The initial kinetic energy of the proton fired towards a stationary lead nucleus can be calculated using the conservation of energy principle. The proton's kinetic energy before the collision is equal to the sum of the kinetic energy and potential energy after the collision.
Since the lead nucleus is much heavier than the proton, it can be assumed to remain stationary during the collision. Therefore, the initial kinetic energy of the proton can be calculated as 41.4 MeV.
To elaborate, the conservation of energy principle states that the total energy of a system remains constant unless acted upon by an external force. In this case, the proton is fired towards the stationary lead nucleus, and the collision between the two particles leads to the transfer of energy.
The initial kinetic energy of the proton is equal to its final kinetic energy plus the potential energy gained due to the attractive force between the two particles. This potential energy can be calculated using Coulomb's law, which describes the electrostatic force between charged particles. However, since the lead nucleus is much heavier than the proton, it can be assumed to remain stationary during the collision, and the calculation becomes simpler. By equating the initial kinetic energy of the proton to its final kinetic energy plus the potential energy gained during the collision, we can obtain the value of the initial kinetic energy required for the proton to have 20 MeV of kinetic energy after the collision, which is approximately 41.4 MeV.
Learn more about kinetic energy here:
https://brainly.com/question/26472013
#SPJ11
A sample of 8.8x10-12 mol of antimony-11 (122Sb) emits 6.6x109 β−− particles per minute. Calculate the specific activity of the sample (in Ci/g). 1 Ci = 3.70x1010 d/s.Enter to 0 decimal places.
The specific activity of the sample containing 8.8x10⁻¹² mol of antimony-11 (¹²²Sb) is approximately 67.8 Ci/g.
Specific activity is a measure of the radioactivity per unit mass of a radioactive sample. It is calculated by dividing the activity of the sample (number of radioactive decays per unit time) by the mass of the sample.
Given:
Number of β⁻ particles emitted per minute = 6.6x10⁹
1 Ci = 3.70x10¹⁰ decays per second
To calculate the specific activity, we need to convert the number of β⁻ particles emitted per minute to decays per second:
Activity (A) = (6.6x10⁹) / 60
Next, we convert the number of decays per second to curies:
A (in Ci) = A (in decays per second) / (3.70x10¹⁰)
Now, we calculate the specific activity by dividing the activity by the mass of the sample:
Specific activity = A (in Ci) / (8.8x10⁻¹²)
Substituting the values and calculating, we get:
Specific activity ≈ (6.6x10⁹ / 60) / (3.70x10¹⁰ * 8.8x10⁻¹²)
Simplifying the expression, we find:
Specific activity ≈ 67.8 Ci/g
To know more about specific activity, refer here:
https://brainly.com/question/30972080#
#SPJ11
calculate the solubility of fe(oh)3 in buffer solutions having the following phs: a) ph = 4.50; b) ph = 7.00; c) ph 9.50. the ksp of fe(oh)3 is 2.8×10–39.
The solubility of Fe(OH)3 in buffer solutions with pH values of 4.50, 7.00, and 9.50 is approximately 2.80×10^-8 M, 2.80×10^-25 M, and 2.80×10^-7 M, respectively.
Fe(OH)3(s) ↔ Fe3+(aq) + 3OH-(aq)
The solubility product expression is:
Ksp = [Fe3+][OH-]^3 = 2.8×10^-39
To calculate the solubility of Fe(OH)3 in buffer solutions of different pH, we need to determine the concentration of OH- ions in each solution using the Henderson-Hasselbalch equation:
pH = pKa + log([A-]/[HA])
For the Fe(OH)3 system, we can treat OH- as the base (A-) and H2O as the acid (HA):
OH- + H2O ↔ H2O + OH2+
Ka = Kw/Kb = 1.0×10^-14/1.8×10^-16 = 5.6×10^-9
pKa = -log Ka = -log (5.6×10^-9) = 8.25
a) At pH = 4.50:
pOH = 14.00 - pH = 14.00 - 4.50 = 9.50
[OH-] = 10^-pOH = 3.16×10^-10 M
Substituting [OH-] into the Ksp expression:
Ksp = [Fe3+][OH-]^3
[Fe3+] = Ksp/[OH-]^3 = 2.8×10^-39/(3.16×10^-10)^3 = 2.80×10^-8 M
b) At pH = 7.00:
pOH = 14.00 - pH = 14.00 - 7.00 = 7.00
[OH-] = 10^-pOH = 1.0×10^-7 M
Substituting [OH-] into the Ksp expression:
Ksp = [Fe3+][OH-]^3
[Fe3+] = Ksp/[OH-]^3 = 2.8×10^-39/(1.0×10^-7)^3 = 2.80×10^-25 M
c) At pH = 9.50:
pOH = 14.00 - pH = 14.00 - 9.50 = 4.50
[OH-] = 10^-pOH = 3.16×10^-5 M
Substituting [OH-] into the Ksp expression:
Ksp = [Fe3+][OH-]^3
[Fe3+] = Ksp/[OH-]^3 = 2.8×10^-39/(3.16×10^-5)^3 = 2.80×10^-7 M
Therefore, the solubility of Fe(OH)3 in buffer solutions with pH values of 4.50, 7.00, and 9.50 is approximately 2.80×10^-8 M, 2.80×10^-25 M, and 2.80×10^-7 M, respectively.
For more questions on Fe(OH)3:
https://brainly.com/question/30843850
#SPJ11
[tex]1.9x10^-37 M; b) 4.8x10^-31 M; c) 1.2x10^-24 M[/tex].
The solubility of Fe(OH)3 decreases as the pH increases due to the shift in equilibrium towards the Fe(OH)3 solid form. At pH 7.00, Fe(OH)3 is most insoluble due to the balanced dissociation of Fe3+ and OH-.
The solubility of Fe(OH)3 depends on the pH of the solution. At low pH, the concentration of H+ ions is high, which can react with OH- ions to form water, shifting the equilibrium towards the solid Fe(OH)3 form. At high pH, the concentration of OH- ions is high, which can react with Fe3+ ions to form Fe(OH)3, again shifting the equilibrium towards the solid form. As a result, the solubility of Fe(OH)3 decreases as the pH of the solution increases.
At pH 7.00, the solubility of Fe(OH)3 is the lowest because the concentration of H+ ions and OH- ions are balanced, resulting in less formation of either Fe(OH)3 or H+ ions. This balance of dissociation of Fe3+ and OH- ions results in the least solubility of Fe(OH)3. On the other hand, at pH 4.50, the solubility is relatively higher because the concentration of H+ ions is high, which can react with OH- ions to form water, leading to more dissociation of Fe(OH)3. At pH 9.50, the solubility is relatively higher as well because the concentration of OH- ions is high, leading to more formation of Fe(OH)3.
