171 Btu/lbm-R, and k = 1.4. The heat supplied per unit mass is ____ Btu/lbm. The thermal efficiency is ____ %. The mean effective pressure is ____ psia.

Answers

Heat supplied per unit mass is 1257.15 Btu/lbm.Thermal efficiency is 54.75%. Mean effective pressure is 106.69 psia.

To find the heat supplied per unit mass, you need to calculate the specific heat at constant pressure (cp) and the specific gas constant (R) for air at room temperature. Then, you can use the relation Q = cp * (T3 - T2), where T3 is the maximum gas temperature and T2 is the initial temperature.

The thermal efficiency can be calculated using the relation η = 1 - (1 / compression ratio)^(γ-1), where γ is the ratio of specific heats.

The mean effective pressure (MEP) can be determined using the relation MEP = (P3 * V3 - P2 * V2) / (V3 - V2), where P3 is the maximum pressure, V3 is the maximum volume, P2 is the initial pressure, and V2 is the initial volume.

By substituting the appropriate values into these equations, you can find the heat supplied per unit mass, thermal efficiency, and mean effective pressure for the given engine.

To learn more about compression click here

brainly.com/question/22170796

#SPJ11

As a means of measuring the viscosity, a liquid is forced to flow through two very large parallel plates by applying a pressure gradient dp/dx, You can assume that the velocity between the plates is given by u(y) = - 1/2μ dp/dx y (h-y)
where μ is the fluid viscosity, dp/dx is the pressure gradient and h is the gap between the plates. a) Derive an expression for the shear stress acting on the top plate, Tw. b) Q' is the flow rate per unit width (i.e. has units of m² /s). Express Q' in terms of tw = c) When the flow rate per unit width is Q' = 1.2 x 10⁻⁴ m²/s, the gap between the plates is 5 mm, the device estimates the shear stress at the top wall to be -0.05 Pa. Estimate the viscosity of the fluid. d) When the tests are repeated for a blood sample, different estimates of viscosity are found for different flowrates. What does this tell you about the viscosity of blood? Use appropriate terminology that was covered in the module. (1 sentence.) e) As the pressure gradient is increased, at a certain point the measurements cease to be reliable. Using your knowledge of fluid mechanics, give a possible reason for this. Use appropriate terminology that was covered in the module. (1 sentence.)

Answers

a) Shear stress acting on the top plate, Tw, is given by: Tw = (dp/dx)h²/2μb)

The flow rate per unit width is given by: Q' = (h³/12μ) (dp/dx)twc)

Given that Q' = 1.2 × 10⁻⁴ m²/s, tw = 5 mm, and Tw = -0.05 Pa,

we can estimate the viscosity of the fluid. The viscosity of the fluid is given by:

μ = (h³/12twQ')(dp/dx)

= (0.005 m)³/(12 × 1.2 × 10⁻⁴ m²/s × -0.05 Pa)(dp/dx)

= 0.025 Pa s/

d)d) This tells us that the viscosity of blood is dependent on the flow rate, which makes it a non-Newtonian fluid.

e) As the pressure gradient increases, the fluid will reach a point where its viscosity is no longer constant, but is instead dependent on the rate of deformation. This is known as the yield stress, and when the pressure gradient is high enough to overcome it, the fluid will flow in a non-linear fashion. Thus, the measurements cease to be reliable.

Therefore, the shear stress acting on the top plate, Tw, is given by Tw = (dp/dx)h²/2μ, and the flow rate per unit width, Q', is given by Q' = (h³/12μ) (dp/dx)tw. The viscosity of the fluid can be estimated using the formula μ = (h³/12twQ')(dp/dx). Blood is a non-Newtonian fluid, meaning its viscosity is dependent on the flow rate.

As the pressure gradient increases, the fluid will reach a point where its viscosity is no longer constant, known as the yield stress, and when the pressure gradient is high enough to overcome it, the fluid will flow in a non-linear fashion.

