Part A:
A(t) is a linear function, and 12∙J(t) is an exponential function. The straight line nature of A(t) indicates linear growth, while the curve of 12∙J(t) suggests exponential growth.
Part B:
The intersection of the 12∙J(t) curve and the A(t) curve represents the point where the accumulated profit from sales is sufficient to pay off the entire loan in one lump-sum payment.
Part C:
As P increases while keeping r and J(t) constant, the relationship between the two curves shifts, indicating a higher profit requirement to cover the increased loan amount. This is dangerous for business financial health and banks have safeguards to prevent excessive debt and defaults.
Part A:
From the given information, we have two functions: A(t) and 12∙J(t). Let's analyze their features to determine their types.
A(t) is a linear function:
A linear function is characterized by a constant rate of change and forms a straight line on a graph.
In the given graph, A(t) is represented by a straight line, indicating a linear relationship between the variables.
This suggests that A(t) is a linear function.
12∙J(t) is an exponential function:
An exponential function is characterized by a constant ratio or base and shows exponential growth or decay.
In the given graph, 12∙J(t) is represented by a curve that exhibits exponential growth.
The increasing rate of change as time progresses indicates an exponential relationship.
Therefore, 12∙J(t) is an exponential function.
Part B:
The intersection of the 12∙J(t) curve and the A(t) curve represents the point at which the profit generated from sales is sufficient to pay off the entire loan in one lump-sum payment. In other words, it represents the point in time when the accumulated profit matches the amount of the loan.
At this intersection point, the profit generated from sales has reached a level where it can fully cover the principal and interest owed on the loan. This indicates that the business has generated enough funds to repay the loan in its entirety.
Part C:
As the principal (P) is increased while keeping the interest rate (r) and 12∙J(t) constant, the relationship between the two curves changes. Specifically, the intersection point between the curves shifts to the right on the graph.
This change in the relationship between the curves signifies that the business needs a higher level of profit to cover the increased loan amount. It suggests that the business has taken on a larger loan, which requires a higher profit to repay.
This situation is considered dangerous for the financial health of the business because it increases the risk of not generating sufficient profit to repay the loan. If the business fails to generate enough profit to cover the loan payments, it may lead to financial instability and potential default on the loan.
To mitigate such risks, banks put safeguards in place to prevent businesses from taking on excessive debt. These safeguards include conducting thorough evaluations of the business's financial health, setting limits on loan amounts based on the business's income and creditworthiness, and assessing the repayment capacity of the borrower. These measures aim to minimize the risk of defaults and protect both the borrower and the lender.
for such more question on linear function
brainly.com/question/9753782
#SPJ8
Please Help!! Solve For X
The value of x in the given figure is 8.
In the given figure there are two lines which are parallel.
We have to find the value of x.
In the straight line the sum of angles is 180 degrees.
8x+1+115=180
8x+116=180
Subtract 116 from both sides:
8x=180-116
8x=64
Divide both sides by 8:
x=64/8
x=8
Hence, the value of x in the given figure is 8.
To learn more on Angles click:
https://brainly.com/question/28451077
#SPJ1
A segment with endpoints A (3, 4) and C (5, 11) is partitioned by a point B such that AB and BC form a 2:3 ratio. Find B.
The point B that partitions the segment AC into a 2:3 ratio is B (4.6, 9.6). To find the point B that partitions the segment AC into a 2:3 ratio, we can use the concept of section formulas or the concept of ratios of the coordinates.
Let's assume the coordinates of point B are (x, y). We can calculate the coordinates of point B using the following steps:
Step 1: Calculate the differences in the x and y coordinates between points A and C:
Δx = x-coordinate of C - x-coordinate of A = 5 - 3 = 2
Δy = y-coordinate of C - y-coordinate of A = 11 - 4 = 7
Step 2: Divide the differences by the sum of the ratios (2 + 3 = 5) to get the ratios of the segments AB and BC:
Ratio_AB = (2/5)[tex]\times[/tex] Δx = (2/5) [tex]\times[/tex]2 = 4/5
Ratio_BC = (3/5) [tex]\times[/tex] Δx = (3/5) [tex]\times[/tex] 2 = 6/5
Step 3: Apply the ratios to the coordinates of point A to find the coordinates of point B:
x-coordinate of B = x-coordinate of A + Ratio_AB [tex]\times[/tex] Δx = 3 + (4/5)[tex]\times[/tex]2 = 3 + 8/5 = 23/5
y-coordinate of B = y-coordinate of A + Ratio_AB [tex]\times[/tex]Δy = 4 + (4/5) [tex]\times[/tex] 7 = 4 + 28/5 = 48/5
Therefore, the coordinates of point B are (23/5, 48/5).
In decimal form, the coordinates of point B are approximately (4.6, 9.6).
For more such questions on ratio
https://brainly.com/question/2328454
#SPJ8
4x Which reason is NOT typically used in a proof?
A
4x B
D
definition of supplementary angles
substitution property
C two angles being congruent
parallel fines
The reason that is NOT typically used in a proof is two angles being congruent. Option C.
Among the options A, B, C, and D, the reason that is NOT typically used in a proof is option C: two angles being congruent.
Congruence is a fundamental concept in geometry that refers to the equality of shape and size. When two angles are congruent, it means they have the same measure. While congruence is an important concept used in geometric proofs, it is typically not used as a standalone reason in a proof.
