Answer:
b
Step-by-step explanation:
not a because equilateral would be all equal
scalene is all different
Answer:
scalene
Step-by-step explanation:
because all sides are different.
assume the graph of a function of the form y=asin(k(x+b)) is given below. which of the following are possible values for a, k, and b?
Answer:
C
Step-by-step explanation:
Okay, here we have the equation of the sine wave as;
y = asin(k(x + b))
By definition a represents the amplitude
k represents the frequency
b represents the horizontal shift or phase shift
Now let’s take a look at the graph.
By definition, the amplitude is the distance from crest to trough. It is the maximum displacement
From this particular graph, amplitude is 4
K is the frequency and this is 1/period
The period ;
Firstly we find the distance between two nodes here and that is 1/2 from the graph (3/4 to 1/4)
F = 1/T = 1/1/2 = 1/0.5 = 2
b is pi/4 ( phase is positive as it is increasing rightwards)
So the correct option here is C
Answer: it is
a=4, k=2, and b= pi/4
Step-by-step explanation:
got it right on A P E X
simplifica: 49/90, se puede????
Answer:
49/90 is simplified
Step-by-step explanation:
Answer:
Step-by-step explanation:
49/90
how to find the angel in trigonometry when all the lengths of the right angled triangle already given.
Answer:
The three trigonometric ratios can be used to calculate the size of an angle in a right-angled triangle
Use rule ; SOHCAHTOA .Where sin x = opp/hyp
cos x = adj/hyp
tan x= opp/adj
Substitute the given values for the three sides
into any of the above rules
[tex]example = Hyp = 2\\opp = 1\\sin- x = 1/2\\x = sin^{-1} 1/2\\x = 30[/tex]
Step-by-step explanation:
I Hope It Helps :)
Which of the following investments could be represented by the function A = 250(1 + 0.08/12)12 × 4?
hello,
the first term is 250 so this is the initial invested amount
[tex](1+\dfrac{0.08}{12})^{12}=(1+\dfrac{8\%}{12})^{12}[/tex]
is to compute 8% annual interest compounded monthly (there are 12 months in a year)
and then multiply by 4 means that it is computed for 4 years so
finally the answer is
$250 is invested at 8% annual interest compounded monthly for 4 years
hope this helps
In a game the average score was 60 time score was 5/2 of the average what was Tim’s score?
Answer:
in my own reasoning not sure if I am correct
Step-by-step explanation:
first it said Tim score was 5/2 of the of the average score
and the average score is 60
so that will be 5/2 × 60 which is
= 150
Represent 1/3 and 5/2 on the same number line.
Step-by-step explanation:
1/3 and 5/2 can be shown as:
1/3= 3/6 5/2= 15/6points with 1/6 interval on the number line:
0, 1/6, 2/6, 3/6, 4/6, ..., 15/6
The police department uses a formula to determine the speed at which a car was going when the driver applied the breaks, by measuring the distance of the skid marks.The equation d=0.03r^2+r models the distance, d, in feet, r miles per hour (r is the speed of the car) Factor the equation. d=?
Answer:
0.03 feet
Step-by-step explanation:
d = 0.03r² + r
When d = 0: 0.03r² + r = 0
r(0.03r + 1) = 0
∴ r = 0
When r = 0: d = 0.03 feet
A company rounds its losses to the nearest dollar. The error on each loss is independently and uniformly distributed on [–0.5, 0.5]. If the company rounds 2000 such claims, find the 95th percentile for the sum of the rounding errors.
Answer:
the 95th percentile for the sum of the rounding errors is 21.236
Step-by-step explanation:
Let consider X to be the rounding errors
Then; [tex]X \sim U (a,b)[/tex]
where;
a = -0.5 and b = 0.5
Also;
Since The error on each loss is independently and uniformly distributed
Then;
[tex]\sum X _1 \sim N ( n \mu , n \sigma^2)[/tex]
where;
n = 2000
Mean [tex]\mu = \dfrac{a+b}{2}[/tex]
[tex]\mu = \dfrac{-0.5+0.5}{2}[/tex]
[tex]\mu =0[/tex]
[tex]\sigma^2 = \dfrac{(b-a)^2}{12}[/tex]
[tex]\sigma^2 = \dfrac{(0.5-(-0.5))^2}{12}[/tex]
[tex]\sigma^2 = \dfrac{(0.5+0.5)^2}{12}[/tex]
[tex]\sigma^2 = \dfrac{(1.0)^2}{12}[/tex]
[tex]\sigma^2 = \dfrac{1}{12}[/tex]
Recall:
[tex]\sum X _1 \sim N ( n \mu , n \sigma^2)[/tex]
[tex]n\mu = 2000 \times 0 = 0[/tex]
[tex]n \sigma^2 = 2000 \times \dfrac{1}{12} = \dfrac{2000}{12}[/tex]
For 95th percentile or below
[tex]P(\overline X < 95}) = P(\dfrac{\overline X - \mu }{\sqrt{{n \sigma^2}}}< \dfrac{P_{95}- 0 } {\sqrt{\dfrac{2000}{12}}}) =0.95[/tex]
[tex]P(Z< \dfrac{P_{95} } {\sqrt{\dfrac{2000}{12}}}) = 0.95[/tex]
[tex]P(Z< \dfrac{P_{95}\sqrt{12} } {\sqrt{{2000}}}) = 0.95[/tex]
[tex]\dfrac{P_{95}\sqrt{12} } {\sqrt{{2000}}} =1- 0.95[/tex]
[tex]\dfrac{P_{95}\sqrt{12} } {\sqrt{{2000}}} = 0.05[/tex]
From Normal table; Z > 1.645 = 0.05
[tex]\dfrac{P_{95}\sqrt{12} } {\sqrt{{2000}}} =1.645[/tex]
[tex]{P_{95}\sqrt{12} } = 1.645 \times {\sqrt{{2000}}}[/tex]
[tex]{P_{95} = \dfrac{1.645 \times {\sqrt{{2000}}} }{\sqrt{12} } }[/tex]
[tex]\mathbf{P_{95} = 21.236}[/tex]
the 95th percentile for the sum of the rounding errors is 21.236
Which expression is equivalent to
Answer:
Option 2) [tex]x^{\frac{1}{8}}y^8[/tex]
Step-by-step explanation:
=> [tex](x^{\frac{1}{4} } y ^{16} )^\frac{1}{2}[/tex]
=> [tex]x^{\frac{1}{4} * \frac{1}{2} } * y ^{16*\frac{1}{2} }[/tex]
=> [tex]x^{\frac{1}{8}}y^8[/tex]
What is the 5th equivalent fraction to 1/11 ?
Answer: 5/55
Step-by-step explanation:
1/11 x 5 = 5/55
So, the fifth equivalent fraction to 1/11 is 5/55.
The 5th equivalent fraction should be [tex]5\div 55[/tex]
Calculation of the equivalent fraction:Since the fraction is [tex]1\div 11[/tex]
So here the 5th equivalent should be
[tex]= 1\div 11 \times 5\div 5[/tex]
= [tex]5\div 55[/tex]
Here 5 represent the numerator and 55 represent the denominator.
Therefore, we can concluded that The 5th equivalent fraction should be [tex]5\div 55[/tex]
Learn more about fraction here: https://brainly.com/question/1786648