One long wire carries a current of 30 A along the entire x axis. A second long wire carries a current of 40 A perpendicular to the xy plane and passes through the point (0, 4, 0) m. What is the magnitude of the resultant magnetic field at the point y

Answers

Answer 1

Complete question is;

One long wire carries a current of 30 A along the entire x axis. A second long wire carries a current of 40 A perpendicular to the xy plane and passes through the point (0, 4, 0) m. What is the magnitude of the resulting magnetic field at the point y = 2.0 m on the y axis?

Answer:

B_net = 50 × 10^(-7) T

Explanation:

We are told that the 30 A wire lies on the x-plane while the 40 A wire is perpendicular to the xy plane and passes through the point (0,4,0).

This means that the second wire is 4 m in length on the positive y-axis.

Now, we are told to find the magnitude of the resulting magnetic field at the point y = 2.0 m on the y axis.

This means that the position we want to find is half the length of the second wire.

Thus, at this point the net magnetic field is given by;

B_net = √[(B1)² + (B2)²]

Where B1 is the magnetic field due to the first wire and B2 is the magnetic field due to the second wire.

Now, formula for magnetic field due to very long wire is;

B = (μ_o•I)/(2πR)

Thus;

B1 = (μ_o•I_1)/(2πR_1)

Also, B2 = (μ_o•I_2)/(2πR_2)

Now, putting the equation of B1 and B2 into the B_net equation, we have;

B_net = √[((μ_o•I_1)/(2πR_1))² + ((μ_o•I_2)/(2πR_2))²]

Now, factorizing out some common terms, we have;

B_net = (μ_o/2π)√[((I_1)/R_1))² + ((I_2)/R_2))²]

Now,

μ_o is a constant and has a value of 4π × 10^(−7) H/m

I_1 = 30 A

I_2 = 40 A

Now, as earlier stated, the point we are looking for is 2 metres each from wire 2 end and wire 1.

Thus;

R_1 = 2 m

R_2 = 2 m

So, let's calculate B_net.

B_net = ((4π × 10^(−7))/2π)√[(30/2)² + (40/2)²]

B_net = 50 × 10^(-7) T


Related Questions

6. What is the bulk modulus of oxygen if 32.0 g of oxygen occupies 22.4 L and the speed of sound in the oxygen is 317 m/s?

Answers

Answer:

[tex] \boxed{\sf Bulk \ modulus \ of \ oxygen \approx 143.5 \ kPa} [/tex]

Given:

Mass of oxygen (m) = 32.0 g = 0.032 kg

Volume occupied by oxygen (V) = 22.4 L = 0.0224 m³

Speed of sound in oxygen (v) = 317 m/s

To Find:

Bulk modulus of oxygen

Explanation:

[tex]\sf Density \ of \ oxygen \ (\rho) = \frac{m}{V}[/tex]

[tex]\sf \implies Bulk \ modulus \ of \ oxygen \ (B) = v^{2} \rho[/tex]

[tex]\sf \implies B = v^{2} \times\frac{m}{V}[/tex]

[tex]\sf \implies B = {(317)}^{2} \times \frac{0.032}{0.0224} [/tex]

[tex]\sf \implies B = {(317)}^{2} \times 1.428[/tex]

[tex]\sf \implies B = 100489 \times 1.428[/tex]

[tex]\sf \implies B = 143498.292 \: Pa[/tex]

[tex]\sf \implies B \approx 143.5 \: kPa[/tex]

What type of energy conversion occurs when you place your feet near the fireplace and they become warm?
O Radiant to thermal
o Thermal to mechanical
O Mechanical to chemical
O Nuclear to thermal​

Answers

Answer:

It is the first one RADIENT TO THERMAL

Explanation:

The heat emitted from the campfires is an an example of radiant energy and thermal energy is refers to the energy contained within a system that is responsible for its tempreture with in this case is the campfires and heat energy being reflected upon your feet.

Answer:

A

Explanation:

Select the situation for which the torque is the smallest.

a. A 200 kg piece of silver is placed at the end of a 2.5 m tree branch.
b. A 20 kg piece of marble is placed at the end of a 25 m construction crane arm.
c. A 8 kg quartz rock is placed at the end of a 62.5 m thin titanium rod.
d. The torque is the same for two cases.
e. The torque is the same for all cases.

Answers

Answer:

e. The torque is the same for all cases.