In geometric proofs, various properties, theorems, and postulates are used to establish relationships and make deductions. Let's briefly discuss the other options:
A. Definition of supplementary angles: This is a valid reason that is commonly used in proofs involving supplementary angles. The definition states that if the sum of two angles is 180 degrees, they are considered supplementary.
B. Substitution property: The substitution property is a logical property used in algebraic proofs. It allows us to replace one expression with another expression that is equal to it. This property is often employed when simplifying equations or substituting known values.
D. Parallel lines: The concept of parallel lines is frequently utilized in geometric proofs, particularly in proving angles and angle relationships. Properties such as alternate interior angles, corresponding angles, and vertical angles are established based on the parallel lines. Option C is correct.
For more such question on congruent. visit :
https://brainly.com/question/29789999
#SPJ8
arrange the numbers: -7 -5 -3 3 -1 1 into three pairs with the same total
The numbers -7, -5, -3, 3, -1, and 1 can be arranged into three pairs with the same total (-7, 7), (-5, 5), (-3, 3), (-1, 1).
To arrange the numbers -7, -5, -3, 3, -1, and 1 into three pairs with the same total, we need to find a combination of pairs that will give us the same sum for each pair.
Let's start by examining the numbers:
-7, -5, -3, 3, -1, 1
To find pairs with the same total, we can start by pairing the numbers with their additive inverses (numbers that sum to zero). In this case, -7 and 7, -5 and 5, -3 and 3 can be paired up. This leaves us with -1 and 1.
We have three pairs now: (-7, 7), (-5, 5), (-3, 3). However, we still have -1 and 1 remaining. To make the sum of the pairs equal, we can pair -1 with 7 and 1 with -5.
The three pairs with the same total are:
(-7, 7), (-5, 5), (-3, 3), (-1, 1).
Each pair sums up to zero, resulting in the same total for each pair. For example, (-7 + 7 = 0), (-5 + 5 = 0), and so on.
Therefore, the numbers -7, -5, -3, 3, -1, and 1 can be arranged into three pairs with the same total:
(-7, 7), (-5, 5), (-3, 3), (-1, 1).
For more question on pairs visit:
https://brainly.com/question/30508892
#SPJ8
answer right all 3 and all the points go to you
The length of the arc can be obtained as follow:
Radius (r) = 7 ftAngle (θ) = 210 °Length of arc =?Length of arc = 2πr × (θ / 360)
Length of arc = (2 × π × 7) × (210 / 360)
Length of arc = 49π / 6 ft (option D)
How do i determine the area of the sector?
i. The area of the sector can be obtained as shown below:
Radius (r) = 19 inAngle (θ) = 135 °Area of sector =?Area of sector = πr² × (θ / 360)
Area of sector = (π × 19²) × (135 / 360)
Area of sector = 1083π / 8 in² (option D)
ii. The area of the sector can be obtained as shown below:
Radius (r) = 10 mAngle (θ) = 165 °Area of sector =?Area of sector = πr² × (θ / 360)
Area of sector = (π × 10²) × (165 / 360)
Area of sector = 275π / 6 m² (option B)
Learn more about length of arc:
https://brainly.com/question/31705128
#SPJ1
What cumulative frequency should be used in solving the 28th percentile
The cumulative frequency to be used in solving the 28th percentile is 16.
What is cumulative frequency?Cumulative frequency is described as the total of a frequency and all frequencies in a frequency distribution until a certain defined class interval.
we add up the frequencies until we reach or exceed 28% of the total data set in order to find the cumulative frequency for the 28th percentile.
Total frequency = 4 + 9 + 16 + 10 + 9 + 2 = 50
28th percentile = (28/100) * Total frequency
28th percentile = (28/100) * 50 = 14
We start from the beginning of the distribution and add up the frequencies until we reach or exceed 14 so as to find the cumulative frequency.
In conclusion, and with reference to the given data set we notice that the cumulative frequency exceeds 14 at the 91-120 minute interval = 16.
Learn more about cumulative frequency at:
https://brainly.com/question/30331884
#SPJ1
Heeeelp please, Can be zero or not?
with all steps and explanay.
The value of integral is 3.
Let's evaluate the integral over the positive half of the interval:
∫[0 to π] (cos(x) / √(4 + 3sin(x))) dx
Let u = 4 + 3sin(x), then du = 3cos(x) dx.
Substituting these expressions into the integral, we have:
∫[0 to π] (cos(x) / sqrt(4 + 3sin(x))) dx = ∫[0 to π] (1 / (3√u)) du
Using the power rule of integration, the integral becomes:
∫[0 to π] (1 / (3√u)) du = (2/3) . 2√u ∣[0 to π]
Evaluating the definite integral at the limits of integration:
(2/3)2√u ∣[0 to π] = (2/3) 2(√(4 + 3sin(π)) - √(4 + 3sin(0)))
(2/3) x 2(√(4) - √(4)) = (2/3) x 2(2 - 2) = (2/3) x 2(0) = 0
So, the value of integral is
= 3-0
= 3
Learn more about Definite integral here:
https://brainly.com/question/30760284
#SPJ1
Answer:
[tex]3-\displaystyle \int^{\pi}_{-\pi} \dfrac{\cos x}{\sqrt{4+3 \sin x}}\; \text{d}x\approx 0.806\; \sf (3\;d.p.)[/tex]
Step-by-step explanation:
First, compute the indefinite integral:
[tex]\displaystyle \int \dfrac{\cos x}{\sqrt{4+3\sin x}}\; \text{d}x[/tex]
To evaluate the indefinite integral, use the method of substitution.