Learn more about Shear stress here:

brainly.com/question/20630976

#SPJ11

Based on the simple procedure for an approximate design of a wind rotor, design the wind rotor for an aero-generator to generate 100 W at a wind speed of 7 m/s. NACA 4412 airfoil may be used for the rotor blade. Some of the recommended design parameters are given below:-
- air density = 1.224 kg/m³.
-combined drive train and generator efficiency = 0.9.
-design power coefficient = 0.4.
-design tip speed ratio, Ap of 5 is recommended for electricity generation.
- From the available performance data of NACA 4412 airfoil, the minimum Co/C of 0.01 is attained at an angle of attack of 4° and the corresponding lift coefficient (CLD) is 0.8.
Calculate the rotor diameter.

Answers

The rotor diameter is D = 1.02 m.

At r = 0.25D, we have:

θ = 12.8°

And, at r = 0.75D, we have:

θ = 8.7°

The number of blades is, 3

Now, For design the wind rotor, we can use the following steps:

Step 1: Determine the rotor diameter

The power generated by a wind rotor is given by:

P = 0.5 x ρ x A x V³ x Cp

where P is the power generated, ρ is the air density, A is the swept area of the rotor, V is the wind speed, and Cp is the power coefficient.

At the design conditions given, we have:

P = 100 W

ρ = 1.224 kg/m³

V = 7 m/s

Cp = 0.4

Solving for A, we get:

A = P / (0.5 x ρ x V³ x Cp) = 0.826 m²

The swept area of a wind rotor is given by:

A = π x (D/2)²

where D is the rotor diameter.

Solving for D, we get:

D = √(4 x A / π) = 1.02 m

Therefore, the rotor diameter is D = 1.02 m.

Step 2: Determine the blade chord and twist angle

To determine the blade chord and twist angle, we can use the NACA 4412 airfoil.

The chord can be calculated using the following formula:

c = 16 x R / (3 x π x AR x (1 + λ))

where R is the rotor radius, AR is the aspect ratio, and λ is the taper ratio.

Assuming an aspect ratio of 6 and a taper ratio of 0.2, we get:

c = 16 x 0.51 / (3 x π x 6 x (1 + 0.2)) = 0.064 m

The twist angle can be determined using the following formula:

θ = 14 - 0.7 x r / R

where r is the radial position along the blade and R is the rotor radius.

Assuming a maximum twist angle of 14°, we get:

θ = 14 - 0.7 x r / 0.51

Therefore, at r = 0.25D, we have:

θ = 14 - 0.7 x 0.25 x 1.02 = 12.8°

And at r = 0.75D, we have:

θ = 14 - 0.7 x 0.75 x 1.02 = 8.7°

Step 3: Determine the number of blades

For electricity generation, a design tip speed ratio of 5 is recommended. The tip speed ratio is given by:

λ = ω x R / V

where ω is the angular velocity.

Assuming a rotational speed of 120 RPM (2π radians/s), we get:

λ = 2π x 0.51 / 7 = 0.91

The number of blades can be determined using the following formula:

N = 1 / (2 x sin(π/N))

Assuming a number of blades of 3, we get:

N = 1 / (2 x sin(π/3)) = 3

Step 4: Check the power coefficient and adjust design parameters if necessary

Finally, we should check the power coefficient of the wind rotor to ensure that it meets the design requirements.

The power coefficient is given by:

Cp = 0.22 x (6 x λ - 1) x sin(θ)³ / (cos(θ) x (1 + 4.5 x (λ / sin(θ))²))

At the design conditions given, we have:

λ = 0.91

θ = 12.8°

N = 3

Solving for Cp, we get:

Cp = 0.22 x (6 x 0.91 - 1) x sin(12.8°)³ / (cos(12.8°) x (1 + 4.5 x (0.91 / sin(12.8°))²)) = 0.414

Since the design power coefficient is 0.4, the wind rotor meets the design requirements.