Explanation:

The formula for torque is:

τ = Fr

where,

τ = Torque

F = Force = Weight (in this case) = mg

r = perpendicular distance between force an axis of rotation

Therefore,

τ = mgr

a)

Here,

m = 200 kg

r = 2.5 m

Therefore,

τ = (200 kg)(9.8 m/s²)(2.5 m)

τ = 4900 N.m

b)

Here,

m = 20 kg

r = 25 m

Therefore,

τ = (20 kg)(9.8 m/s²)(25 m)

τ = 4900 N.m

c)

Here,

m = 8 kg

r = 62.5 m

Therefore,

τ = (8 kg)(9.8 m/s²)(62.5 m)

τ = 4900 N.m

Hence, the correct answer will be:

e. The torque is the same for all cases.

An organ pipe open at both ends is 1.5 m long. A second organ pipe that is closed at one end and open at the other is 0.75 m long. The speed of sound in the room is 330 m/s. Which of the following sets of frequencies consists of frequencies which can be produced by both pipes?

a. 110Hz,220Hz, 330 Hz
b. 220Hz 440Hz 66 Hz
c. 110Hz, 330Hz, 550Hz
d. 330 Hz, 550Hz, 440Hz
e. 660Hz, 1100Hz, 220Hz

Answers

Answer:

A. 110Hz,220Hz, 330 Hz

Explanation:

for organ open at open both ends;

the length of the organ for the fundamental frequency, L = A---->N + N----->A

A---->N  = λ /4 and N----->A = λ /4

L = λ /4 + λ /4 = λ /2

[tex]L = \frac{\lambda}{2} \\\\\lambda = 2L[/tex]

λ  = 2 x 1.5m = 3.0 m

Wave equation is given by;

V = Fλ

Where;

V is the speed of sound

F is the frequency of the wave

F = V/ λ

F₀ = V / 2L

Where;

F₀  is the fundamental frequency

F₀ = 330 / 2(1.5)

F₀ = 330 / 3

F₀ = 110 Hz

the length of the organ for the first overtone, L = A---->N + N----->A + A----->N +  N----->A

L = 4λ /4

L = λ

λ = 1.5 m

F₁ = 330 / 1.5

F₁ = 220 Hz

Thus, F₁ = 2F₀

For open organ at one end

the length of the organ for the fundamental frequency, L = N------A

L = λ /4

λ = 4L

F₀ = V/4L

F₀ = 330 / (4 x 0.75)

F₀ = 110 Hz

the length of the organ for the first overtone, L = N-----N + N-----A

L = λ/2 + λ / 4

L = 3λ /4

F₁ = 3F₀

F₁ = 3 x 110

F₁ = 330 Hz

Thus the fundamental frequency for both organs is 110 Hz,

The first overtone for the organ open at both ends is 220 Hz

The first overtone for the organ open at one end is 330 Hz

The correct option is "A. 110Hz,220Hz, 330 Hz"

The correct option is option (A)

the frequencies produced by the pipes are (A) 110Hz,220Hz, 330 Hz

Frequencies and overtones:

(I) For an organ pipe open at open both ends the frequency of different modes is given by:

F =  nv/2L

where

F is the frequency

L is the length of the organ pipe

v is the speed of the wave

and, n is the mode of frequency

the fundamental frequency corresponds to n = 1, given by:

F₀ = v/2L

F₀ = 330 / 2(1.5)

F₀ = 330 / 3

F₀ = 110 Hz

The first overtone corresponds to n = 2, the second overtone corresponds to n = 3, and so on...

F₁ =2v/2L

F₁ = 330 / 1.5

F₁ = 220 Hz

Thus, F₁ = 2F₀

The difference between successive overtones is F₀

(II) For an organ pipe open at one end the frequency of different modes is given by:

F =  nv/4L

where

F is the frequency

L is the length of the organ pipe

v is the speed of the wave

and, n is the mode of frequency

the fundamental frequency corresponds to n = 1, given by:

F₀ = V/4L

F₀ = 330 / (4 x 0.75)

F₀ = 110 Hz

For an organ pipe open at one end, only those overtones are present which correspond to odd n, that is n = 3,5,...so:

F₁ = 3F₀

F₁ = 3 x 110

F₁ = 330 Hz

Learn more about overtones:

https://brainly.com/question/1515875?referrer=searchResults

If a disk rolls on a rough surface without slipping, the acceleration of the center of gravity (G) will _ and the friction force will b

Answers

Answer:

Will be equal to alpha x r; less than UsN

What is 3/4 of 12 and 24

Answers

Answer:

3/4 of 12 = 16

3/4 of 24 = 32

Those are the answers based on how your question sounded

Explanation:

Answer:

27

Explanation:

3/4 of (12 and 24)

of means ×

and means +

therefore,3/4× (12+24)

3/4×(36)

3×9

27

When a battery is connected to a lightbulb properly, current flows through the lightbulb and makes it glow. How much current flows through the battery compared with the lightbulb

Answers

Answer:

The same amount of current flows through the battery and light bulb

Explanation:

Because for a single loop, the current is the same at every point in the loop. Thus, the amount of current that flows through the lightbulb is the same as the amount that flows through the battery

Answer:

The same amount of current flows through the battery and light bulb

Explanation:

calculate horizontal distance travelled by a ball travelling with a speed of 20root2 mper sec without hitting ceiling of height 20 m per sec​

Answers

Calculate the horizontal distance travelled by a ball throw with a velcoity 20 sqrt 2 ms^(-1) without hitting the ceiling of an anditorium of heith 20 m. Use g= 10 ms^(-2). =(20√2)2sin2×45∘10=9800×1)10=80m .