[tex]\textsf{Let} \;\;u = 4 + 3 \sin x[/tex]
Find du/dx and rewrite it so that dx is on its own:
[tex]\dfrac{\text{d}u}{\text{d}x}=3 \cos x \implies \text{d}x=\dfrac{1}{3 \cos x}\; \text{d}u[/tex]
Rewrite the original integral in terms of u and du, and evaluate:
[tex]\begin{aligned}\displaystyle \int \dfrac{\cos x}{\sqrt{4+3\sin x}}\; \text{d}x&=\int \dfrac{\cos x}{\sqrt{u}}\cdot \dfrac{1}{3 \cos x}\; \text{d}u\\\\&=\int \dfrac{1}{3\sqrt{u}}\; \text{d}u\\\\&=\int\dfrac{1}{3}u^{-\frac{1}{2}}\; \text{d}u\\\\&=\dfrac{1}{-\frac{1}{2}+1} \cdot \dfrac{1}{3}u^{-\frac{1}{2}+1}+C\\\\&=\dfrac{2}{3}\sqrt{u}+C\end{aligned}[/tex]
Substitute back u = 4 + 3 sin x:
[tex]= \dfrac{2}{3}\sqrt{4+3\sin x}+C[/tex]
Therefore:
[tex]\displaystyle \int \dfrac{\cos x}{\sqrt{4+3\sin x}}\; \text{d}x= \dfrac{2}{3}\sqrt{4+3\sin x}+C[/tex]
To evaluate the definite integral, we must first determine any intervals within the given interval -π ≤ x ≤ π where the curve lies below the x-axis. This is because when we integrate a function that lies below the x-axis, it will give a negative area value.
Find the x-intercepts by setting the function to zero and solving for x in the given interval -π ≤ x ≤ π.
[tex]\begin{aligned}\dfrac{\cos x}{\sqrt{4+3\sin x}}&=0\\\\\cos x&=0\\\\x&=\arccos0\\\\\implies x&=-\dfrac{\pi }{2}, \dfrac{\pi }{2}\end{aligned}[/tex]
Therefore, the curve of the function is:
Below the x-axis between -π and -π/2.Above the x-axis between -π/2 and π/2.Below the x-axis between π/2 and π.So to calculate the total area, we need to calculate the positive and negative areas separately and then add them together, remembering that if you integrate a function to find an area that lies below the x-axis, it will give a negative value.
Integrate the function between -π and -π/2.
As the area is below the x-axis, we need to negate the integral so that the resulting area is positive:
[tex]\begin{aligned}A_1=-\displaystyle \int^{-\frac{\pi}{2}}_{-\pi} \dfrac{\cos x}{\sqrt{4+3\sin x}}\; \text{d}x&=- \left[\dfrac{2}{3}\sqrt{4+3\sin x}\right]^{-\frac{\pi}{2}}_{-\pi}\\\\&=-\dfrac{2}{3}\sqrt{4+3 \sin \left(-\frac{\pi}{2}\right)}+\dfrac{2}{3}\sqrt{4+3 \sin \left(-\pi\right)}\\\\&=-\dfrac{2}{3}\sqrt{4+3 (-1)}+\dfrac{2}{3}\sqrt{4+3 (0)}\\\\&=-\dfrac{2}{3}+\dfrac{4}{3}\\\\&=\dfrac{2}{3}\end{aligned}[/tex]
Integrate the function between -π/2 and π/2:
[tex]\begin{aligned}A_2=\displaystyle \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \dfrac{\cos x}{\sqrt{4+3\sin x}}\; \text{d}x&= \left[\dfrac{2}{3}\sqrt{4+3\sin x}\right]^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\\\\&=\dfrac{2}{3}\sqrt{4+3 \sin \left(\frac{\pi}{2}\right)}-\dfrac{2}{3}\sqrt{4+3 \sin \left(-\frac{\pi}{2}\right)}\\\\&=\dfrac{2}{3}\sqrt{4+3 (1)}-\dfrac{2}{3}\sqrt{4+3 (-1)}\\\\&=\dfrac{2\sqrt{7}}{3}-\dfrac{2}{3}\\\\&=\dfrac{2\sqrt{7}-2}{3}\end{aligned}[/tex]
Integrate the function between π/2 and π.
As the area is below the x-axis, we need to negate the integral so that the resulting area is positive:
[tex]\begin{aligned}A_3=-\displaystyle \int^{\pi}_{\frac{\pi}{2}} \dfrac{\cos x}{\sqrt{4+3\sin x}}\; \text{d}x&= -\left[\dfrac{2}{3}\sqrt{4+3\sin x}\right]^{\pi}_{\frac{\pi}{2}}\\\\&=-\dfrac{2}{3}\sqrt{4+3 \sin \left(\pi\right)}+\dfrac{2}{3}\sqrt{4+3 \sin \left(\frac{\pi}{2}\right)}\\\\&=-\dfrac{2}{3}\sqrt{4+3 (0)}+\dfrac{2}{3}\sqrt{4+3 (1)}\\\\&=-\dfrac{4}{3}+\dfrac{2\sqrt{7}}{3}\\\\&=\dfrac{2\sqrt{7}-4}{3}\end{aligned}[/tex]
To evaluate the definite integral, sum A₁, A₂ and A₃:
[tex]\begin{aligned}\displaystyle \int^{\pi}_{-\pi} \dfrac{\cos x}{\sqrt{4+3\sin x}}\; \text{d}x&=\dfrac{2}{3}+\dfrac{2\sqrt{7}-2}{3}+\dfrac{2\sqrt{7}-4}{3}\\\\&=\dfrac{2+2\sqrt{7}-2+2\sqrt{7}-4}{3}\\\\&=\dfrac{4\sqrt{7}-4}{3}\\\\ &\approx2.194\; \sf (3\;d.p.)\end{aligned}[/tex]
Now we have evaluated the definite integral, we can subtract it from 3 to evaluate the given expression:
[tex]\begin{aligned}3-\displaystyle \int^{\pi}_{-\pi} \dfrac{\cos x}{\sqrt{4+3 \sin x}}\; \text{d}x&=3-\dfrac{4\sqrt{7}-4}{3}\\\\&=\dfrac{9}{3}-\dfrac{4\sqrt{7}-4}{3}\\\\&=\dfrac{9-(4\sqrt{7}-4)}{3}\\\\&=\dfrac{13-4\sqrt{7}}{3}\\\\&\approx 0.806\; \sf (3\;d.p.)\end{aligned}[/tex]
Therefore, the given expression cannot be zero.
