Answer:
Explanation:
the block will move to the right side with small velocity because the force from the left side greater than force from right side. Velocity will be less because of friction and gravitational attraction.
If a block of mass 2 kg is acted upon by two forces: 3 N (directed to the left) and 4 N (directed to the right), then the block would move towards the right side.
What is Newton's second law?Newton's Second Law states that The resultant force acting on an object is proportional to the rate of change of momentum.
As given in the problem statement If a block of mass 2 kg is acted upon by two forces: 3 N (directed to the left) and 4 N (directed to the right),
The net force acting on the block = 4 Newtons - 3 newtons
= 1 Newton
Thus, we can say that the block would move to the right side.
To learn more about Newton's second law here, refer to the link given below;
brainly.com/question/13447525
#SPJ2
A firefly glows by the direct conversion of chemical energy to light. The light emitted by a firefly has peak intensity at a wavelength of 550 nm. Part A What is the minimum chemical energy, in eV, required to generate each photon
Answer:
Explanation:
The energy of a photon is given by the Planck relation
E = h f
the speed of light is related to wavelength and frequency
c = λ f
f- c /λ
we substitute
E = h c /λ
let's calculate
E = 6.63 10-34 3 10⁸ / 550 10-9
E = 3.616 10-19 J
let's reduce to eV
E = 3.616 10-19 J (1 eV / 1.6 10-19)
E = 2.26 eV
A tortoise and hare start from rest and have a race. As the race begins, both accelerate forward. The hare accelerates uniformly at a rate of 1.2 m/s2 for 4.5 seconds. It then continues at a constant speed for 12.1 seconds, before getting tired and slowing down with constant acceleration coming to rest 87 meters from where it started. The tortoise accelerates uniformly for the entire distance, finally catching the hare just as the hare comes to a stop. 1) How fast is the hare going 3.6 seconds after it starts
Answer:
[tex]v=4.32m/s[/tex]
Explanation:
From the question we are told that:
Accelerates at rate of [tex]1.2m/s^2[/tex]
Acceleration time [tex]t_a=4.5secs[/tex]
Velocity time 1 [tex]t_{v1}=12.1secs[/tex]
Deceleration distance [tex]d_a=87meters[/tex]
Generally the Newton's equation for motion is mathematically given by
[tex]V=at[/tex]
[tex]v=(1.2)3.6[/tex]
[tex]v=4.32m/s[/tex]
At a distance of 8 m, the sound intensity of one speaker is 66 dB. If we were to place 3 speakers in a circle of radius 8 m, what woud the sound intensity level be at the center of the circle
Answer:
dβ = 70. 77 dβ
Explanation:
The intensity of sound in decibels is
dβ = 10 log I/I₀
let's look for the intensity of this signal
I / I₀ = 10 dβ/10
I / I₀ = 3.981 10⁶
the threshold intensity of sound for humans is I₀ = 1 10⁻¹² W / m²
I = 3.981 10 ⁶ 1 10⁻¹²
I = 3,981 10⁻⁶ W / m²
It is indicated that 3 cornets are placed in the circle, for which total intensity is
I_total - 3 I
I_total = 3 3,981 10⁻⁶
I_total = 11,943 10⁻⁶ W / m²
let's reduce to decibels
dβ = 10 log (11,943 10⁻⁶/1 10⁻¹²)
dβ = 10 7.077
dβ = 70. 77 dβ
1. What did you observe about the magnitudes of the forces on the two charges? Were they the same or different? Does your answer depend on whether the charges were of the same magnitude or different? How does this relate to Newton’s 3rd law?
Answer:
Following are the solution to the given question:
Explanation:
Its strength from both charges is equivalent or identical. The power is equal. And it is passed down
[tex]F=\frac{kq_1q_2}{r^2}[/tex]
Therefore, the extent doesn't rely on the fact that charges are the same or different. Newton's third law complies with Electrostatic Charges due to a couple of charges. They are similar in magnitude, and they're in the other way.
[tex]|F_{12}| = |F_{21}|[/tex]
A 0.20-kg block and a 0.25-kg block are connected to each other by a string draped over a pulley that is a solid disk of inertia 0.50 kg and radius 0.10 m. When released, the 0.25-kg block is 0.21 m off the ground. What speed does this block have when it hits the ground?