Learn more about Fe(OH)3 here :
brainly.com/question/30843850
#SPJ11
Propose a method to extract ug/L levels of polychlorinated biphenyls (PCBs) from environmental water sample, including specific procedures and which type of extraction material will be used.
One potential method for extracting PCBs from environmental water samples is solid-phase extraction (SPE) using activated charcoal as the extraction material.
The procedure would involve passing the water sample through a column packed with activated charcoal to trap the PCBs. After the sample has passed through the column, the PCBs would be eluted using a suitable solvent such as hexane.
The eluent containing the PCBs could then be concentrated using a rotary evaporator or other suitable technique, and the resulting residue could be analyzed using gas chromatography-mass spectrometry (GC-MS).
The use of activated charcoal as the extraction material is effective because it has a high surface area and can adsorb a wide range of organic compounds, including PCBs.
To know more about organic compounds, refer here:
https://brainly.com/question/5994723#
#SPJ11
The pH of 0.150 M CH3CO2H, acetic acid, is 2.78. What is the value of Ka for the acetic acid? Oa. 2.8 x 10-6 Ob.1.9 x 10-5 Oc. 1.7 x 10-3 Od.1.1 x 10-2
To find the value of Ka for acetic acid (CH3CO2H), we can use the pH and concentration of the acid.
Given:
pH of acetic acid (CH3CO2H) = 2.78
Concentration of acetic acid (CH3CO2H) = 0.150 M
The pH of a weak acid, such as acetic acid, is related to the concentration and the acid dissociation constant (Ka) by the equation:
pH = -log10([H+]) = -log10(√(Ka * [CH3CO2H]))
Here, [H+] represents the concentration of H+ ions, and [CH3CO2H] represents the concentration of acetic acid.
To solve for Ka, we rearrange the equation:
Ka = 10^(-2pH) * [CH3CO2H]^2
Plugging in the given values:
Ka = 10^(-2 * 2.78) * (0.150 M)^2
Calculating this expression:
Ka ≈ 10^(-5.56) * (0.0225 M^2)
Ka ≈ 2.8 x 10^(-6)
Therefore, the value of Ka for acetic acid (CH3CO2H) is approximately 2.8 x 10^(-6) (Option A).
To know more about acetic acid refer here
https://brainly.com/question/29141213#
#SPJ11
calculate the wavelength (in m) of a football (425 g) thrown by an nfl quarterback traveling at 50 mph.
The wavelength of the football thrown by an NFL quarterback traveling at 50 mph is approximately 6.99 x 10^-35 m.
To calculate the wavelength of the football, we need to first calculate its velocity in meters per second.
We can convert 50 mph to meters per second as follows:
1 mph = 0.44704 m/s (conversion factor)
50 mph = 50 x 0.44704 m/s
50 mph = 22.352 m/s (velocity of the football)
Next, we need to calculate the momentum of the football using the equation:
p = mv , where p is momentum, m is mass, and v is velocity.
We can convert the mass of the football from grams to kilograms as follows:
425 g = 0.425 kg (conversion factor)
So, the momentum of the football is:
p = mv
p = 0.425 kg x 22.352 m/s
p = 9.498 kg*m/s
Finally, we can calculate the wavelength of the football using the equation:
wavelength = h/p
where h is Planck's constant (6.626 x 10^-34 J*s).
So, the wavelength of the football is:
wavelength = h/p
wavelength = (6.626 x 10^-34 Js)/(9.498 kgm/s)
wavelength = 6.99 x 10^-35 m
For such more questions on wavelength
https://brainly.com/question/28995449
#SPJ11
The wavelength of the football is λ = 7.17 * 10^-{26} nm .
The wavelength of the football can be calculated using the de Broglie wavelength equation: λ = h/mv, where h is Planck's constant, m is the mass of the object, v is the velocity of the object.
First, we need to convert the mass of the football from grams to kilograms: 425 g = 0.425 kg.
Next, we need to convert the velocity from mph to m/s: 50 mph = 22.35 m/s.
Now we can plug in the values into the equation:
λ = \frac{(6.626 * 10^{-34} J*s) }{ (0.425 kg * 22.35 m/s) }
λ = 7.17 * 10^{-26} nm
Therefore, the correct answer is C) 7.17 * 10^-{26} nm.
It's important to note that this calculation assumes that the football is behaving as a wave, which is not necessarily the case in reality. However, this calculation can still provide a useful estimate of the football's wavelength.
learn more about the wavelength refer: https://brainly.com/question/12924624
#SPJ11
Identify the relative positions of the methyl groups in the most stable conformation of butane. 1 anti 2) eclipsed 3) gauche 4) totally eclipsed 5) adjacent
In butane, the methyl groups are located on the two terminal carbon atoms. The correct answer is 1) anti.
The most stable conformation of butane is the anti conformation, where the two methyl groups are positioned as far away from each other as possible, resulting in a staggered orientation of the carbon-hydrogen bonds. This conformation has the lowest energy and is the most favored due to steric hindrance between the methyl groups.
The eclipsed conformation, on the other hand, has the highest energy and is the least stable due to the overlap of the methyl groups. In the gauche conformation, the methyl groups are positioned at a 60-degree angle from each other, resulting in some steric hindrance. This conformation has slightly higher energy than the anti conformation but is still more stable than the eclipsed and totally eclipsed conformations.
In the totally eclipsed conformation, the methyl groups are positioned directly behind each other, resulting in maximum overlap and the highest energy state. The adjacent conformation is not a term used to describe butane conformations. Overall, the relative positions of the methyl groups in the most stable conformation of butane are anti.
To know more about butane click here:
https://brainly.com/question/29147540
#SPJ11
please answer these. You have to balance the reactions, write the coefficients, then classify it.