HOPE SO IT HELPS YOU

A small insect viewed through a convex lens is 1.5 cmcm from the lens and appears 2.5 times larger than its actual size. Part A What is the focal length of the lens

Answers

Answer:

The focal length of the lens is 2.5 cm

Explanation:

Use the two equations for thin lenses combined: the one for magnification (m), and the one that relates distances of object [tex]d_o[/tex], of image [tex]d_i[/tex], and focal length;

[tex]m=\frac{h_i}{h_o} =-\frac{d_i}{d_o} \\ \\\frac{1}{d_i} +\frac{1}{d_o} =\frac{1}{f}[/tex]

Since we know the value of the magnification (m), we can write the image distance in terms of the object distance, and then use it to replace the image distance in the second equation:

[tex]m=-\frac{d_i}{d_o} \\2.5=-\frac{d_i}{d_o}\\d_i=-2.5\,d_o[/tex]

then, solving for the focal distance knowing that the object distance is 1.5 cm:

[tex]\frac{1}{d_i} +\frac{1}{d_o} =\frac{1}{f}\\-\frac{1}{2.5\,d_o} +\frac{1}{d_o} =\frac{1}{f}\\(2.5\,d_o\,f)\,(-\frac{1}{2.5\,d_o} +\frac{1}{d_o}) =\frac{1}{f}\,(2.5\,d_o\,f)\\-f+2.5\,f=2.5\,d_o\\1.5\,f=2.5\,d_o\\f=\frac{2.5\,d_o}{1.5} \\f=\frac{2.5\,(1.5\,\,cm)}{1.5}\\f=2.5\,\,cm[/tex]

A plastic dowel has a Young's Modulus of 1.50 ✕ 1010 N/m2. Assume the dowel will break if more than 1.50 ✕ 108 N/m2 is exerted.
(a) What is the maximum force (in kN) that can be applied to the dowel assuming a diameter of 2.40 cm?
______Kn
(b) If a force of this magnitude is applied compressively, by how much (in mm) does the 26.0 cm long dowel shorten? (Enter the magnitude.)
mm

Answers

Answer:

a

   [tex]F = 67867.2 \ N[/tex]

b

  [tex]\Delta L = 2.6 \ mm[/tex]

Explanation:

From the question we are told that

      The Young modulus is  [tex]Y = 1.50 *10^{10} \ N/m^2[/tex]

      The stress is  [tex]\sigma = 1.50 *10^{8} \ N/m^2[/tex]

      The  diameter is  [tex]d = 2.40 \ cm = 0.024 \ m[/tex]

The radius is mathematically represented as

       [tex]r =\frac{d}{2} = \frac{0.024}{2} = 0.012 \ m[/tex]

The cross-sectional area is  mathematically evaluated as

        [tex]A = \pi r^2[/tex]

         [tex]A = 3.142 * (0.012)^2[/tex]

        [tex]A = 0.000452\ m^2[/tex]

Generally the stress is mathematically represented as

        [tex]\sigma = \frac{F}{A}[/tex]

=>     [tex]F = \sigma * A[/tex]

=>    [tex]F = 1.50 *10^{8} * 0.000452[/tex]

=>    [tex]F = 67867.2 \ N[/tex]

Considering part b

      The length is given as [tex]L = 26.0 \ cm = 0.26 \ m[/tex]

Generally Young modulus is mathematically represented as

           [tex]E = \frac{ \sigma}{ strain }[/tex]

Here strain is mathematically represented as

         [tex]strain = \frac{ \Delta L }{L}[/tex]

So    

       [tex]E = \frac{ \sigma}{\frac{\Delta L }{L} }[/tex]

        [tex]E = \frac{\sigma }{1} * \frac{ L}{\Delta L }[/tex]

=>     [tex]\Delta L = \frac{\sigma * L }{E}[/tex]

substituting values

       [tex]\Delta L = \frac{ 1.50*10^{8} * 0.26 }{ 1.50 *10^{10 }}[/tex]

       [tex]\Delta L = 0.0026[/tex]

Converting to mm

      [tex]\Delta L = 0.0026 *1000[/tex]

      [tex]\Delta L = 2.6 \ mm[/tex]

Three capacitors C1 = 10.7 µF, C2 = 23.0 µF, and C3 = 29.3 µF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.