John, Rick, and Molli can paint a room working together in 5 hours. Alone, Molli can paint the room in 14 hours. If Rick works alone, he can paint the room in 10 hours. Write an equation comparing the group rate to the sum of the individual rates. Then find how long it will take John to paint the room if working alone.
It will take John approximately 2.69 hours to paint the room alone.
Let's denote the individual rates of John, Rick, and Molli as J, R, and M, respectively. We are given the following information:
John, Rick, and Molli can paint the room together in 5 hours.
Molli alone can paint the room in 14 hours.
Rick alone can paint the room in 10 hours.
To find the equation comparing the group rate to the sum of the individual rates, we can use the concept of work done. The amount of work required to paint the room is the same, regardless of who is doing the work.
The equation can be expressed as:
1/5 = 1/J + 1/R + 1/M
Now, let's substitute the given information into the equation. We know that:
M = 14 (since Molli can paint the room alone in 14 hours)
R = 10 (since Rick can paint the room alone in 10 hours)
Substituting these values, the equation becomes:
1/5 = 1/J + 1/10 + 1/14
To solve for J, we can find the least common denominator (LCD) of 10 and 14, which is 70:
14J + 7J + 5J = 70
26J = 70
J = 70/26
J ≈ 2.69
Therefore, it will take John approximately 2.69 hours to paint the room alone.
for such more question on hours
https://brainly.com/question/23377525
#SPJ8
Match each system on the left with all words that describe the system on the right. Choices on the right can be used more than once. y = 3x - 1 2y - 6x = 4 2y = -x + 6 4y + 2x = 12 y = 2x + 3 x+y = -9 inconsistent consistent independent dependent
y = 3x - 1: consistent, independent
2y - 6x = 4: consistent, independent
2y = -x + 6: consistent, independent
4y + 2x = 12: consistent, independent
y = 2x + 3: consistent, independent
x + y = -9: consistent, dependent
y = 3x - 1 and 2y = -x + 6: inconsistent
Let's match each system on the left with the appropriate words that describe the system on the right:
y = 3x - 1: consistent, independent
This system represents a linear equation with a unique solution. The equations are not multiples of each other, and they intersect at a single point.
2y - 6x = 4: consistent, independent
Similar to the first system, this represents a linear equation with a unique solution. The equations are not multiples of each other, and they intersect at a single point.
2y = -x + 6: consistent, independent
This system also represents a linear equation with a unique solution. The equations are not multiples of each other, and they intersect at a single point.
4y + 2x = 12: consistent, independent
Like the previous systems, this represents a linear equation with a unique solution. The equations are not multiples of each other, and they intersect at a single point.
y = 2x + 3: consistent, independent
This system represents a linear equation with a unique solution. The equations are not multiples of each other, and they intersect at a single point.
x + y = -9: consistent, dependent
This system represents a linear equation with infinitely many solutions. The equations are multiples of each other, meaning they represent the same line. Therefore, any point on the line satisfies both equations.
y = 3x - 1 and 2y = -x + 6: inconsistent
This system represents inconsistent equations that do not have a common solution. The lines represented by the equations are parallel and do not intersect.
To summarize the matches:
y = 3x - 1: consistent, independent
2y - 6x = 4: consistent, independent
2y = -x + 6: consistent, independent
4y + 2x = 12: consistent, independent
y = 2x + 3: consistent, independent
x + y = -9: consistent, dependent
y = 3x - 1 and 2y = -x + 6: inconsistent
for such more question on consistent
https://brainly.com/question/17448505
#SPJ8
Peggy designed a pond for her backyard. She'll surround
a square patio area with a round pond. Her design and
the scale she'll use to build the design are both shown
below.
It will cost $6 per square foot to dig out the pond portion
of the yard and $1.75 per square foot to build the patio
area.
Approximately how much will she spend constructing the
pond and patio in her backyard?
Scale
1 cm = 5 ft.
A $551.80
B $1,459
C
$2.575
2 cm
2 cm
Patio
4 cm
Pond
***||| theres another answer which is D. 7,111” but it got cutt off lol|||***
Answer:Peggy will spend approximately $363.52 constructing the pond and patio in her backyard. The correct answer is not provided among the options given (A, B, C).
Step-by-step explanation:
To calculate the cost of constructing the pond and patio in Peggy's backyard, we need to determine the areas of the pond and patio and then multiply them by their respective costs per square foot.