Bbalance the reactions, write the coefficients, then classify it.
a. AgNO3 + K3PO4 → Ag3PO4 + 3KNO3 (balanced)
Classification: Double replacement
b. Cu(OH)2 + 2HC2H3O2 → Cu(C2H3O2)2 + 2H2O (balanced)
Classification: single replacement
c. Ca(C2H3O2)2 + Na2CO3 → CaCO3 + 2NaC2H3O2 (balanced)
Classification: Double replacement.
d. 2K + 2H2O → 2KOH + H2 (balanced)
Classification: single replacement
e. C6H14 + 19O2 → 6CO2 + 7H2O + heat (balanced)
Classification: Combustion
f. Cu + S8 → CuS8 (unbalanced; needs correction)
Classification: single replacement
g. P4 + 5O2 → 2P2O5 (balanced)
Classification: Combustion
h. AgNO3 + Ni → Ni(NO3)2 + Ag (balanced)
Classification: single replacement
i. Ca + 2HCl → CaCl2 + H2 (balanced)
Classification: single replacement
j. C3H8 + 5O2 → 3CO2 + 4H2O + heat (balanced)
Classification: Combustion.
k. 2NaClO3 → 2NaCl + 3O2 (balanced)
Classification: Decomposition
l. BaCO3 → BaO + CO2 (balanced)
Classification: Decomposition
m. 4Cr + 3O2 → 2Cr2O3 (balanced)
Classification: Combustion
n. 2C2H2 + 5O2 → 4CO2 + 2H2O + heat (balanced)
Classification: Combustion.
Learn more about Combustion here:
https://brainly.com/question/31123826
#SPJ1
alculate the ph of a solution prepared by dissolving 0.42 mol of benzoic acid and 0.151 mol of sodium benzoate in water sufficient to yield 1.00 l of solution. the ka of benzoic acid is 6.30 × 10-5.
The pH of the solution is approximately 3.77.
To calculate the pH of the given solution, we'll need to use the Henderson-Hasselbalch equation, which is:
pH = pKa + log ([A-]/[HA])
In this problem, benzoic acid (C₆H₅COOH) is the weak acid (HA) and sodium benzoate (C₆H₅COONa) is the conjugate base (A-).
The Ka of benzoic acid is 6.30 × 10⁻⁵, and the pKa can be calculated as:
pKa = -log(Ka) = -log(6.30 × 10⁻⁵) ≈ 4.20
Now, we have 0.42 mol of benzoic acid (HA) and 0.151 mol of sodium benzoate (A⁻) in a 1.00 L solution.
We can find their concentrations:
[HA] = 0.42 mol / 1.00 L = 0.42 M [A⁻] = 0.151 mol / 1.00 L = 0.151 M
Applying the Henderson-Hasselbalch equation:
pH = 4.20 + log (0.151 / 0.42) ≈ 3.77
Learn more about pH at
https://brainly.com/question/24052816
#SPJ11
12. what is the ratio kc/kp for the following reaction at 723 °c? o2(g) 3 uo2cl2(g) ⇌ u3o8(s) 3 cl2(g) a) 0.0122 b) 1.00 c) 59.4 d) 81.7
The ratio of the rate constants for the forward and reverse reactions, known as the equilibrium the answer is (d) 81.7. constant (K), is given by:K = k_forward / k_reverse the answer is (d) 81.7.
At equilibrium, the concentration of reactants and products no longer change with time. This means that the amount of reactants being converted to products is exactly balanced by the amount of products being converted back to reactants.The equilibrium state can be described by the equilibrium constant, K, which is a measure of the relative amounts of products and reactants at equilibrium. The equilibrium constant is determined by the concentrations of the reactants and products at equilibrium, and it is a constant value for a given reaction at a specific temperature.The equilibrium constant expression for a reaction is derived from the balanced chemical equation and the law of mass action. It relates the concentrations of the reactants and products at equilibrium, raised to their stoichiometric coefficients, and can be written in terms of concentrations (Kc) or pressures (Kp) for gaseous reactions.A reaction can be driven towards the product side or the reactant side by changing the concentration, pressure, or temperature of the system. Le Chatelier's principle provides a useful guide for predicting the effect of such changes on the equilibrium position of a reaction.
To know more about equilibrium visit :
https://brainly.com/question/30807709
#SPJ11
calculate the boiling point (in degrees c) of a solution made by dissolving 3.71 g of fructose (c6h12o6) in 87 g of water. the kbp of the solvent is 0.512 k/m and the normal boiling point is 373 k.
Boiling point = Normal boiling point + ΔT = 373 K + (3.71 g/180.16 g/mol) * (0.512 K/m) / (0.087 kg) = 374.12 K.
To calculate the boiling point of the solution, we'll first find the molality (m) of fructose.
Molality is defined as moles of solute per kilogram of solvent.
1. Calculate moles of fructose: (3.71 g) / (180.16 g/mol) = 0.0206 mol
2. Convert grams of water to kilograms: 87 g = 0.087 kg
3. Calculate molality: (0.0206 mol) / (0.087 kg) = 0.237 m
Next, we'll use the molality and the Kbp (0.512 K/m) to find the change in boiling point (ΔT).
4. Calculate ΔT: (0.237 m) * (0.512 K/m) = 0.121 K
Finally, add ΔT to the normal boiling point (373 K).
5. Boiling point = 373 K + 0.121 K = 374.12 K
The boiling point of the solution is 374.12 K, or approximately 101.0°C.
For more such questions on Boiling point, click on:
https://brainly.com/question/40140
#SPJ11
The boiling point of the solution would be 100.34°C.
To calculate the boiling point elevation, we can use the formula:
ΔTb = Kbp x molality
where ΔTb is the boiling point elevation, Kbp is the boiling point elevation constant of the solvent, and molality is the concentration of the solution in terms of moles of solute per kilogram of solvent.
First, we need to calculate the molality of the solution. We know the mass of fructose (3.71 g) and the mass of water (87 g). We can convert the mass of fructose to moles by dividing by its molar mass:
moles of fructose = 3.71 g / 180.16 g/mol = 0.0206 mol
Then, we can calculate the molality:
molality = moles of fructose / mass of water in kg
molality = 0.0206 mol / 0.087 kg = 0.237 mol/kg
Now we can calculate the boiling point elevation:
ΔTb = Kbp x molality
ΔTb = 0.512 K/m x 0.237 mol/kg = 0.1216 K
Finally, we can calculate the boiling point of the solution:
Boiling point of solution = normal boiling point of solvent + ΔTb
Boiling point of solution = 373 K + 0.1216 K = 373.12 K
We can convert the boiling point to Celsius by subtracting 273.15:
Boiling point of solution = 373.12 K - 273.15 = 100.34°C
Therefore, the boiling point of the solution is 100.34°C.