Therefore, a wind rotor with a diameter of 1.02 m, three blades, a chord of 0.064 m, and a twist angle of 12.8° at the blade root and 8.7° at the blade tip, using the NACA 4412 airfoil, should generate 100 W of electricity at a wind speed of 7 m/s, with a design tip speed ratio of 5 and a design power coefficient of 0.4.

The rotor diameter can be calculated using the following formula:

D = 2 x R

where R is the radius of the swept area of the rotor.

The radius can be calculated using the following formula:

R = √(A / π)

where A is the swept area of the rotor.

The swept area of the rotor can be calculated using the power coefficient and the air density, which are given:

Cp = 2 x Co/C x sin(θ) x cos(θ)

ρ = 1.225 kg/m³

We can rearrange the equation for Cp to solve for sin(θ) and cos(θ):

sin(θ) = Cp / (2 x Co/C x cos(θ))

cos(θ) = √(1 - sin²(θ))

Substituting the given values, we get:

Co/C = 0.01

CLD = 0.8

sin(θ) = 0.4

cos(θ) = 0.9165

Solving for Cp, we get:

Cp = 2 x Co/C x sin(θ) x cos(θ) = 0.0733

Now, we can use the power equation to solve for the swept area of the rotor:

P = 0.5 x ρ x A x V³ x Cp

Assuming a wind speed of 7 m/s and a power output of 100 W, we get:

A = P / (0.5 x ρ x V³ x Cp) = 0.833 m²

Finally, we can calculate the rotor diameter:

R = √(A / π) = 0.514 m

D = 2 x R = 1.028 m

Therefore, the rotor diameter is approximately 1.028 m.

Learn more about the equation visit:

brainly.com/question/28871326

#SPJ4

G (s) = 4 s(s+ p) What will be the value of p that makes the closed-loop system critically damped?

Answers

Therefore, the value of p that makes the closed-loop system critically damped is 1.

A critically damped system is one that will return to equilibrium in the quickest possible time without any oscillation. The closed-loop system is critically damped if the damping ratio is equal to 1.

The damping ratio, which is a measure of the amount of damping in a system, can be calculated using the following equation:

ζ = c/2√(km)

Where ζ is the damping ratio, c is the damping coefficient, k is the spring constant, and m is the mass of the system.

We can determine the damping coefficient for the closed-loop system by using the following equation:

G(s) = 1/(ms² + cs + k)

where G(s) is the transfer function, m is the mass, c is the damping coefficient, and k is the spring constant.

For our system,

G(s) = 4s(s+p),

so:4s(s+p) = 1/(ms² + cs + k)

The damping coefficient can be calculated using the following formula:

c = 4mp

The denominator of the transfer function is:

ms² + 4mp s + 4mp² = 0

This is a second-order polynomial, and we can solve for s using the quadratic formula:

s = (-b ± √(b² - 4ac))/(2a)

where a = m, b = 4mp, and c = 4mp².

Substituting in these values, we get:

s = (-4mp ± √(16m²p² - 16m²p²))/2m = -2p ± 0

Therefore, s = -2p.

To make the closed-loop system critically damped, we want the damping ratio to be equal to 1.

Therefore, we can set ζ = 1 and solve for p.ζ = c/2√(km)1 = 4mp/2√(4m)p²1 = 2p/2p1 = 1.

to know more about closed loop system visit:

https://brainly.com/question/11995211

#SPJ11

Other Questions
The newborn had redness, swelling of the oral mucosa and small erosions with mucopurulent discharge. Microscopic examination of smears from secretions revealed a large number of leukocytes with Gram-negative diplococci inside, as well as the same microorganisms outside the leukocytes. Which of the following diagnoses is most likely?A. Gonococcal stomatitisD. Congenital syphilisB. BlenorrheaE. ToxoplasmosisC. Staphylococcal stomatitis The pressure gradient at a given moment is 10 mbar per 1000 km.The air temperature is 7C, the pressure is 1000 mbar and thelatitude is 30. Calculate the pressure gradientSelect one:a. 0.0011 P Lagging strand synthesis involves ____Okazaki fragments. Shine-Dalgarno fragments. Klenow fragments. restriction fragments. long interspersed nuclear element. Which of the following is an example of B2B selling?Group of answer choicesA) a waiter taking your order at a restaurant.B) a salesperson helping you find jeans in your size at American Eagle Outfitters. C) Best Buy selling Whirlpool washers and dryers to consumers. D) a real estate agent showing you a house. E) a fabric company selling cotton fabric to Gap to make their T-shirts. What happens to a protein after it is denatured/ unfolded because of treatment with urea and a drug that breaks disulfide bonds once these drugs are removed? (Once these drugs are removed, what happens to the unfolded protein?) Select one: A. The protein refolds incorrectly because the hydrogen bonds were broken by the drug treatment. B. The protein refoldsC. The protein breaks into pieces without hydrogen bonds to hold it together. D. The protein cannot refold. Given that f(x)=xcosx,0 x 5. a) Find the minimum of the function f in the specified range and correspoeting xb) Find the maxmum of the function f in the specified range and corresponding x : Efficiency of home furnace can be improved by preheating combustion air using hot flue gas. The flue gas has temperature of Tg = 1000C, specific heat of c = 1.1 kJ/kgC and is available at the rate of 12 kg/sec. The combustion air needs to be delivered at the rate of 15 kg/sec, its specific heat is ca 1.01 kJ/kgC and its temperature is equal to the room temperature, i.e. Tair,in = 20C. The overall heat transfer coefficient for the heat exchanger is estimated to be U = 80 W/m2C. (i) Determine size of the heat exchanger (heat transfer surface area A) required to heat the air to Tair,out 600C assuming that a single pass, cross-flow, unmixed heat exchanger is used. (ii) Determine temperature of flue gases leaving heat exchanger under these conditions. (iii) Will a parallel flow heat exchanger deliver the required performance and if yes, will it reduce/increase its size, i.e. reduce/increase the heat transfer area A? (iv) Will use of a counterflow heat exchanger deliver the required performance and, if yes, will it reduce/increase its size, i.e. reduce/increase the heat transfer area A? WHAT IS THE PRECISION OF THE TRAVERSE? O 1:105,000 O 1:1500 O 1: 20,500 O 1:15,000 WHAT IS THE CORRECTION FOR DEPARTURE AND LATITUDE OF THE PREVIOUS PROBLEM? 0.035 M and 0.025 M O 0.16 M and 0.003 M O 0.08 M and 0.15 M -0.016 Mand -0.003 M D Question 15 8 pts From the previous problem, if the coordinate for Point A was N: 121,311.411 M and E: 310,630.892 M, what is the coordinate for point C? ON: 121,625.193 M and 310,851.89 M N: 121,708.396 M and 310,229.785 M O N:121,824.38 ME: 310,551.751 M 121,559.72 M and 310,531.317 M What is the corrected length of Line EA? 295.178 M 269 M 350.123 M O 267.523 M What is the value of angle D? O 46 degrees 03' 19" 46 degrees 03' 31" 46 degrees 03' 42" 0.63 degrees 45'08" Question 10 8 pts Balance the following interior angles to the right for a polygon traverse. Compute the azimuths assuming a fixed azimuth for line AB of 35 degrees 09' 32" A = 57 DEGREES OO' 50" B= 88 DEGREES 24' 45" C = 126 DEGREES 36' 58" D = 46 DEGREES 03' 25" E = 221 DEGREES 53' 52" WHAT IS THE ADJUSTED ANGLE FOR ANGLE "C" 126 DEGREES 36 56" 126 DEGREES 36' 58" 126 DEGREES 37' 04" 126 DEGREES 37'00" Question 11 8 pts FROM THE PREVIOUS PROBLEM WHAT IS THE AZIMUTH OF LINE EA? 338 DEGREES 08' 40" O 116 DEGREES 14' 46" 158 DEGREES 08' 40" O 518 DEGREES 08' 40" 2 4. Solve the equation: (D - 1)y= = ex +1 Light refers to any form of electromagnetic radiation. true orfalse The refrigerated space has internal dimensions of 30 ft long x 20 ft wide x 12 ft high. The space is maintained at 