Answer:
The answer is "0.2711 m/s".
Explanation:
Potential energy = Kinetic energy + Potential energy
[tex]m_1 gh =\frac{1}{2} m_1v^2 +\frac{1}{2} m_2v^2 + \frac{1}{2} I\omega^2 + m_1gh\\\\[/tex]
[tex](m_1- m_2)gh =\frac{1}{2} m_1v^2 +\frac{1}{2} m_2v^2 +\frac{1}{2} I\omega^2\\\\2(m_1 - m_2)gh = m_1v^2 + m_1v^2 + I\omega^2\\\\solid \ disk (I) = \frac{1}{2} \ \ M r^2 \\\\[/tex]
When there is no slipping, \omega =\frac{ v]{r}\\\\
[tex]2(m_1 - m_2)gh = m_1v^2 + m_2v^2 + (\frac{1}{2} Mr^2) (\frac{v}{r})^2\\\\2(m_1 -m_2)gh = m_1v^2 + m_2v^2 + \frac{1}{2} Mv^2\\\\4(m_1 -m_2)gh = 2m_1v^2 + 2m_2v^2 + Mv^2\\\\4(m_1 - m_2)gh = (2m_1 + 2m_2 + M) v^2\\\\[/tex]
[tex]v^2 = \frac{4(m_1 - m_2)gh}{(2m_1 + 2m_2 + M)}v[/tex]
[tex]v^2 = \frac{4 (0.25 \ kg - 0.20 \ kg) (9.8 \frac{m}{s^2}) (0.21 m)}{ (2 \times 0.25 kg + 2 \times 0.20 kg + 0.50 kg)}[/tex]
[tex]=\frac{0.1029}{1.4} \ \ \frac{m^2}{s^2}\\\\=0.0735\ \ \frac{m^2}{s^2}\\\\= 0.2711 \ \frac{m}{s}[/tex]
How large must the coefficient of static friction be between the tires and road if a car is to round a level curve of radius 125 m at a speed of 95km/h
Answer:
673km
Explanation:
A person pushes a 15.7-kg shopping cart at a constant velocity for a distance of 25.9 m on a flat horizontal surface. She pushes in a direction 23.7 ° below the horizontal. A 32.7-N frictional force opposes the motion of the cart. (a) What is the magnitude of the force that the shopper exerts? Determine the work done by (b) the pushing force, (c) the frictional force, and (d) the gravitational force.
Answer:
a) F = 35.7 N, b) W = 846.7 J, c) W = - 846.9 J, d) W=0
Explanation:
a) For this exercise let's use Newton's second law, let's set a reference frame with the x-axis horizontally
let's break down the pushing force.
cos (-23,7) = Fₓ / F
sin (-237) = F_y / F
Fₓ = F cos 23.7 = F 0.916
F_y = F sin (-23.7) = - F 0.402
Y axis
N- W - F_y = 0
N = W + F 0.402
X axis
Fₓ - fr = 0
F 0.916 = fr
F = fr / 0.916
F = 32.7 / 0.916
F = 35.7 N
It is asked to calculate several jobs
b) the work of the pushing force
W = fx x
W = 35.7 cos 23.7 25.9
W = 846.7 J
c) friction force work
W = F x cos tea
friction force opposes movement
W = - fr x
W = - 32.7 25.9
W = - 846.9 J
d) The work of the force would gravitate, as the displacement and the force of gravity are at 90º, the work is zero
W = 0
A rocket moving around the earth at height "H", If the gravitational acceleration "g1" at height
His of gravitational acceleration 'g at earth surface. If Earth radius is "R", find "H"
using R
Answer:
At the earth's surface g = G M / R^2 where G is the gravitational constant
at H g1 = G M / (R + H)^2 using Gauss' theorem for enclosed mass
g1 = G M / (R^2 + 2 R H) ignoring H^2 as it is small compared to R^2
g / g1 = (R^2 + 2 R H) / R^2 = 1 + 2 R H
g = g1 + 2 R H g1
g1 - g = - 2 R H or H = (g1 - g) / 2 R
name 3 properties of solids
-A solid has a definite shape and volume.
-Solids in general have higher density.
-In solids, intermolecular forces are strong.
Why do nuclear power plants use fission rather than fusion to generate
electric energy?