Learn more about mol/kg here:
https://brainly.com/question/21151096
#SPJ11
Complete and balance the following half-reactions. In each case indicate whether the half- reaction is an oxidation or a reduction. (a) Mo3+ (aq) → Mo(s) (acidic or basic solution) (b)H,Soz (aq) → SO4^2- (aq) (acidic solution) (c) NO3(aq) → NO(g)(acidic solution) (d) O2(g) → H2O(l) (acidic solution) (e) Mn2+ (aq) → MnO2 (s) (basic solution) (f) Cr(OH)3(s) → CrO4^2-(aq) (basic solution) (g) O2(g) → H2O (l) (basic solution)
(a) Mo3+ (aq) → Mo(s) (acidic or basic solution) (b) H2SO3 (aq) → SO42- (aq) (acidic solution) (c) NO3-(aq) → NO(g) (acidic solution)
(d) O2(g) → H2O(l) (acidic solution) (e) Mn2+ (aq) → MnO2 (s) (basic solution)
(f) Cr(OH)3(s) → CrO42-(aq) (basic solution) (g) O2(g) → H2O (l) (basic solution)
(a)This is a reduction half-reaction as Mo3+ is gaining electrons to form Mo(s).
Mo3+ + 3e- → Mo(s)
(b) This is an oxidation half-reaction as H2SO3 is losing electrons to form SO42-.
H2SO3 → SO42- + 2H+ + 2e-
(c) This is a reduction half-reaction as NO3- is gaining electrons to form NO(g).
NO3- + 4H+ + 3e- → NO(g) + 2H2O(l)
(d) This is a reduction half-reaction as O2 is gaining electrons to form H2O(l).
O2 + 4H+ + 4e- → 2H2O(l)
(e) This is an oxidation half-reaction as Mn2+ is losing electrons to form MnO2.
Mn2+ + 4OH- → MnO2 + 2H2O + 4e-
(f) This is an oxidation half-reaction as Cr(OH)3 is losing electrons to form CrO42-.
Cr(OH)3 + 3OH- → CrO42- + 3H2O + 3e-
(g) This is a reduction half-reaction as O2 is gaining electrons to form H2O(l).
O2 + 2H2O + 4e- → 4OH-
Overall, it is important to balance half-reactions to ensure that charge and mass are conserved. Additionally, understanding whether a half-reaction is an oxidation or a reduction is key to constructing balanced redox reactions. In many cases, these reactions involve transfer of electrons, and it is useful to keep track of electron movement as well as which species are being oxidized or reduced.
For more such questions on solution
https://brainly.com/question/30519867
#SPJ11
It is important to balance half-reactions to ensure that charge and mass are conserved. Additionally, understanding whether a half-reaction is an oxidation or a reduction is key to constructing balanced redox reactions.
(a) Mo3+ (aq) → Mo(s) (acidic or basic solution)
(b) H2SO3 (aq) → SO42- (aq) (acidic solution)
(c) NO3-(aq) → NO(g) (acidic solution)
(d) O2(g) → H2O(l) (acidic solution)
(e) Mn2+ (aq) → MnO2 (s) (basic solution)
(f) Cr(OH)3(s) → CrO42-(aq) (basic solution)
(g) O2(g) → H2O (l) (basic solution)
(a)This is a reduction half-reaction as Mo3+ is gaining electrons to form Mo(s).
Mo3+ + 3e- → Mo(s)
(b) This is an oxidation half-reaction as H2SO3 is losing electrons to form SO42-.
H2SO3 → SO42- + 2H+ + 2e-
(c) This is a reduction half-reaction as NO3- is gaining electrons to form NO(g).
NO3- + 4H+ + 3e- → NO(g) + 2H2O(l)
(d) This is a reduction half-reaction as O2 is gaining electrons to form H2O(l).
O2 + 4H+ + 4e- → 2H2O(l)
(e) This is an oxidation half-reaction as Mn2+ is losing electrons to form MnO2.
Mn2+ + 4OH- → MnO2 + 2H2O + 4e-
(f) This is an oxidation half-reaction as Cr(OH)3 is losing electrons to form CrO42-.
Cr(OH)3 + 3OH- → CrO42- + 3H2O + 3e-
(g) This is a reduction half-reaction as O2 is gaining electrons to form H2O(l).
O2 + 2H2O + 4e- → 4OH-
Learn more about solution here:
brainly.com/question/30519867
#SPJ11
1. Liquid triethylene glycol, C6H14O4 is used in air sanitizer products. Write a balanced equation that describes the combustion of liquid triethylene glycol.
2. An aqueous solution of potassium chromate is mixed with aqueous silver nitrate. Does a reaction occur? If so, provide a balanced equation, with states, that describes the reaction.
3. Oxalic acid, C2H2O4, is a toxic substance found in rhubarb leaves. When mixed with sufficient quantities of a strong base, this weak diprotic acid loses two protons to form a polyatomic ion called oxalate, C2O42-. Write a balanced equation that describes the reaction between oxalic acid and sodium hydroxide
1. The balanced equation for the combustion of liquid triethylene glycol is:
C6H14O4 + 9O2 → 6CO2 + 7H2O
2. A reaction occurs when an aqueous solution of potassium chromate is mixed with aqueous silver nitrate, resulting in the formation of a precipitate of silver chromate. The balanced equation for the reaction is:
2K2CrO4(aq) + 2AgNO3(aq) → Ag2CrO4(s) + 2KNO3(aq)
3. The balanced equation for the reaction between oxalic acid and sodium hydroxide, resulting in the formation of the oxalate polyatomic ion, is:
H2C2O4 + 2NaOH → Na2C2O4 + 2H2O
learn more about polyatomic ion
https://brainly.in/question/36487540?referrer=searchResults
#SPJ11
For parts of the free response question that require calculations, clearly show the method used and the steps involved in arriving at your answers. You must show your work to receive credit for your answer.
The number of moles of CO₂ present in the vessel at equilibrium is calculated as 1.040 moles.
1) V = 100L = 0.1 cubic metre
Pressure = 1 atm = 101325 Pascal.
R = 8.314 J/K mole.
T = 898•C = 898 + 273 = 1171 K
Using ideal gas equation , PV= nRT
n = PV/RT
n = 101325 × 0.1/8.314 × 1171
n = 10132.5 / 9735
= 1.040 moles.
2) equilibrium constant = [Product]/[Reactant]
Kp = [CaO][CO₂]/[CACO₃]
Initial moles of CaCO₃ = 2 moles .
Initial moles of CaO = 0 .
Initial moles of CO₂ = 0 .
Moles at equilibrium of CaCO₃ = 2-x.
Moles at equilibrium of CaO = x.
Moles at equilibrium of CO₂ = x.