From the given scale, we can convert the dimensions of the pond and patio from centimeters to feet. According to the scale, 1 cm represents 5 ft.
Patio dimensions:
Width: 2 cm (2 cm * 5 ft/cm = 10 ft)
Length: 2 cm (2 cm * 5 ft/cm = 10 ft)
Area of patio = Width * Length = 10 ft * 10 ft = 100 ft²
Pond dimensions:
Width: 4 cm (4 cm * 5 ft/cm = 20 ft)
Length: 4 cm (4 cm * 5 ft/cm = 20 ft)
Area of pond = π * (Width/2)² = π * (20 ft/2)² = π * 10 ft² ≈ 31.42 ft²
Cost calculation:
Cost of pond = Area of pond * Cost per square foot = 31.42 ft² * $6/ft² = $188.52
Cost of patio = Area of patio * Cost per square foot = 100 ft² * $1.75/ft² = $175.00
Total cost = Cost of pond + Cost of patio = $188.52 + $175.00 = $363.52
A company was hired to build a tunnel through a mountain. The company started at the south end of the mountain and completed only five hundred eighty five feet of the required seven thousand, six hundred five feet before going bankrupt. A different company was hired to complete the job, but th
ey decided to use two crews. Crew A would start where the other company left off at the southern end, while Crew B would start at the northern end and dig towards the other crew. Crew A was able to dig fifty eight feet of the tunnel per week. Crew B, which was larger, was able to dig fifty nine feet of the tunnel per week.
Let's denote crew A's work per week as A and crew B's work per week as B.
We are given that A = 58 ft per week and B = 59 ft per week.
We have to calculate how many weeks it will take both crews to complete the tunnel.
585 feet have already been dug from the south end. So, the total tunnel length that needs to be dug is 7605 - 585 = 7020.
Now, let's assume that both the crews continue to work at their respective rate of A = 58 ft/week and B = 59 ft/week.
Therefore, total tunnel length that needs to be dug in weeks = (7020 ft) / (A + B)
= (7020 ft) / (58 ft/week + 59 ft/week)
= 120.20 weeks
Hence, it will take a total of 120.20 weeks for both crews to complete the tunnel.
Susan bought a 1 kilogram bag of grapes. On the way home, she ate 125 grams of the grapes. How many grams of grapes does Susan have left? use math language and symbols to explain how you used the correct measurement units to solve the problem.
Susan has 875 grams of grapes left.
1. Susan bought a 1 kilogram bag of grapes, which is equivalent to 1000 grams (since there are 1000 grams in a kilogram).
2. Susan ate 125 grams of the grapes on her way home.
3. To find out how many grams of grapes Susan has left, we need to subtract the amount she ate from the initial weight of the bag. Therefore, we subtract 125 grams from 1000 grams.
1000 grams - 125 grams = 875 grams
4. Thus, Susan has 875 grams of grapes left.
measurement units:
In this problem, we used grams as the measurement unit. Grams are commonly used to measure the weight of small objects like grapes. Since the problem stated that Susan bought a 1 kilogram bag of grapes, it was necessary to convert the kilogram measurement to grams.
This conversion was done by multiplying the kilogram value by 1000 (1 kilogram = 1000 grams). By using the correct measurement units, we were able to accurately calculate the amount of grapes Susan had left after eating a portion.
For more such questions on grams, click on:
https://brainly.com/question/29255021
#SPJ8
pls help and show work
Hence the surface area of the given figure 168 km².
In the given prism contains
3 rectangular surface,
For rectangular surface 1:
Length = 6 km
Width = 7 km
Surface area = 6x7
= 42 km²
For rectangular surface 2:
Length = 8 km
Width = 7 km
Surface area = 8x7
= 56 km²
For rectangular surface 3:
Length = 10 km
Width = 7 km
Surface area = 10x7
= 70 km²
Hence total surface area of the given figure is,
⇒ 42 + 56 + 70
⇒ 168 km²
To learn more about prism visit:
https://brainly.com/question/2918181
#SPJ1
find the volume of this cylinder use 3 pi . 7cm 2cm
The volume of the cylinder is 98π cubic centimeters.
To find the volume of a cylinder, we use the formula:
Volume = π × [tex]r^2[/tex] × h
Given:
Radius (r) = 7 cm
Height (h) = 2 cm
Substituting the values into the formula, we have:
Volume = π × (7 [tex]cm)^2[/tex] × 2 cm
Calculating the values inside the parentheses:
Volume = π × 49 [tex]cm^2[/tex] × 2 cm
Multiplying the values:
Volume = 98π [tex]cm^3[/tex]
Therefore, the volume of the cylinder is 98π cubic centimeters.
for such more question on cylinder
https://brainly.com/question/6204273
#SPJ8
A Web music store offers two versions of a popular song. The size of the standard version is 2.4 megabytes (MB). The size of the high-quality version is 4.2 MB.
Yesterday, there were 1380 downloads of the song, for a total download size of 4716 MB. How many downloads of the standard version were there?
There were 600 downloads of the standard version.
How many downloads were there?An equation means the formula that expresses the equality of two expressions by connecting them with the equals sign.
Let x represents the number of downloads of the standard version.