Answers

Answer:

E = 1336.71875 J

Explanation:

We are given;. Capacitance of Capacitor 1; C1 = 10.7 µF

Capacitor 2; C2 = 23.0 µF

Capacitor 3; C3 = 29.3 µF

Supply voltage;V = 125 V

Formula for capacitance in series is;

Capacitors in series circuit: C(eq) = 1/C(1) +1/C(2) +1/C(3) .......

Thus, equivalent capacitance is;

C(eq) = (1/10.7) + (1/23) + (1/29.3) = 0.1711 µF = 0.1711 × 10^(6) F

Now, the formula for maximum energy stored is;

E = ½ × C(eq) × V²

E = ½ × 0.1711 × 10^(-6) × 125²

E = 1336.71875 J

The speed of a horse is 134 meters per second how long does it takes to travel a distance of 19,311?

Answers

Answer:

just need some focus

Explanation:

tan 13. The speed of a horse is 134 meters per second how long does it take to travel a distance of 19,311m? M+ tud V 134 14. You are walking down the block and see your neighbor's pitbull 30 meters away, out of the fence, starring at you. Suddenly, he starts running towards you at 20m/s. How long will it be before you're the pitbull's lunch?  V 15. A pendulum has a frequency of 2 Hz what is it's period. T = 1/2 16. You have just finished a 1600 mile trip, and it took you 16 hours. What was your average speed V = Ad At 17. You are flying from New York, NY to SanFrancisco California, a distance of 2582 miles, it takes 6.33hrs to complete the flight what was your average speed? give answer in m/s. V = Ad = At 3 of 6

A patient prescribed a metered dose inhaler will find it
A. works for lower (not upper) respiratory diseases only.
B. should be filled with medication in aerosol form only.
C. is filled with medication used to administer a fixed amount of medication per inhalation through the mouth.
D. should be filled with medication in powder form only.

Answers

Answer:The correct answer should be C. is filled with medication used to administer a fixed amount of medication per inhalation through the mouth.

Explanation:

Answer:

c. is filled with medication used to administer a fixed amount of medication per inhalation through the mouth.

Two ice skaters push off against one another starting from a stationary position. The 45.0-kg skater acquires a speed of 0.375 m/s. What speed does the 60.0-kg skater acquire in m/s

Answers

Answer:

0.2812

Explanation:

Given that

mass of skater 1, m1 = 45 kg

mass of skater 2, m2 = 60 kg

speed of skater 1, v1 = 0.375 m/s

To attempt this question, we would be using the Law of conservation of momentum That says the momentum is constant, before and after the movement.

Thus, momentum p = mv

Law of conservation of momentum infers that,

m1v1 = m2v2

Now we proceed to substitute our values into the formula.

45 * 0.375 = 60 * v2

v2 = 16.875 / 60

v2 = 0.2812 m/s

Therefore the speed of the second skater has to be 0.2812 m/s

A child is trying to throw a ball over a fence. She gives the ball an initial speed of 8.0 m/s at an angle of 40° above the horizontal. The ball leaves her hand 1.0 m above the ground and the fence is 2.0 m high. The ball just clears the fence while still traveling upwards and experiences no significant air resistance. How far is the child from the fence?

Answers

Answer:

the child is 1.581 m far from the fence

Explanation:

The diagrammatic illustration that give a better view of what the question denote can be seen in the image attached below.

From the image attached below, let assume that the release point is the origin, then equation of the motion (x) is as follows:

[tex]x - x_o = u_xt[/tex]

[tex]\mathtt{x = u_xt \ \ \ since (x_o = 0)}[/tex]  ---- (1)

the equation of the motion y is :

[tex]\mathtt{y - y_o =u_yt - 0.5 gt^2}[/tex]

[tex]\mathtt{y = u_yt-4.9t^2 \ \ \ since (y_o =0)}[/tex]

[tex]\mathtt{ 1= (u \ sin 40^0)t -4.9 \ t^2 }[/tex]

[tex]\mathtt{1 = 8 sin 40^0 t - 4.9 t^2}[/tex]

[tex]\mathtt{1 = 5.14t - 4.9t^2}[/tex]

[tex]\mathtt{4.9t^2 - 5.14t +1 = 0}[/tex]

By using the quadratic formula, we have;

[tex]\mathtt{ \dfrac{ -b \pm \sqrt{b^2 - 4ac}}{2a}} }[/tex]

where;

a = 4.9,   b = -5.14     c = 1

[tex]= \mathtt{ \dfrac{ -(-5.14) \pm \sqrt{(-5.14)^2 - 4(4.9)(1)}}{2(4.9)}} }[/tex]