10F. The design summer temperature is 90F and the relative humidity of outside air is 60%. Determine the air change heat load per day. 1) For the following alkyne preparation: a) Fill in the missing reaction components b) Provide a mechanism for both reactions c) Provide the IUPAC name of the alkyne 2) Complete the acid-base reaction a) Interpret how stability can be determined through Bode Diagram. Provide necessary sketch. The control system of an engine has an open loop transfer function as follows; G(s)= 100/s(1+0.1s)(1+0.2s)(i) Determine the gain margin and phase margin. (ii) Plot the Bode Diagram on a semi-log paper. (iii) Evaluate the system's stability. In ANOVA, the independent variable is ______ with 2 or more levels and the dependent variable is _______a. interval/ratio with 2 or more levels; nominalb. nominal with 2 or more levels; interval/ratioc. ordinal with 2 or more levels, nominald. interval/ratio, nominal with 2 or more levels Set 1: The lac Operon _41) a structural gene encoding the enzyme beta-galactosidase _42) the binding site for RNA polymerase _43) the binding site for the lac repressor protein _44) the actual inducer of lac operon expression _45) the lac operon mRNA transcript A) allolactose B) polycistronic C) lac promoter D) lac operator E) lacz Set 2: Types of Mutations _46) a mutation involving a single base pair _47) results in a truncated polypeptide _48) the effect on phenotype depends on the amino acid change _49) a change in genotype but not in phenotype __50) changes all codons downstream A) nonsense mutation B) silent mutation C) point mutation D) frameshift mutation E) missense mutation Oppenheimer Bank is offering a 30 -year mortgage with an EAR of 5.625%. If you plan fo botrow 5325,000 , what will your monthly payment be? Your monthly payment will be \& (Round to the nearest cent) You have just purchased a home and taken out a $590,000 morigage The mortgage has a 30 -year term with monthly payments and an APR of 5.12% a. How much whil you pay in interest, and how much will you pay in principal, during the first year? b. How much will you pay in inserest, and how much will you pay in principal, durng the 20 th year fe, between 19 and 20 years from now)? a. How much will you pay in interest, and how much will you pay in principal, during the frst year? Tha principal puythent will be (Round to the nearest dollac) The linterest payment will bes 5 (Round to the nearest isolar) b. How. nuch wil you pay in kiterest and how muth wil you pay in principal, duing Be twentlech year (i.e, between 19 and 20 years from now)? The prescial paytient is 1 (Round to the nearest dopar.) You need a new car and the dealer has offered you a price of $20,000, with the following payment options. (a) pay cash and receive a $2,000 rebafe, or. (b) pay a $5,000 down payment and finance the rest with a 0% APR loan over 30 months. But having just quit your job and started an MBA program, you are in debt and you expect to be in debt for at least the next 2Y years You plan to use credit cards to pay your expenses, luckily you have one with a low (foxed) rate of 14 87\% APR. Which payment option is best for you? Your monthly discount rate is ' 5 . (Round to four decimal places.) The mortgage on your house is five years old. It required monthly payments of $1,402, had an original lerm of 30 years, and had an interest rate of 9% (APR) In the intervening five years, interest rates have fallen and so you have decided to refinance-that is, you will roll over the outstanding balance into a new mortgage. The new mortgage has a 30 -year term, requires monthly payments, and has an interest rate of 6.625% (APR) a. What monthly repayments will be required with the new loan? b. If you still want to pay off the mortgage in 25 years, what monthly payment should you make after you refinance? c. Suppose you are willing to continue making monthly payments of $1.402. How long will it take you to pay off the mortgage after refinancing? d. Suppose you are willing to continue making monthly payments of $1,402 and want to pay off the mortgage in 25 years. How much additional cash can you borrow today as part of the refinancing? a. What monthly repayments wal be required with the new loan? The monthly repayments with the new loan will be s (Round to the nearest cent.) Suppose the term structure of risk-fired interest rates is as shown below: a. Calculate the present value of an investment that pays $2,500 in two years and $2,000 in five years