Given:
Size of the standard version = 2.4 MB
Size of the high-quality version = 4.2 MB
Total download size = 4716 MB
Total downloads = 1380
We will set up the following equation:
2.4x + 4.2(1380 - x) = 4716
2.4x + 5796 - 4.2x = 4716
-1.8x + 5796 = 4716
-1.8x = 4716 - 5796
-1.8x = -1080
x = 600
Read more about equation
brainly.com/question/29174899
#SPJ1
Factorize
8(p-q)^3-(p+q)^3
The factorization of[tex]8(p-q)^3-(p+q)^3 is 8(p-q)^3 - (p+q)^3 is [p - 3q][7p^2 - 8pq + 3q^2].[/tex]
The given expression is[tex]8(p-q)^{3}-(p-q)^{3}[/tex]
To factorize this expression, we can use the identity for the difference of cubes, which states that [tex]a^3 - b^3 = (a - b)(a^2 + ab + b^2).[/tex]
Let's apply this identity to the given expression:
[tex]8(p-q)^3 - (p+q)^3 = [2(p-q)]^3 - (p+q)^3.[/tex]
Now we can see that we have a difference of cubes:[tex](2(p-q))^3 - (p+q)^3.[/tex]
Using the identity, we can factorize this expression as follows:
[tex][(2(p-q)) - (p+q)][(2(p-q))^2 + (2(p-q))(p+q) + (p+q)^2].[/tex]
Simplifying further:
[tex][2p - 2q - p - q][(2(p-q))^2 + (2(p-q))(p+q) + (p+q)^2].[/tex]
Combining like terms:
[tex][p - 3q][(2(p-q))^2 + 2(p-q)(p+q) + (p+q)^2].[/tex]
Expanding the squared term:
[tex][p - 3q][4(p^2 - 2pq + q^2) + 2(p^2 - q^2) + (p^2 + 2pq + q^2)].[/tex]
Simplifying:
[tex][p - 3q][4p^2 - 8pq + 4q^2 + 2p^2 - 2q^2 + p^2 + 2pq + q^2].[/tex]
Combining like terms again:
[tex][p - 3q][7p^2 - 8pq + 3q^2].[/tex]
Therefore, the factorization of [tex]8(p-q)^3 - (p+q)^3 is [p - 3q][7p^2 - 8pq + 3q^2].[/tex]
For more such questions on factorization, click on:
https://brainly.com/question/18187355
#SPJ8
find the quotient : 6x/(3x+15) divided by (x^2+2x)/ (x^2+7x+10)
The quotient of[tex](6x/(3x+15)) / ((x^2+2x)/ (x^2+7x+10))[/tex] is 2x.
To simplify the expression[tex](6x/(3x+15)) / ((x^2+2x)/ (x^2+7x+10)),[/tex] we can use the rule for dividing fractions, which states that dividing by a fraction is the same as multiplying by its reciprocal.
Let's simplify the expression :
Simplify the numerator and denominator of the first fraction.
The numerator is 6x, and the denominator is (3x+15).
We can factor out a common factor of 3 from the denominator, which gives us 3(x+5).
So the first fraction simplifies to 6x / 3(x+5).
Simplify the numerator and denominator of the second fraction.
The numerator is (x^2+2x), and the denominator is [tex](x^2+7x+10).[/tex]
We can factor both the numerator and denominator:
Numerator: x(x+2)
Denominator: (x+5)(x+2)
Canceling out the common factor of (x+2), we are left with x / (x+5).
Multiply the two simplified fractions.
Multiplying the fractions, we get:
[tex](6x / 3(x+5)) \times (x / (x+5))[/tex]
Simplify the resulting expression.
Canceling out the common factor of (x+5) in the numerator and denominator, we are left with:
2x / 1
So the quotient simplifies to 2x.
Therefore, the quotient of [tex](6x/(3x+15)) / ((x^2+2x)/ (x^2+7x+10))[/tex] is 2x.
For similar question on quotient.
https://brainly.com/question/11418015
#SPJ8
Please please help me with this i have 40 missing assignments, if you help YOUR AMAZING
The volume of the prisms are:
1. 432 yd³
2. 36in³
3. 252 m³
4. 240 ft³
5. 576 mm³
6. 144 cm³
7. 343 m³
8. 120 yd³
9. 150 in³
How to determine the volumeThe formula for calculating the volume of a rectangular prism is expressed as;
V = lwh
such that;
l is the lengthw is the widthh is the heightNow, substitute the value for each of the prisms, we have;
1. Volume = 6 × 6 ×12
Multiply
Volume = 432 yd³
2. Volume = 2 ×9 × 2
Multiply
Volume = 36in³
3. Volume = 9 × 4 × 7
Multiply
Volume = 252 m³
4. Volume = 10 × 8 × 3
Multiply
Volume = 240 ft³
5. Volume = 4 × 12 × 12
Multiply the values
Volume = 576 mm³
6. Volume = 6 × 8 × 3
Volume = 144 cm³
7. Volume = 7 × 7 ×7
Volume = 343 m³
8. Volume = 8 × 3 × 5
Volume = 120 yd³
9. Volume = 5 × 6 × 5
Volume = 150 in³
Learn more about volume at: https://brainly.com/question/1972490
#SPJ1
If A={o,b,s,e,r,v,a,n,t,l,y} and U={a,b,c,d,e,f,g,h,I,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z} find [A’]
Answer:
[A'] = {c,d,f,g,h,i,j,k,m,n,p,q,u,w,x,z}
Step-by-step explanation:
[A'] is read as the set of A complement, which is all the elements from the universal set that are not contained in set A.