[tex]= \mathtt{ \dfrac{ 5.14 \pm \sqrt{26.4196 -19.6}}{9.8}} }[/tex]

[tex]= \mathtt{ \dfrac{ 5.14 \pm \sqrt{6.8196}}{9.8}} }[/tex]

[tex]= \mathtt{ \dfrac{ 5.14+ \sqrt{6.8196}}{9.8} \ \ OR \ \ \dfrac{ 5.14- \sqrt{6.8196}}{9.8}} }[/tex]

[tex]= \mathtt{ \dfrac{ 5.14+ 2.6114}{9.8} \ \ OR \ \ \dfrac{ 5.14- 2.6114}{9.8}} }[/tex]

[tex]= \mathtt{ \dfrac{ 7.7514}{9.8} \ \ OR \ \ \dfrac{ 2.5286}{9.8}} }[/tex]

[tex]= \mathbf{ 0.791 \ \ OR \ \ 0.258} }[/tex]

In as much as the ball is traveling upward, then we consider t= 0.258sec.

From equation (1)

[tex]\mathtt{x = u_x(0.258)}[/tex]

[tex]\mathtt{x = ucos 40^0 (0.258)}[/tex]

[tex]\mathtt{x = 8 \ cos 40^0 (0.258)}[/tex]

[tex]\mathbf{x = 1.581 \ m}[/tex]

Thus, the child is 1.581 m far from the fence

The elastic portion of the downward-sloping straight-line demand curve lies:_______
a. at the intersection with the supply curve.
b. anywhere to the right of the current market price.
c. above the point of unit elasticity.
d. below the point where total revenue is maximized.

Answers

Answer:

c. above the point of unit elasticity.

Explanation:

The elastic portion of the downward-sloping straight-line demand curve lies above the point of unit elasticity. Supply and demand are fundamental concept in economics. The demand curve shows how much of a good people will want at a different prices. The demands curves illustrates the intuition why people purchase a good for a lower price. For the demand curve, the price is always shown on the vertical axis and the demand curve is shown on the horizontal axis. Thus , the quantity demanded increases as the price gets lower. However, the price elasticity of the demand curve varies along the demand curve. This is because there is a key distinction between the gradient and the elasticity. The gradient which is the slope of the line is always the same in the demand curve but elasticity of the demand changes in the percentage of the quantity demand. Therefore, elasticity will vary along the downward-sloping straight - line demand curve. So,  in a downward-sloping straight-line demand curve, the elastic portion is usually above the  point of unit elasticity

A projectile is shot from the edge of a cliff 80 m above ground level with an initial speed of 60 m/sec at an angle of 30° with the horizontal. Determine the time taken by the projectile to hit the ground below.

Answers

Answer:

8 seconds

Explanation:

Answer:

Explanation:

Going up

Time taken to reach maximum height= usin∅/g

=3 secs

Maximum height= H+[(usin∅)²/2g]

=80+[(60sin30)²/20]

=125 meters

Coming Down

Maximum height= ½gt²

125= ½(10)(t²)

t=5 secs

local unit of measurement of length : confined to a particular place cise Choose the best answer from the given alterna MKS system stands for ........ i. mass, kilogram and second ii. metre, kilogram and second iii. metre, kilometre and second iv. metre, kilogram and standard​

Answers

MKS stands for metre , kilogram and second

3. Which of the following accurately describes circuits?
O A. In a parallel circuit, the same amount of current flows through each part of the circuit
O B. In a series circuit, the amount of current passing through each part of the circuit may vary
O C. In a series circuit, the current can flow through only one path from start to finish
O D. In a parallel circuit, there's only one path for the current to travel.

Answers

Answer:

Option (c)

Explanation:

In a Series circuit, as the components are connected end-to-end ,the current can flow through only one path from start to finish.

(C.) is the only correct statement in the list of choices.

In a series circuit, the current can flow through only one path from start to finish.

A thermos bottle works well because:

a. its glass walls are thin
b. silvering reduces convection
c. vacuum reduces heat radiation
d. silver coating is a poor heat conductor
e. none of the above

Answers

Answer:

A thermos bottle works well because:

A) Its glass walls are thin

Answer:

A thermos bottle works well because:

C

Vacuum reduces heat radiation

If a bus travels 50 km in 10 hours, how fast was the
bus travelling?

Answers

Answer:

5 kilometers per hour

Explanation:

Speed = distance / time

Distance: 50km

Time: 10 hours

Speed = 50/10 = 5kph

Answer:

5kmph

Explanation:

if the bus traveled 50 km in 10 hours, we have to divide 50 by 10 to see how fast it traveled per hour.