A. Fusion requires very high pressure and temperature.
B. A problem might lead to an explosion in a fusion reactor, but not
in a fission reactor.
C. The isotope used in fission is more common than the one used
in fusion.
D. Fission produces less radioactive waste than fusion does.
Answer:
Fission is used in nuclear power reactors since it can be controlled, while fusion is not utilized to produce power since the reaction is not easily controlled and is expensive to create the needed conditions for a fusion reaction.
Explanation:
Answer:
Hello There!!
Explanation:
I think it is A. Fusion requires very high pressure and temperature. Sorry if I am wrong.
hope this helps,have a great day!!
~Pinky~
You instead want to make sure the battery for your string of lights will last as long as possible. A battery will last longer if it powers a circuit with low current. How could you hook up a battery and 2 light bulbs so the least amount of current flows through the battery? Use the measurement tools in the simulation to check your design.
Answer:
Put the 2 light bulbs in series.
Explanation:
The resistance will be the greatest if you hook up the light bulb in series, and since resistance and current are inversely proportional, the current will be the least as well.
An electric drill at 400 W is connected to 120 V power line. What is the resistance of the drill?
Answer:
36 ohm
Explanation:
Given :
P=400 W
V=120V
Now,
[tex]P=\frac{V^{2} }{R} \\400=\frac{120^{2} }{R} \\400R=14400\\R=\frac{14400}{400} \\R=36 ohm[/tex]
Therefore, resistance of the drill will be 36 ohm
an inclined plane rises to a height of 2m over a distance of 6m calculate the angle of the slope
Answer:
Explanation:
Slope is rise over run and, consequently, it is also the tangent ratio. the side measuring 2 is the height of the right triangle that is formed by the inclined plane (the hypotenuse), the height, and the base (the ground or surface that the plane is sitting on). If we use the tangent ratio,
[tex]tan\theta=\frac{2}{6}=\frac{1}{3}[/tex] so
[tex]tan^{-1}(\frac{1}{3})=\theta[/tex] so
θ = 18.4 which is also the angle that makes that slope.
what is photoelectron
Answer:
The answer is:-
Explanation:
An electron emitted from an atom by enteraction with an photon, especially an eclectron emitted from a solid surface by the action of light.
How could extreme heat (resulting from Climate Change) affect human and
animal life?
Answer: See explanation
Explanation:
Climate change, is also referred to as global warming, and it simply means the rise in Earth's average surface temperature.
Effects of climate change include rising sea levels, heat waves, drought, storms, etc.
Extreme heat events is dangerous to the health of both animals and humans. For human beings, it can bring about increase in heat- related illness, weakness, heat stroke and excessive water consumption.
For animals, it can lead to struggling of the animals in losing their excess body heat by evaporation. Other effects include panting, loss of appetite, increased drinking, difficulty breathing, anxious behaviour, and weakness.
A model plane has a mass of 0.75 kg and is flying 12 m above the ground
with a speed of 18 m/s. What is the total mechanical energy of the plane?
The acceleration due to gravity is 9.8 m/s2.
Answer:
Option C. 210 J.
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Velocity (v) = 18 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Total Mechanical energy (ME) =?
Next, we shall determine the potential energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Acceleration due to gravity (g) = 9.8 m/s²
Potential energy (PE) =?
PE = mgh
PE = 0.75 × 9.8 × 12
PE = 88.2 J
Next, we shall determine the kinetic energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Velocity (v) = 18 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.75 × 18²
KE = ½ × 0.75 × 324
KE = 121.5 J
Finally, we shall determine the total mechanical energy of the plane. This can be obtained as follow:
Potential energy (PE) = 88.2 J
Kinetic energy (KE) = 121.5 J
Total Mechanical energy (ME) =?
ME = PE + KE
ME = 88.2 + 121.5
ME = 209.7 J
ME ≈ 210 J
Therefore, the total mechanical energy of the plane is 210 J.
Find the acceleration due to gravity on the surface of a planet with a mass of 3.5 * 10^24 kg and an average radius of 4.5 * 10^6 m.
Explanation:
.........
.....
.......
Calculate conductance of a conduit the cross-sectional area of which is 1.5 cm2 and the length of which is 9.5 cm, given that its conductivity is 0.65 ohm-1 cm-1.