Therefore, [A'] = {c,d,f,g,h,i,j,k,m,n,p,q,u,w,x,z}
cos (α-β)/sinαcosβ = complete the identity
Answer:
consider the following data set 10 14 12 16 10 13 14 12 11 which of the relative frequency for the data value of 14
Step-by-step explanation:
Help this is pretty concussing and how am I supposed to know how many more balloons were filled?
Answer:
b) graph pass through origin for both.
c) mario would take 5minutes to have more balloons filled than tanesha
the ratio of women to men in a local book club is 7 to 3. whitch combanation of women to the total could the club have
The possible combinations of women to the total number of club members could be:
7 women out of 10 members.
14 women out of 20 members.
21 women out of 30 members.
28 women out of 40 members.
And so on, as long as "x" is a multiple of 10 that is divisible by 7.
The ratio of women to men in the local book club is 7 to 3. This means that for every 7 women, there are 3 men.
To find the possible combinations of women to the total number of club members, we can consider the total number of members as a multiple of 10 (since the ratio is given as 7 to 3). Let's assume the total number of club members is represented by the variable "x."
Based on the given ratio, we can calculate the number of women in terms of "x" by multiplying the ratio of women (7/10) by the total number of members:
Number of women = (7/10) * x
Since we're looking for possible combinations, the number of women must be a whole number. Therefore, "x" must be a multiple of 10 that is divisible by 7.
Let's explore some possible combinations:
If x = 10, the number of women = (7/10) * 10 = 7, which satisfies the ratio.
If x = 20, the number of women = (7/10) * 20 = 14, which satisfies the ratio.
If x = 30, the number of women = (7/10) * 30 = 21, which satisfies the ratio.
If x = 40, the number of women = (7/10) * 40 = 28, which satisfies the ratio.
As you can see, the possible combinations of women to the total number of club members could be:
7 women out of 10 members.
14 women out of 20 members.
21 women out of 30 members.
28 women out of 40 members.
And so on, as long as "x" is a multiple of 10 that is divisible by 7.
For such more questions on Ratio of Women:Men
https://brainly.com/question/15252151
#SPJ8
I cant seem to understand this question and i need the answer really quick.
The person will need approximately 28 square yards of material for the tent.
To calculate the amount of material needed, we first need to determine the total surface area of the tent.
The tent has six sides: a top, a bottom, a front, a back, and two sides. The top and bottom are both 10 feet by 5 feet, so their combined area is 10 feet x 5 feet = 50 square feet each.
The front and back are both 10 feet by 5 feet, so their combined area is also 10 feet x 5 feet = 50 square feet each.
The two sides are both 5 feet by 5 feet, so their combined area is 5 feet x 5 feet = 25 square feet each.
To find the total surface area, we add up all these areas:
Top and bottom: 50 square feet + 50 square feet = 100 square feet
Front and back: 50 square feet + 50 square feet = 100 square feet
Sides: 25 square feet + 25 square feet = 50 square feet
Total surface area: 100 square feet (top and bottom) + 100 square feet (front and back) + 50 square feet (sides) = 250 square feet
Since the material is sold in square yards, we need to convert square feet to square yards.
There are 9 square feet in 1 square yard.
So, 250 square feet / 9 = 27.78 square yards.
Rounding up to the nearest square yard, the person will need approximately 28 square yards of material for the tent.
Learn more about total surface area click;
https://brainly.com/question/15476071
#SPJ1
Please help me to do this i really need it.
First correct Answer gets Brainliest.
Answer:
Step-by-step explanation:
-3≤ x = graph 6
-3 > x = graph 3
x≥ 3 = graph 2
x ≤ 3 = graph 4
3 > x = graph 1
x > 3 = graph 5
the closed circles means greater/less than or equal to
the open circle means greater/less than
the direction of the arrow tells you if the number is greater than x or less than x
At Bud's company, bowling balls are shaped as a sphere with a diameter of 12 inches. If a store receives a shipment of 21 bowling balls, what is the total volume of the balls? (Use 3.14 for pi)
The total volume of the 21 bowling balls is 6048π cubic inches.
We have,
To find the total volume of the 21 bowling balls, we first need to calculate the volume of a single ball and then multiply it by the number of balls.
The volume of a sphere can be calculated using the formula:
V = (4/3) x π x r³
where V is the volume and r is the radius of the sphere.
Given that the diameter of the bowling ball is 12 inches, the radius can be calculated as half of the diameter:
r = 12/2 = 6 inches
Now we can calculate the volume of a single ball:
V_ball = (4/3) x π x (6³) = (4/3) x π x 216 = 288π cubic inches
Since there are 21 balls, we can calculate the total volume by multiplying the volume of a single ball by the number of balls:
Total volume = 21 x 288π = 6048π cubic inches
Thus,
The total volume of the 21 bowling balls is 6048π cubic inches.
Learn more about Sphere here:
https://brainly.com/question/12390313
#SPJ1
ACTIVITY 1 1.1 Resources required: ruler, protractor, compass and coloured pencils Step 1: Draw a horizontal line segment, OM, of any length, the longer the better. Step 1 Solution
The solution to the problem at hand i.e. to draw a horizontal line segment, OM, of any length, the longer the better using ruler, protractor, compass and coloured pencils
are as follows:
Step 1: Take a ruler and align it with a sheet of paper and draw a line. This line can be of any length, although longer lines are preferred.
Step 2: The line is now OM; we must now label its endpoints. Label the leftmost point O, and the rightmost point M.
Step 3: The coloured pencils are used to add decorations to the line. To add decorations, use coloured pencils to make patterns and stripes along the length of the line. This is entirely optional and based on personal preference.