50/10 = 5

therefore, the bus was traveling 5 km per hour

hope this helps :)

A car whose tire have radii 50cm travels at 20km/h. What is the angular velocity of the tires?

Answers

Radius=r=50cm=0.5mVelocity=20km/h=v

Convert to m/s

[tex]\\ \sf\longmapsto v=20\times 5/18=5.5m/s[/tex]

We know

[tex]\boxed{\sf \omega=\dfrac{rv}{|r|^2}}[/tex]

[tex]\\ \sf\longmapsto \omega=\dfrac{0.5(5.5)}{|0.5|^2}[/tex]

[tex]\\ \sf\longmapsto \omega=\dfrac{2.75}{0.25}[/tex]

[tex]\\ \sf\longmapsto \omega=11rad/s[/tex]

A small wave pulse and a large wave pulse approach each other on a string; the large pulse is moving to the right.
Sometime after the pulses have met and passed each other, which of the following statements is correct? (More than one answer may be correct)
- the large pulse continues moving to the right
- the large pulse continues unchanged, moving to the right
- the small pulse is reflected and moves off to the right with a smaller amplitude
- the small pulse is reflected and moves off to the right with its original amplitude
- the two pulses combine into a single pulse moving to the right

Answers

Answer:

the large amplitude wave keeps moving to the right

the small amplitude wave continues to move to the left.

When checking the answers, the correct ones are 1, 2

Explanation:

The waves fulfill the principle of superposition, which states that the value of the function at a point is the algebraic sum of the waves at a given instant.

The two waves in this exercise travel in the opposite direction, so when they are close, the resulting wave is the sum of the two waves, having a complicated shape. But when the waves follow their movement, they give in the same way as the initial a,

the large amplitude wave keeps moving to the right

the small amplitude wave continues to move to the left.

When checking the answers, the correct ones are 1, 2

A charged capacitor and an inductor are connected in series. At time t = 0, the current is zero, but the capacitor is charged. If T is the period of the resulting oscillations, the next time, after t = 0 that the energy stored in the magnetic field of the inductor is a maximum is

Answers

Answer:

t = T / 2 all energy is stored in the inductor

Explanation:

The circuit described is an oscillating circuit where the charge of the condensation stops the inductor and vice versa, in this system the angular velocity of the oscillation is

          w = √1/LC

          2π / T =√1 / LC

          T = 2π  √LC

The energy is constant and for the initial instant it is completely stored in the capacitor

         Uc = Q₀² / 2C

In the process, the capacitor is discharging and the energy is stored in the inductor until when the charge in the capacitors zero, all the energy is stored in the inductor

        U = L I² / 2

in the intermediate instant the energy is stored in the two elements.

Since the period of the system is T for time t = 0 all energy is stored in the capacitor and for t = T / 2 all energy is stored in the inductor

After t = 0 the maximum energy stored in the magnetic field of the inductor is equal to [tex]U'=\dfrac{L I^{2}}{2}[/tex] for the time period, half of period of oscillation  (t = T/2).

The given problem is based on the charging and discharging concepts of capacitor. An oscillating circuit is a circuit where the charge of the capacitor stops the inductor and vice versa, in this system the angular frequency of the oscillation is given as,

[tex]\omega =\dfrac{1}{\sqrt{LC}}\\\\\\\dfrac{2 \pi}{T} =\dfrac{1}{\sqrt{LC}}\\\\\\T = 2\pi \times \sqrt{LC}[/tex]

here, T is the period of oscillation.

 

Also, the energy stored in the capacitor is constant and for the initial instant it is completely stored in the capacitor. So, the energy stored is given as,

[tex]U =\dfrac{Q^{2}}{2C}[/tex]

here, C is the capacitance.

In the process, the capacitor is discharging and the energy is stored in the inductor until when the charge in the capacitors zero, all the energy is stored in the inductor. So, the expression for the energy stored in the inductor is,

[tex]U'=\dfrac{L I^{2}}{2}[/tex]

here, L is the inductance and I is the current.

Note :- The period of the system is T for time t = 0 all energy is stored in the capacitor and for t = T / 2 all energy is stored in the inductor.

Thus, we conclude that after t = 0 the maximum energy stored in the magnetic field of the inductor is equal to [tex]U'=\dfrac{L I^{2}}{2}[/tex] for the time period, half of period of oscillation  (t = T/2).

Learn more about the capacitance here:

https://brainly.com/question/12644355

A thin film of soap with n = 1.37 hanging in the air reflects dominantly red light with λ = 696 nm. What is the minimum thickness of the film?