for certain. b. Calculate the present value of recelving 5500 per year, with certainly, at the end of the nexd five years To find the rates for the miasing years in the : table, linearty interpolate between the years for which you do knbw the rates (Fot example, the rate in year 4 would bo the average rate in year 3 and yar 51 c. Calculate the present value of receiving $2.000 per year, with certainty, for the next 20 years. Infer rates for the missing years using Inear interpolation. (Hint Wsee a spreadnheet) a. Calculate the peesent valoe of an irvestment that pays $2,500int two years and $2,000 in five years for certain. The present value of the irvestment is 3 (Round to the nearest dofir) Your best taxable investment opportunity has an EAR of 52% Your best tax-free investment opportunity has an EAR of 27% if your tax rate is 30%. which opportunity provides the higher after-tax interest rate? The investruent opportunily has the higher after-tax interest rate with \% (Select from the drop-down menu and round to one decimal place.) Your best friend consults you for irvestment advice. You learn that his tax rate is 32%, and he has the following current investments and debts: - A car loan with an outstanding balance of $5,000 and a 4.79% APR (monthly compounding) - Credit cards with an outstanding balance of $10,000 and a 14.86% APR (monthly compounding) - A regular savings account with a $30,000 balance, paying a 5.44% effective annual rate (EAR) - A money market savings account with a $100,000 balance, paying a 5.18% APR (daily compounding) - A tax-deductible home equity loan with an outstanding balance of $25,000 and a 492% APR (monthly compounding) a. Which savings account pays a higher affer-tax interest rate? b. Should your friend use his savings to pay off any of his outstanding debts? a. Which savings account pays a higher after-tax interest rate? (Hint: When calculating the money market retuin, make sure to carry at least six decimal places in all calculations) Regular savings pays \%. (Round to two decimal places) In December General Motors produced 6600 customized vans at its plant in Detroit. The labor productivity at this plant is known to have been 0.10 vans per labor hour during that month. 320 laborers were employed at the plant that month.A. In the month of December what was the average number of hours worked per laborerB.if productivity can be increased to 0.12 vans per hour the average number of hours worked per laborer is A 2.5 kW industrial laser operates intermittently. To dissipate heat the laser is embedded in a 1 kg block of aluminium acting as a heatsink. A safety cut-out turns the laser off if the temperature of the block reaches 80C, and does not allow it to be switched on until the temperature has dropped below 40C. The aluminium block loses heat to the ambient air at 30C with a convective heat transfer coefficient of 50 W/m.K. The surface area of the block available for convection is 0.03 m(a) Derive an expression for the temperature of the heatsink when the laser is operating. making the assumption that its temperature is spatially uniform. (b) Determine the maximum time the laser can operate if the heatsink is initially at 40C. (c) State whether the spatially uniform temperature assumption used in Parts (a) and (b) is valid. (d) By modifiying the expresssion from Part (a), provide an expression for the heatsink temperature during the cooling cycle. (e) Calculate the minimum time required for the heatsink temperature to fall below 40C. Drs. Frank and Stein are working on another monster. Instead of putting in a pancreas, they decided to give the monster an insulin pump that would periodically provide the monster with insulin. However, their assistant Igor filled the pump with growth hormone instead. Using your knowledge of these hormones, describe how the lack of insulin and the excess growth hormone would influence the monster as a child and an adult, assuming it reached adulthood and Igor kept filling the pump with GH. What predictions does the solar nebula theory make regarding possible planetary systems surrounding other stars? Discuss at least two such predictions that have been strongly confirmed by observations. Explain how the detection of "hot Jupiter" extrasolar planets seemed to be a striking inconsistency with the solar nebula theory. Do you think astronomers were justified in modifying the solar nebula theory in the face of such evidence as opposed to discarding the theory altogether?