0.15 ohm-1
0.10 ohm-1
1.2 ohm-1
7.5 ohm-1
Answer:
1.2
Explanation:
What is the difference between muscular strength and muscular endurance
A projectile is fired with an initial velocity of 120 meters per second at an unknown angle above the horizontal. If the projectile's speed at the top of the trajectory is 45 meters per second, what is the unknown angle
Answer:
[tex]68.0^{\circ}[/tex]
Explanation:
A projectile's vertical velocity at the top of its flight path must be zero, therefore the speed at the top of the trajectory must be referring to the object's horizontal velocity. Since there are exactly zero horizontal forces acting on the object, its horizontal velocity will remain the exact same throughout the entire launch. Thus, the horizontal component of the initial launch must be 45 meters per second, and we have the following equation using basic trigonometry for a right triangle:
Let [tex]\theta[/tex] be the unknown angle above the horizontal.
[tex]\cos \theta=\frac{45}{120},\\\theta=\arccos(\frac{45}{120})=67.97568716^{\circ}\approx \boxed{68.0^{\circ}}[/tex]
How do we get heat on Earth? Does thermal energy travel directly from the sun?
(A)
(B)
(C)
(D)
Which graph is a quadratic graph?
OA graph A
OB. graph B
OC graph
OD. graph D
If you left a glass fiber-optic cable unshielded by any plastic covering, should the light still be able to travel through the cable?
1. Yes
2. No
Answer:
Yes
Explanation:
1. What is the difference between longitudinal and transverse waves? Compare and contrast the direction of their movement, movement of a molecule through the completion of a cycle, and amplitude and wavelength measurements of each type of wave.
2. Suppose that a wave has a period of 0.03 second. What’s its frequency? Be sure to show the steps for your work.
3. Compare a wave that has a period of 0.03 second with a second wave that has a period of 1/4 second. Which wave has the greater frequency? Be sure to show the steps for your work.
4. If a wave has wavelength of 4.5 meters and a period of 0.07 second, what’s the velocity of the wave? Be sure to show the steps of your work.
5. Using the image below, identify the numbered parts of the wave.
Answer:
Explanation:
1. The waves in which the partciles of medium vibrates in the same direction of propagation of wave, are called longitudinal waves.
The waves in which the partciles of medium vibrates in the perpendicular direction of propagation of wave, are called transverse waves.
2. Period, T = 0.03 s
The frequency is given by the reciprocal of the period.
[tex]f=\frac{1}{T}\\\\f =\frac{1}{0.03}\\\\f = 33.3 Hz[/tex]
1. Transverse waves carry molecules at right angles to the direction in which the wave travels. Within a cycle, molecules move from their normal position to the highest position, back through the normal position to the lowest point, and then back to the normal position. The molecules retain their horizontal positions while vibrating vertically. Amplitude is measured at right angles to the direction of the travel of the wave. Wavelength can be represented as the distance between any two molecules in phase with each other, such as the two nearest molecules at the crests of the wave.
Longitudinal waves carry molecules parallel to the direction in which the wave travels. Within a cycle, a molecule travels in the same direction as the wave (from normal position to its most distant point on one side of its normal position), changes direction, moves back through its normal position to the opposite side of its normal position at a point that corresponds, and then returns to its normal position. The molecules don’t all move at the same time; some remain stationary as others go through a vibrating motion. Compressions and rarefactions occur here. Amplitude is measured parallel to the direction of the wave. Wavelength may be represented as the distance between the two nearest molecules that didn’t vibrate, the two nearest molecules at maximum compression, or the two nearest molecules at maximum rarefaction.
2. f = 1⁄T
f = 1⁄0.03
f = 33. 3 Hz
3. The first wave has a frequency of 33.3 Hz:
f1 = 1⁄T1
f1 = 1⁄0.03
f1 = 33. 3 Hz
The second wave has a frequency of 4 Hz. f2 = 1⁄T2
f2 = 1⁄1⁄4
f2 = 1 ÷ 1⁄4
f2 = 1 × 4⁄1
f2 = 1⁄1 × 4⁄1
f2 = 4 Hz
Therefore, the first wave has a higher frequency.