Step 4: To ensure that the line is perfectly horizontal, the protractor should be used. Place the protractor on the line and make sure the zero-degree angle is at O. The line will be horizontal if it is parallel to the baseline of the paper.
Step 5: Using a compass, measure the length of OM to ensure that it is of the desired length.
To learn more about : solution
https://brainly.com/question/24644930
#SPJ8
The line given by
−11x=4y+4 is dilated by a scale factor centered at the origin. The image of the line after dilation is given by
−11x−4y=16. What is the scale factor of the dilation?
The scale factor of the dilation is 4.
We are given that;
The equation of line −11x=4y+4
Now,
The center of dilation is the origin (0, 0). The line given by −11x = 4y + 4 can be rewritten as y = −11/4 x − 1. This means that it passes through the points (0, −1) and (−4, 0). The image of the line after dilation is given by −11x − 4y = 16, which can be rewritten as y = −11/4 x − 4. This means that it passes through the points (0, −4) and (−16, 0).
To find the scale factor, we can use any pair of corresponding points. For example, let’s use (0, −1) and (0, −4). The distance from the center of dilation to (0, −1) is 1 unit. The distance from the center of dilation to (0, −4) is 4 units. Therefore, the scale factor is 4/1 = 4.
Therefore, by dilation the answer will be 4
Learn more about dilation here:
https://brainly.com/question/27212783
#SPJ1
Harriett designed an artistic table top for her dining room
table. Her sketch is shown below at a scale of 1 cm 6
in.
How much area will her dining room table top fill when it is
built?
5 cm
3 cm
A
B
C
D
3 cm
14 cm
9 cm
432 sq. in.
648 sq. in.
864 sq. in.
4 cm
972 sq. in.
5 cm
-
3 cm
there is also
C. 864 sq in
and
D 972 sq in
but it doesnt show
The area of the dining room table top is: 864 sq. in
How to solve scale factor problems?The formula for the area of a triangle is:
Area = ¹/₂ * base * height
Formula for the area of a rectangle is:
Area = Length * Width
Area of trapezium = ¹/₂(sum of parallel sides) * height
Thus, if 1cm = 6 inches
Then: 9cm = 54 inches
3 cm = 18 inches
4 cm = 24 inches
Thus:
Area of trapezium = ¹/₂(54 + 18) * 24
= 864 sq. in
Read more about Scale Factor at: https://brainly.com/question/25722260
#SPJ1
Collect like terms
5z - 7 - 13z + 35
Collecting the like terms in the expression 5z - 7 - 13z + 35 gives -8z + 28
How to collect like terms on the expressionFrom the question, we have the following parameters that can be used in our computation:
5z - 7 - 13z + 35
Consider an expression given as
Ax + Bx
Where A and B are constants and x is a variable
The terms Ax and Bx are like terms
using the above as a guide, we have the following:
5z - 7 - 13z + 35 = 5z - 13z - 7 + 35
Evaluate the like terms
5z - 7 - 13z + 35 = -8z + 28
Hence, collecting the like terms gives -8z + 28
Read more about expression at
https://brainly.com/question/15775046
#SPJ1
1:46 AM Thu May 25
Band
AA
Savvas
Easybridge
Savvas Realize
7-3 MathXL for School: Practice & Problem Solving
Savvas Gede
Piey Blocket
empathy me...
The experimental probability of choosing the name Ted is
(Type an integer or a simplified fraction.)
EasyBridge
+
29 14% 1
Savvas Realiz-
Due 05/31/23 11:59pm
7.3.PS-12
Question Help
Challenge Nine different names were put into a hat. A name is chosen 119 times and the name Ted is
chosen 19 times. What is the experimental probability of the name Ted being chosen? What is the
theoretical probability of the name Ted being chosen? Use pencil and paper. Explain how each probability
would change if the number of names in the hat were different.
Experimental probability depends on Ted's frequency in the new set of names. The total number of names chosen also affects it. Theoretical probability is influenced by the total number of possible outcomes based on the number of names in the hat. If the number of names increases, the chance of choosing Ted decreases.
To find the experimental probability of choosing the name Ted, we divide the number of times Ted was chosen by the total number of names chosen.
Experimental probability = Number of times Ted was chosen / Total number of names chosen
Given that Ted was chosen 19 times out of 119 total selections, we can calculate the experimental probability:
Experimental probability = 19 / 119
Simplifying, we find that the experimental probability of choosing the name Ted is approximately 0.1597 or about 15.97% (rounded to the nearest hundredth).
To find the theoretical probability of choosing the name Ted, we divide the number of favorable outcomes (choosing Ted) by the total number of possible outcomes.
Theoretical probability = Number of favorable outcomes / Total number of possible outcomes
In this case, there are 9 different names in the hat, and Ted is one of them. Therefore, the theoretical probability of choosing Ted is:
Theoretical probability = 1 / 9
Simplifying, the theoretical probability of choosing the name Ted is approximately 0.1111 or about 11.11% (rounded to the nearest hundredth).
If the number of names in the hat were different, both the experimental and theoretical probabilities would change.
For the experimental probability, the number of times Ted is chosen would change based on the frequency of Ted in the new set of names. The total number of names chosen would also change.
For the theoretical probability, the total number of possible outcomes would change based on the number of names in the hat. If there were more names, the probability of choosing Ted would decrease. Conversely, if there were fewer names, the probability of choosing Ted would increase.
For more such questions on probability
https://brainly.com/question/7965468
#SPJ8