Moles of CO₂ = 1.040 moles
Moles at equilibrium of CaCO₃ = 2-1.040 = 0.96 moles.
Moles at equilibrium of CaO = 1.040 moles.
Moles at equilibrium of CO₂ = 1.040 moles.
Concentration = moles / volume .
Concentration of CaCO₃ = 0.96/100(in litre)
= 0.0096 moles / litre.
Concentration of CaO = 1.040/100 = 0.01040 moles / litre.
Concentration of CO₂ = 1.040/100
= 0.01040 moles / litre.
Equilibrium constant = 0.0096/0.01040× 0.01040
= 0.0096/0.00010816
= 88.75 .
What gives it its name, "ideal gas equation"?
An ideal gas is a hypothetical gas made out of many haphazardly moving point particles that are not expose to interparticle co-operations. The ideal gas idea is helpful on the grounds that it complies with the best gas regulation, an improved on condition of state, and is manageable to examination under factual mechanics.
Incomplete question:
For parts of the free response question that require calculations, clearly show the method used and the steps involved in arriving at your answers. You must show your work to receive credit for your answer.For parts of the free-response question that require calculations, clearly show the method used and the steps involved in arriving at your answers. You must show your work to receive credit for your answer. Examples and equations may be included in your answers where appropriate CaCO₃(s)CaO(s) +CO₂(g) When heated strongly, solid calcium carbonate decomposes to produce solid calcium oxide and carbon dioxide gas, as represented by the equation above. A 2.0 mol sample of CaCO₃(s) is placed in a rigid 100. L reaction vessel from which all the air has been evacuated. The vessel is heated to 898 C at which time the pressure of CO₂(g) in the vessel is constant at 1.00 atm, while some CaCO₃(8) remains in the vessel. (a) Calculate the number of moles of CO₂(9) present in the vessel at equilibrium B. 0 / 10000 Word Limit (b) Write the expression for Kp the equilibrium constant for the reaction, and determine its value at 898 C B 0 / 10000
Learn more about Ideal Gas equation:
brainly.com/question/20348074
#SPJ4
Carbonic acid can form water and carbon dioxide upon heating. How many grams of carbon dioxide is formed from 12.4 g of carbonic acid? (molar mass HCO3: 64 g/mol; CO: 44 g/mol) H2CO3 -> H2O + CO2 3.60 1758 427 8.548 12.48
8.55 grams of carbon dioxide is formed from 12.4 g of carbonic acid.
the balanced chemical equation for the reaction: H2CO3 -> H2O + CO2
the number of moles of H2CO3 present in 12.4 g using the molar mass: 12.4 g / 64 g/mol = 0.19375 mol H2CO3
the mole ratio from the balanced equation to determine the number of moles of CO2 produced: 0.19375 mol H2CO3 x (1 mol CO2 / 1 mol H2CO3) = 0.19375 mol CO2
the moles of CO2 to grams using the molar mass: 0.19375 mol CO2 x 44 g/mol = 8.5125 g CO2
the final answer to the appropriate number of significant figures (based on the given data), which is 8.55 g CO2.
Therefore, 8.55 grams of carbon dioxide is formed from 12.4 g of carbonic acid.
Learn more about balanced chemical equation
brainly.com/question/28294176
#SPJ11
Tell whether the rates are equivalent.
0. 75 kilometer for every 30 minutes
1. 25 kilometers for every 50 minutes
No, the rates are not equivalent. Simplifying the first rate, we can say that 1 kilometer is covered in every 40 minutes. In the second rate, we can say that 1 kilometer is covered in every 2 minutes.
To determine if two rates are equivalent, we need to simplify the rates and compare the time it takes to cover one unit of distance. In the first rate, 0.75 kilometers are covered in 30 minutes. To simplify, we can divide both the numerator and denominator by 0.75, resulting in 1 kilometer covered in 40 minutes.
In the second rate, 25 kilometers are covered in 50 minutes. Simplifying by dividing both numerator and denominator by 25, we get 1 kilometer covered in 2 minutes.
Comparing the simplified rates, we see that it takes 40 minutes to cover 1 kilometer in the first rate, while it only takes 2 minutes in the second rate. Since the time required to cover the same distance differs, the rates are not equivalent.
LEARN MORE ABOUT rate here: brainly.com/question/29334875
#SPJ11
how many chirality centers are present in trans cinnamic acid? does cinnamic acid exist in any stereoisomeric form? if so how many stereoisomers are expected for cinnamic acid?
Trans-cinnamic acid has one chirality center, which is the carbon atom that is directly attached to the carboxylic acid group (-COOH). This carbon atom is sp² hybridized and has three different groups attached to it: a hydrogen atom, a double bond with an adjacent carbon, and a carboxylic acid group.
Due to this, two stereoisomers are possible for trans-cinnamic acid: (E)-cinnamic acid and (Z)-cinnamic acid. The (E)-isomer has the two highest priority groups (i.e., the double bond and the carboxylic acid group) on opposite sides of the double bond, whereas the (Z)-isomer has them on the same side of the double bond.
Both isomers have the same chirality center, but they differ in their geometric arrangement around the double bond. Therefore, cinnamic acid exists in two stereoisomeric forms, (E)-cinnamic acid and (Z)-cinnamic acid.
To know more about the Trans-cinnamic acid refer here :
https://brainly.com/question/31656319#
#SPJ11
select true or false: the correct name of the complex ion [cr(en)2(h2o)2]2 is: diaquabis(ethylenediamine)chromium(iv) ion
The given statement "the correct name of the complex ion [tex][Cr(en)_2(H_2O)_2]^{2+}[/tex] is: diaquabis(ethylenediamine)chromium(iv) ion" is False because The correct name of the complex ion [tex][Cr(en)_2(H_2O)_2]^{2+}[/tex] is diaqua-bis(ethylenediamine)chromium(III) ion.
The roman numeral (III) indicates the oxidation state of the chromium ion, which is determined based on the charge of the entire complex ion. In this case, the charge of the complex ion is +2, which is balanced by the two negative charges of the two chloride ions that are not shown in the formula.
The water molecules and ethylenediamine ligands are named as aqua and ethylenediamine, respectively, and the prefix "bis" is used to indicate that there are two ethylenediamine ligands coordinated to the chromium ion.
For more question on name click on
https://brainly.com/question/14003588
#SPJ11
what is the formula of the products for the double replacement reaction when solutions of nacl (aq) and agno3(aq) are combined?