4. v = I⁄T
v= 4.5⁄0.007
v = 642.9 m/s
5. Wavelength
Crest
Trough
Amplitude
A man is pushing a box of weight W with a forward force of magnitude F. The box
moves forward with a constant speed. What is the magnitude f of the friction force?
Answer:
The magnitude of the friction force is also F.
Explanation:
By the second Newton's law, we know that:
F = m*a
Net force is equal to mass times acceleration.
Here, we know that the box moves with constant speed, thus, the box has no acceleration, then the net force applied to the box is zero.
Also, remember that the friction force is given by:
[tex]F_f = -\mu*W[/tex]
Where mu is the coefficient of friction, and this force opposes to the direction of motion (that coincides with the direction of our forward force, that is why this has a negative sign)
The net force will be equal to the sum of our two horizontal forces (as the weight is already canceled by the normal force)
[tex]F_{total} = F + F_f[/tex]
And this is equal to zero, because we know that the box is non-accelerated.
Then we must have that:
[tex]F_f = -F[/tex]
Then we can conclude that the magnitude of the friction force is F.
A 45.00 kg person in a 43.00 kg cart is coasting with a speed of 19 m/s before it goes up a hill.Assuming there is no friction, what is the maximum vertical height the person in the cart can reach?
Answer:
the maximum vertical height the person in the cart can reach is 18.42 m
Explanation:
Given;
mass of the person, m₁ = 45 kg
mass of the cart, m₂ = 43 kg
velocity of the system, v = 19 m/s
let the maximum vertical height reached = h
Apply the principle of conservation mechanical energy;
[tex]P.E = K.E\\\\mgh_{max} = \frac{1}{2} mv^2_{max}\\\\gh_{max} = \frac{1}{2} v^2_{max}\\\\h_{max} = \frac{v_{max}^2}{2g} \\\\h_{max} = \frac{19^2}{2\times 9.8} \\\\h_{max} = 18.42 \ m[/tex]
Therefore, the maximum vertical height the person in the cart can reach is 18.42 m
in a Mercury thermometer the level of Mercury Rises when its bulb comes in contact with a hot object what is the reason for this rise in the level of Mercury
Answer:
because thermometric liquid readily expands on heating or contracts on cooling even for a small difference in the temperature of the body.
¿Es posible que un objeto se mueva en
una dirección distinta de la dirección de la fuerza neta
que actúa sobre el objeto?
Answer:
translate it to English plss
Keeping the mass at 1.0 kg and the velocity at 10.0 m/s, record the magnitude of centripetal acceleration for each given radius value. Include units. Radius: 2.0 m 4.0 m 6.0 m 8.0 m 10.0 m Acceleration: Radius factor: Acceleration factor:
Answer:
The centripetal acceleration for the first radius; 2.0 m = 50 m/s²
The centripetal acceleration for the second radius; 4.0 m = 25 m/s²
The centripetal acceleration for the third radius; 6.0 m = 16.67 m/s²
The centripetal acceleration for the fourth radius; 8.0 m = 12.5 m/s²
The centripetal acceleration for the fifth radius; 10.0 m = 10 m/s²
Explanation:
Given;
mass of the object, m = 1 kg
velocity of the object, v = 10 m/s
different values of the radius, 2.0 m 4.0 m 6.0 m 8.0 m 10.0 m
The centripetal acceleration for the first radius; 2.0 m
[tex]a_c = \frac{v^2}{r} \\\\a_c_1= \frac{(10)^2}{2} \\\\a_c_1= 50 \ m/s^2[/tex]
The centripetal acceleration for the second radius; 4.0 m
[tex]a_c_2= \frac{(10)^2}{4} \\\\a_c_2= 25 \ m/s^2[/tex]
The centripetal acceleration for the third radius; 6.0 m
[tex]a_c_3= \frac{(10)^2}{6} \\\\a_c_3= 16.67 \ m/s^2[/tex]
The centripetal acceleration for the fourth radius; 8.0 m
[tex]a_c_4= \frac{(10)^2}{8} \\\\a_c_4= 12.5 \ m/s^2[/tex]
The centripetal acceleration for the fifth radius; 10.0 m
[tex]a_c_5= \frac{(10)^2}{10} \\\\a_c_5= 10 \ m/s^2[/tex]
The conversion of thermal energy into mechanical energy requires
a thermometer.
D. Beat engine
C vaporizer.
d thermostat.