Answers

Answer:

The thickness is [tex]t = 1.273 *10^{-7} \ m[/tex]  

Explanation:

From the question we are told that

     The  refractive index of the film  is  [tex]n = 1.37[/tex]

      The wavelength is  [tex]\lambda = 696 \ nm = 696 *10^{-9 } \ m[/tex]

Generally the condition for constructive interference in a film is mathematically represented as

        [tex]2 * t = [m + \frac{1}{2} ] \lambda_k[/tex]

Here t is the thickness of the film , m is the order number (0, 1, 2, 3 ... )

[tex]\lambda _k[/tex] is the wavelength of light that is inside the film , this is mathematically evaluated as

       [tex]\lambda _k = \frac{ \lambda }{ n}[/tex]

       [tex]\lambda _k = \frac{ 696 *10^{-9}}{ 1.37}[/tex]

      [tex]\lambda _k = 5.095 *10^{-7 } \ m[/tex]

So  for  m =  0

     [tex]t = [ 0 + \frac{1}{2} ] \lambda _k * \frac{1}{2}[/tex]

substituting values  

  [tex]t = [ 0 + \frac{1}{2} ] (5.095 *10^{-7}) * \frac{1}{2}[/tex]  

  [tex]t = 1.273 *10^{-7} \ m[/tex]  

     

g A projectile is fired from the ground at an angle of θ = π 4 toward a tower located 600 m away. If the projectile has an initial speed of 120 m/s, find the height at which it strikes the tower

Answers

Answer:

The projectile strikes the tower at a height of 354.824 meters.

Explanation:

The projectile experiments a parabolic motion, which consist of a horizontal motion at constant speed and a vertical uniformly accelerated motion due to gravity. The equations of motion are, respectively:

Horizontal motion

[tex]x = x_{o}+v_{o}\cdot t \cdot \cos \theta[/tex]

Vertical motion

[tex]y = y_{o} + v_{o}\cdot t \cdot \sin \theta +\frac{1}{2} \cdot g \cdot t^{2}[/tex]

Where:

[tex]x_{o}[/tex], [tex]x[/tex] - Initial and current horizontal position, measured in meters.

[tex]y_{o}[/tex], [tex]y[/tex] - Initial and current vertical position, measured in meters.

[tex]v_{o}[/tex] - Initial speed, measured in meters per second.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

[tex]t[/tex] - Time, measured in seconds.

The time spent for the projectile to strike the tower is obtained from first equation:

[tex]t = \frac{x-x_{o}}{v_{o}\cdot \cos \theta}[/tex]

If [tex]x = 600\,m[/tex], [tex]x_{o} = 0\,m[/tex], [tex]v_{o} = 120\,\frac{m}{s}[/tex] and [tex]\theta = \frac{\pi}{4}[/tex], then:

[tex]t = \frac{600\,m-0\,m}{\left(120\,\frac{m}{s} \right)\cdot \cos \frac{\pi}{4} }[/tex]

[tex]t \approx 7.071\,s[/tex]

Now, the height at which the projectile strikes the tower is: ([tex]y_{o} = 0\,m[/tex], [tex]t \approx 7.071\,s[/tex], [tex]v_{o} = 120\,\frac{m}{s}[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex])

[tex]y = 0\,m + \left(120\,\frac{m}{s} \right)\cdot (7.071\,s)\cdot \sin \frac{\pi}{4}+\frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (7.071\,s)^{2}[/tex]

[tex]y \approx 354.824\,m[/tex]

The projectile strikes the tower at a height of 354.824 meters.

In order to waken a sleeping child, the volume on an alarm clock is doubled. Under this new scenario, how much more energy will be striking the child's ear drums each second?

Answers

Answer:4 times more energy will be striking the childbearing

Explanation:

Because Volume is directly proportional to amplitude of sound. Energy is proportional to amplitude squared. If you triple the amplitude, you multiply the energy by 4


A load of 1 kW takes a current of 5 A from a 230 V supply. Calculate the power factor.

Answers

Answer:

Power factor = 0.87 (Approx)

Explanation:

Given:

Load = 1 Kw = 1000 watt

Current (I) = 5 A

Supply (V) = 230 V

Find:

Power factor.

Computation:

Power factor = watts / (V)(I)

Power factor = 1,000 / (230)(5)

Power factor = 1,000 / (1,150)

Power factor = 0.8695

Power factor = 0.87 (Approx)

A 50.0 ohm and a 30.0 ohm resistor are connected in parallel. What is their equivalent resistance? Unit=Ohms

Answers

R(parallel) = product/ sum

50×30/50+30

1500/80

18,75 ohms

Answer: 18.75

above is right but you need to put a dot after the number 18

The advantage of a hydraulic lever is A : it transforms a small force acting over a large distance into a large force acting over a small distance. B : it transforms a small force acting over a small distance into a large force acting over a large distance. C : it allows you to exert a larger force with less work. D : it transforms a large force acting over a large distance into a small force acting over a small distance. E : it transforms a large force acting over a small distance into a small force acting over a large distance.