The double replacement reaction between NaCl (aq) and AgNO3 (aq) can be represented by the following balanced equation: NaCl (aq) + AgNO3 (aq) → AgCl (s) + NaNO3 (aq)
In this reaction, the ions from the two reactants switch places, forming new products. Specifically, the sodium ions (Na+) from NaCl combine with the nitrate ions (NO3-) from AgNO3 to form sodium nitrate (NaNO3), while the silver ions (Ag+) from AgNO3 combine with the chloride ions (Cl-) from NaCl to form silver chloride (AgCl).
This type of reaction is known as a double replacement or metathesis reaction, which commonly occurs between two ionic compounds in solution. The driving force for this reaction is the formation of a solid precipitate, which in this case is silver chloride (AgCl). The other product, sodium nitrate (NaNO3), remains soluble in water.
In summary, when NaCl (aq) and AgNO3 (aq) solutions are combined, a double replacement reaction takes place, producing the solid precipitate silver chloride (AgCl) and the soluble compound sodium nitrate (NaNO3) as products.
learn more about nitrate here:
https://brainly.com/question/5346392
#SPJ11
For the following reaction, to get the rate of formation of N2, what must we multiply the rate of consumption of NH3 by?2NH3---> N2 + 3H2*Report your answer as a fraction
If the rate of consumption of NH3 is given by the expression [tex]$-\frac{d[NH_3]}{dt}$[/tex], then the rate of formation of N2 would be [tex]$(\frac{1}{2})\cdot \frac{d[N_2]}{dt}$[/tex].
For the given reaction, we want to determine the rate of formation of N2, which is the product of the reaction.
The rate of formation of N2 can be related to the rate of consumption of NH3, which is one of the reactants. To do this, we need to use the stoichiometry of the reaction to determine the appropriate conversion factor.
From the balanced chemical equation, we can see that 2 moles of NH3 react to form 1 mole of N2. Therefore, the rate of formation of N2 is related to the rate of consumption of NH3 by a factor of 1/2.
To see why this is the case, consider the following: if we start with a certain rate of consumption of NH3, then this will result in a corresponding rate of formation of N2, which is half of the rate of consumption of NH3. This is because for every 2 moles of NH3 consumed, only 1 mole of N2 is formed, as per the stoichiometry of the reaction.
Therefore, to get the rate of formation of N2, we need to multiply the rate of consumption of NH3 by 1/2. In other words, if the rate of consumption of NH3 is given by the expression [tex]$-\frac{d[NH_3]}{dt}$[/tex], then the rate of formation of N2 would be [tex]$(\frac{1}{2})\cdot \frac{d[N_2]}{dt}$[/tex].
In summary, to relate the rate of formation of N2 to the rate of consumption of NH3 for the given reaction, we need to use the stoichiometry of the reaction and multiply the rate of consumption of NH3 by a factor of 1/2.
To lear more about rate of consumption refer here:
https://brainly.com/question/3139415
#SPJ11
Calculate the binding energy of 11C. The atomic mass of 11C is 1.82850 ×× 10–26 kg.
The binding energy of an atom is the amount of energy required to completely separate all its individual protons and neutrons from each other. This energy is released when an atom is formed from its individual particles and is equivalent to the mass defect of the atom. The binding energy of 11C is approximately 1.86 × 10^-11 J.
To calculate the binding energy of 11C, we need to follow these steps:
Step 1: Convert the atomic mass of 11C to energy using the mass-energy equivalence formula:
E = mc², where m is the mass, c is the speed of light (3 × 10^8 m/s), and E is the energy.
E = (1.82850 × 10^-26 kg) × (3 × 10^8 m/s)^2
E ≈ 1.64665 × 10^-11 J
Step 2: Calculate the mass defect by subtracting the sum of the masses of individual protons and neutrons from the atomic mass of 11C. There are 6 protons and 5 neutrons in 11C.
Mass defect = (11C atomic mass) - [(mass of proton × 6) + (mass of neutron × 5)]
Mass defect ≈ 1.82850 × 10^-26 kg - [(1.67262 × 10^-27 kg × 6) + (1.67493 × 10^-27 kg × 5)]
Mass defect ≈ 1.16548 × 10^-28 kg
Step 3: Convert the mass defect to energy using the mass-energy equivalence formula:
Binding energy = (1.16548 × 10^-28 kg) × (3 × 10^8 m/s)^2
Binding energy ≈ 1.86 × 10^-11 J
Learn more about binding energy here:
https://brainly.com/question/31817434
#SPJ11
How can the turnover number of an enzyme be determined? a. as Vmax b. when half of the enzyme is occupied with the substratec. by the initial velocity d. when the enzyme is fully saturated e. as [E]T
The turnover number of an enzyme can be determined as Vmax, which is the maximum velocity of the enzymatic reaction when all the enzyme active sites are fully saturated with substrate.
Vmax is the maximum rate of reaction achievable when all enzyme active sites are occupied by substrate, and the rate of the reaction is at its maximum.
At this point, the enzyme is said to be saturated with substrate, and the rate of the reaction can no longer be increased, even if the concentration of substrate is increased. The turnover number is defined as the number of substrate molecules converted into product by one enzyme molecule in a given time period. Therefore, Vmax represents the turnover number, as it indicates the maximum rate of reaction that the enzyme can achieve when all the active sites are occupied by substrate.
Learn more about enzyme here:
https://brainly.com/question/31385011
#SPJ11
an aqueous solution containing barium iodide (bai2) is electrolyzed in a cell containing inert electrodes. what are the products at the anode and cathode? choix de groupe de réponses
The products at the anode are iodine (I2), and the products at the cathode are barium metal (Ba).
When an aqueous solution containing barium iodide (BaI2) is electrolyzed in a cell with inert electrodes, the products at the anode will be iodine (I2), while the products at the cathode will be barium metal (Ba).
During the electrolysis process, the cations and anions in the barium iodide solution migrate towards their respective electrodes. At the anode, the negatively charged iodide ions (I-) lose electrons and form iodine molecules (I2) through the following half-reaction:
2I- → I2 + 2e-
At the cathode, the positively charged barium ions (Ba2+) gain electrons and form barium metal (Ba) through this half-reaction:
Ba2+ + 2e- → Ba
These reactions result in the formation of iodine at the anode and barium at the cathode. It's important to note that the electrodes used in this process are inert, meaning they do not participate in the reaction, ensuring the products formed are solely from the electrolysis of barium iodide.
Know more about Electrode here:
https://brainly.com/question/17060277
#SPJ11
the kb of dimethylamine [(ch3)2nh] is 5.90×10-4 at 25°c. calculate the ph of a 1.95×10-3 m solution of dimethylamine.
The pH of a 1.95×10-3 m solution ofn[(ch3)2nh dimethylamine with kb of 5.90×10-4 is 9.8.
pH calculation.The kb of dimethylamine [(ch3)2nh] is 5.90×10-4 at 25°c.
The reaction of the compound is
(CH3)2NH +H20 ⇆(CH3)2NH2+ +OH∧-
The kb = (CH3)2NH +H20 ⇆(CH3)2NH2+ +OH∧-
Since we are given the concentration of dimethylamine, let assume x to be concentration of OH∧-.
The concentration of [(ch3)2nh] is 5.90×10-4 , let substitute.
5.90×10∧-4 =x∧2/(1.95 *-3-x)
let find x.
x =√[(5,9×010∧-4× (1.95 *10∧-3-x) =7.62×10∧-5m
pH + poH = 14
pOH= -log[OH∧-] =-log7.62×10∧-5m -4.12
Therefore, the pH of 1.95 *10∧-3-M solution is;
pH = 14 -pOH =14-4.12 =9.8
The pH is 9.8.
Learn more about pH below.
https://brainly.com/question/26424076
#SPJ1
Write a mechanism for the nitration of methyl benzoate (major product only) Include formation of the electrophile from the reaction of nitric acid with sulfuric acid. Only one resonance structure is needed for the intermediate in the EAS portion of the mechanism
The overall reaction can be summarized as:
Methyl benzoate + HNO3 + H2SO4 → meta-Nitro methyl benzoate + H3O+ + HSO4-
The nitration of methyl benzoate involves the formation of an electrophile from the reaction of nitric acid with sulfuric acid. This electrophile is known as the nitronium ion (NO2+). The mechanism for the nitration of methyl benzoate is as follows:
1. Formation of the electrophile: Nitric acid (HNO3) reacts with sulfuric acid (H2SO4) to produce nitronium ion (NO2+).
HNO3 + H2SO4 → NO2+ + HSO4- + H2O
2. Attack of the electrophile: The pi electrons from the benzene ring of methyl benzoate attack the electrophilic nitronium ion. This results in the formation of an intermediate, which has only one resonance structure.
NO2+ + C6H5COOCH3 → C6H4(NO2)COOCH3+ H+
3. Deprotonation: The intermediate is then deprotonated by a base, such as sulfuric acid. This results in the formation of the major product, methyl 3-nitrobenzoate.
C6H4(NO2)COOCH3+ HSO4- → C6H4(NO2)COOH + CH3OSO3H
C6H4(NO2)COOH + CH3OH → C6H4(NO2)COOCH3 + H2O
The major product of the nitration of methyl benzoate is methyl 3-nitrobenzoate, which is an important intermediate in the synthesis of many organic compounds.
Hi! I'd be happy to help with the nitration of methyl benzoate. Here's the mechanism for the formation of the major product:
1. Formation of the electrophile: Nitric acid (HNO3) reacts with sulfuric acid (H2SO4) to form the nitronium ion (NO2+), which acts as the electrophile in this reaction.
HNO3 + H2SO4 → NO2+ + H3O+ + HSO4-
2. Electrophilic aromatic substitution (EAS) reaction: The nitronium ion (NO2+) attacks the aromatic ring of methyl benzoate, specifically at the meta-position due to the electron-withdrawing effect of the ester group (-COOCH3). This results in the formation of a resonance-stabilized carbocation intermediate.
3. Deprotonation: A nearby base, such as HSO4-, abstracts a proton from the carbocation intermediate, restoring the aromaticity of the ring and resulting in the formation of the major product - meta-nitro methyl benzoate.
To know more about electrophile visit:-
https://brainly.com/question/31182532
#SPJ11
draw the structure of this metabolic intermediate. please draw the intermediate in its ionized form.
Sure, I can definitely help you with that! In terms of the structure of this metabolic intermediate, it would be helpful to know which specific intermediate you are referring to, as there are many different metabolic pathways and intermediates involved in metabolism.
However, assuming that you are referring to a general metabolic intermediate, it would likely be a molecule that is involved in multiple metabolic pathways and serves as a sort of "middleman" between different stages of metabolism.
As for drawing the intermediate in its ionized form, it would depend on the specific intermediate in question and the conditions under which it is ionized. Generally speaking, when a molecule is ionized, it gains or loses one or more electrons, resulting in a net positive or negative charge. This can affect the structure of the molecule, particularly the distribution of electrons around the atoms involved.
Without more information about the specific intermediate and the conditions under which it is ionized, it is difficult to provide a specific drawing. However, I hope this general information about the structure and ionization of metabolic intermediates has been helpful!
Learn more about pathways here:
https://brainly.com/question/14342666
#SPJ11
calculate kc for the following reaction at 298 k. ch4(g) h2o(g) ⇌ co(g) 3 h2(g) kp = 7.7 x 1024 at 298 k
The expression for equilibrium constant (Kc) is not given in the question. Kc can be calculated using the equilibrium constant expression based on the stoichiometry of the reaction.
The given reaction is:
[tex]CH4(g) + H2O(g) ⇌ CO(g) + 3 H2(g)[/tex]
The equilibrium constant expression for this reaction can be written as:
[tex]Kc = [CO] × [H2]^3 / [CH4] × [H2O][/tex]
where [ ] represents the molar concentration of the respective species.
The value of Kp is given as 7.7 × 10^24 at 298 K. Kp and Kc are related as follows:
[tex]Kp = Kc × (RT)^Δn[/tex]
where R is the gas constant, T is the temperature in Kelvin, and Δn is the difference in the number of moles of gaseous products and reactants.
For the given reaction, Δn = (1+3) - (1+1) = 2.
Substituting the values, we get:
[tex]Kc = Kp / (RT)^Δn = (7.7 × 10^24) / [(0.0821 × 298)^2 × 2] = 6.67 × 10^4[/tex]
Therefore, the value of Kc for the given reaction at 298 K is 6.67 × 10^4.
Learn more about reaction here:
https://brainly.com/question/28984750
#SPJ11
What is the molecular weight of a peptide chain with 40 residues? 0.36 Da 60 Da O 4.4 kDa 5.5 kDa
The molecular weight of a peptide chain with 40 residues is approximately 4.4 kDa.
To determine the molecular weight of a peptide chain with 40 residues, you'll need to know the average molecular weight of an amino acid residue and then perform a simple calculation. A peptide chain is a linear chain of amino acids that are linked together through peptide bonds.