Answers

Answer:

A) it transforms a small force acting over a large distance into a large force acting over a small distance.

Explanation:

The hydraulic lever works based on Pascal's law of transmission of pressure through a fluid. In the hydraulic lever, the pressure transmitted is the same.

Pressure transmitted P = F/A

where F is the force applied

and A is the area over which the force is applied.

This pressure can be manipulated on the input end as a small force applied over a small area, and then be transmitted to the output end as a large force over a large area.

F/A = f/a

where the left side of the equation is for the output, and the right side is for the input.

The volume of the displaced fluid will be the same on both ends of the hydraulic lever. Since we know that

volume V = (area A) x (distance d)

this means that the the piston on the input smaller area of the hydraulic lever will travel a greater distance, while the piston on the larger output area of the lever will travel a small distance.

From all these, we can see that the advantage of a hydraulic lever is that it transforms a small force acting over a large distance into a large force acting over a small distance.

Other Questions
Consider the distribution of exam scores graded 0 from 100, for 79 students. When 37 students got an A, 24 students got a B and 18 students got a C. How many peaks would you expect for distribution? Which of the following statements support(s) the theory of the endosymbiotic origin of chloroplasts?Chloroplasts have their own DNA, separate from the DNA in the nucleus.They contain their own ribosomes to translate and make proteins.They self-replicate and reproduce on their own.They don't have similarities to photosynthetic prokaryotes. I only I and II only I,II, and III I, II, and IV Four people share a taxi to the airport the fare was $36 and they gave the driver a tip equal to 25% of the fair. If they equally share the cost of the fair tip, how How much did each person pay? For a one-to-one function, y = f(x), then x = f-1(y). True or false. Explain your answer. what is the difference between skill and strategy ? (needs details) write a story which begins with two people waiting for someone. you should consider: The people who are waiting are: they friends,members of family or do they work together The settings : where are they waiting what happens when the persons they are waiting for arrives or does not arrive. Ranjana has two unknown solutions X and Y Instructions: Find the area of the trapezoidand round to the nearest tenth.10.2 mi.7 mi.4.2 mi.Area:mi? 16 (14) = -9 (-8) = - 13 7 Faiza is in a dark room. She turned on her torch and directly aimed it downwards. As a result, she saw a circular region of 6 cm diameter being lit by the torch and also saw a similar shaped light region on the ceiling. Her torch's lense's diameter is 2cm. The room is 2 meters high and the torch is 1 m above the ground. What is the diameter of the light region on the ceiling in cm? A circle is cut from a square piece of cloth, as shown:A square, one side labeled as 42 inches has a circle inside it. The circle touches all the sides of the square. The portion of the square outside the circle is shaded.How many square inches of cloth are cut from the square? ( = 3.14) 131.88 in2 168.00 in2 1,384.74 in2 1,764.00 in2 Why did the thirteen states agree to the Articles of Confederation? H2SO4 ???????????????? Kanye buys a dozen donuts for a total of $3.99. He sells the donuts for $0.75 each. If Connie sells out his inventory of donuts, how much profit does he make? Which four phrases in this excerpt from Robert Stawell Ball's Great Astronomers convey a commendable tone toward Ptolemy's work? Please answer this, I don't have much time left! Based on all student records at Camford University, students spend an average of 5.30 hours per week playing organized sports. The populations standard deviation is 3.20 hours per week. Based on a sample of 64 students, Healthy Lifestyles Incorporated (HLI) would like to apply the central limit theorem to make various estimates. Compute the standard error of the sample mean. (Round your answer to 2 decimal places.) why do solids have a fixed shape Item9 2 points Time Remaining 2 hours 55 minutes 49 seconds02:55:49 eBookItem 9Item 9 2 points Time Remaining 2 hours 55 minutes 49 seconds02:55:49 TB MC Qu. 6-143 Keyser Corporation, which has... Keyser Corporation, which has only one product, has provided the following data concerning its most recent month of operations: Selling price$118 Units in beginning inventory 400 Units produced 2,100 Units sold 2,300 Units in ending inventory 200 Variable costs per unit: Direct materials$37 Direct labor$23 Variable manufacturing overhead$3 Variable selling and administrative expense$5 Fixed costs: Fixed manufacturing overhead$73,500 Fixed selling and administrative expense$29,900 The company produces the same number of units every month, although the sales in units vary from month to month. The company's variable costs per unit and total fixed costs have been constant from month to month. What is the net operating income for the month under variable costing? Right now Jacks age is greater than twice Freds age by 4. After 8 years, the sum of their ages is 59. Find Freds age.