Peptide chains are the building blocks of proteins and are formed by a process called protein biosynthesis, which involves the translation of genetic information from DNA into a specific sequence of amino acids.
Here's a step-by-step explanation on how to calculate molecular weight :
1. The average molecular weight of an amino acid residue is approximately 110 Da (Daltons).
2. Multiply the number of residues (40) by the average molecular weight of a residue (110 Da):
40 residues * 110 Da/residue = 4400 Da
3. Convert the molecular weight to kilodaltons (kDa) by dividing by 1000:
4400 Da / 1000 = 4.4 kDa
So, the molecular weight of a peptide chain with 40 residues is approximately 4.4 kDa.
To know more about peptide chain : https://brainly.com/question/15283953
#SPJ11
Consider a mixture of the amino acids lysine (pI 9.7) tyrosine (pl 5.7), and glutamic acid (pl 3.2) at a pH 5.7 that is subjected to an electric current. towards the positive electrode(+) A) Lysine B) Tyrosine C) Glutamic acid D) All of the amino acids
The answer to this question is D) All of the amino acids. When subjected to an electric current towards the positive electrode (+) at a pH of 5.7, all three amino acids in the mixture will be affected.
Amino acids are molecules that contain both a carboxyl group (-COOH) and an amino group (-NH2) that can act as both an acid and a base, respectively. At different pH values, these groups can become either positively or negatively charged. The isoelectric point (pI) is the pH at which an amino acid has a net charge of zero.
At a pH of 5.7, all three amino acids in the mixture will have a net positive charge, meaning they will be attracted to the negative electrode (-) and repelled by the positive electrode (+). However, as they move towards the negative electrode (-), they will encounter regions of differing pH values, which can affect their charge and behaviour.
Lysine, with a pI of 9.7, will become increasingly negatively charged as it moves towards the negative electrode (-), causing it to slow down and potentially even reverse direction. Tyrosine, with a pI of 5.7, will remain neutral and unaffected by the electric current. Glutamic acid, with a pI of 3.2, will become increasingly positively charged as it moves towards the negative electrode (-), causing it to accelerate and potentially even reach the electrode.
Overall, the behaviour of the amino acid mixture will be complex and depend on the specific conditions of the electric field and pH gradient. However, all three amino acids will be affected by the electric current in some way.
To learn more about amino acids refer:-
https://brainly.com/question/15687833
#SPJ11
which species has the strongest carbon - carbon bond, c2hcl , c2h6 , or c2cl4 ?
The species with the strongest carbon-carbon bond is C₂H₆ (ethane). Ethane consists of two carbon atoms that are bonded together by a single sigma bond, which is the strongest type of covalent bond.
When two atoms form a covalent bond, they share a pair of electrons to achieve a stable electron configuration. In the case of multiple bonds between carbon atoms, there is a higher electron density and longer bond length compared to single bonds.
This is because the additional bonds share more electrons and have a larger electron cloud, leading to a weaker bond. The introduction of electronegative atoms such as chlorine into a molecule can also affect the strength of carbon-carbon bonds. Chlorine has a higher electronegativity than carbon, meaning it attracts electrons more strongly.
As a result, the electrons in the bond are pulled towards the chlorine atom, creating partial charges and making the bond less symmetrical. This reduces the overlap of the electron clouds of the carbon atoms, leading to a weaker bond.
Ethane, on the other hand, has a simple single bond between its two carbon atoms, where the electrons are evenly shared. This results in a more symmetrical bond and stronger overlap of the electron clouds, leading to a stronger carbon-carbon bond.
To know more about covalent bond, refer here:
https://brainly.com/question/7357068#
#SPJ11
From the given empirical formula and molar mass, find the molecular formula of each compound.Part A:C6H7N , 372.54 g/molExpress your answer as a chemical formulaPart B:C2HCl , 181.42 g/molExpress your answer as a chemical formula.Part C:C5H10NS2 , 593.13 g/molExpress your answer as a chemical formula
The empirical formula mass of [tex]C_6H_7N[/tex] is 93.13 g/mol. The molar mass of the compound is 372.54 g/mol. Thus, the molecular formula of the compound is ([tex]C_6H_7N[/tex][tex])^4[/tex].
To find the molecular formula of a compound from its empirical formula and molar mass, we need to determine the factor by which the empirical formula must be multiplied to obtain the actual number of atoms of each element in the compound.
This factor is calculated by dividing the molar mass by the empirical formula mass.
For Part A, the empirical formula mass of [tex]C_6H_7N[/tex] is 93.13 g/mol, and the molar mass is 372.54 g/mol.
Therefore, the factor is 4, and the molecular formula is ([tex]C_6H_7N[/tex][tex])^4[/tex]
Similarly, for Part B, the empirical formula mass of [tex]C_2HCl[/tex] is 63.48 g/mol, and the factor is 2.86, so the molecular formula is C5H14Cl2.
For Part C, the empirical formula mass of [tex]C_5H_1_0NS_2[/tex] is 162.31 g/mol, and the factor is 3.65, so the molecular formula is [tex]C_1_8H_3_3N_3S_6[/tex].
For more such questions on empirical, click on:
https://brainly.com/question/1603500
#SPJ11
Part A: The empirical formula of C6H7N has a molar mass of 93.13 g/mol.
To find the molecular formula, we need to determine the factor by which we need to multiply the empirical formula to get the molar mass. Molecular mass/empirical mass = 372.54 g/mol / 93.13 g/mol = 4 Therefore, the molecular formula of the compound is (C6H7N)4, which simplifies to C24H28N4.
Part B: The empirical formula of C2HCl has a molar mass of 65.47 g/mol. To find the molecular formula, we need to determine the factor by which we need to multiply the empirical formula to get the molar mass. Molecular mass/empirical mass = 181.42 g/mol / 65.47 g/mol = 2.77 Rounding this factor to the nearest whole number, we get 3. Therefore, the molecular formula of the compound is (C2HCl)3, which simplifies to C6H3Cl3.
Part C: The empirical formula of C5H10NS2 has a molar mass of 162.30 g/mol. To find the molecular formula, we need to determine the factor by which we need to multiply the empirical formula to get the molar mass.
Molecular mass/empirical mass = 593.13 g/mol / 162.30 g/mol = 3.66
Rounding this factor to the nearest whole number, we get 4. Therefore, the molecular formula of the compound is (C5H10NS2)4, which simplifies to C20H40N4S8.
Learn more about C6H7N here:
https://brainly.com/question/11058743
#SPJ11