On a horizontal table, a 12 kg mass is attached to a spring strength given by k = 200 N/ke, and the spring is compressed 4.0 metres. (e. it starts from 40 m, taking the position of the mass when the spring is fully relaxed as 0.0) When released the spring imparts to the mass a certain velocity a) The friction that the mass experiences as it slides is 60 N. What is the velocity when the spring has half- relaxed? (ie. when it is at -2,0 m.) b) What is the velocity of the mass when the spring is fully relaxed (x=00)? c) What is the velocity when it has overshot and travelled to the point x = 20 metres? 1) Where does the mass come to a stop? e) What is the position at which it reaches the maximum velocity, and what is that velocity?

Answers

Answer 1

The position at which the object reaches maximum velocity is x = 0.0 m, and the velocity at this point is zero. The object comes to a stop when it has overshot and reached x = 20.0 m, it doesn't reach a positive velocity. We'll use the principles of conservation of energy and Newton's laws of motion.

Mass of the object (m) = 12 kg

Spring constant (k) = 200 N/m

Initial compression of the spring  = 4.0 m

Frictional force = 60 N

(a) Velocity when the spring has half-relaxed (x = -2.0 m):

First, let's find the potential energy stored in the spring at half-relaxed position:

Potential energy (PE) = (1/2) * k * [tex](x_{initial/2)^2[/tex]

PE = (1/2) * 200 N/m * (4.0 m/2)^2

PE = 200 J

Next, let's consider the work done against friction to find the kinetic energy at this position:

Work done against friction [tex](W_{friction) }= F_{friction[/tex] * d

[tex]W_{friction[/tex]= 60 N * (-6.0 m) [Negative sign because the displacement is opposite to the frictional force]

[tex]W_{friction[/tex]= -360 J

The total mechanical energy of the system is the sum of the potential energy and the work done against friction:

[tex]E_{total[/tex] = PE + [tex]W_{friction[/tex]

         = 200 J - 360 J

         = -160 J [Negative sign indicates the loss of mechanical energy due to friction]

The total mechanical energy is conserved, so the kinetic energy (KE) at half-relaxed position is equal to the total mechanical energy:

KE = -160 J

Using the formula for kinetic energy:

KE = (1/2) * m *[tex]v^2[/tex]

Solving for velocity (v):

[tex]v^2[/tex] = (2 * KE) / m

[tex]v^2[/tex] = (2 * (-160 J)) / 12 kg

[tex]v^2[/tex] = -26.67 [tex]m^2/s^2[/tex] [Negative sign due to loss of mechanical energy]

Since velocity cannot be negative, we can conclude that the object comes to a stop when the spring has half-relaxed (x = -2.0 m). It doesn't reach a positive velocity.

(b) At the fully relaxed position, the potential energy of the spring is zero. Therefore, all the initial potential energy is converted into kinetic energy.

PE = 0 J

KE  = -160 J [Conservation of mechanical energy]

Using the formula for kinetic energy:

KE = (1/2) * m * [tex]v^2[/tex]

Solving for velocity (v):

[tex]v^2[/tex]= (2 * KE) / m

[tex]v^2[/tex]= (2 * (-160 J)) / 12 kg

[tex]v^2 = -26.67 m^2/s^2[/tex] [Negative sign due to loss of mechanical energy]

Again, since velocity cannot be negative, we can conclude that the object comes to a stop when the spring is fully relaxed (x = 0.0 m). It doesn't reach a positive velocity.

(c) At this position, the object has moved beyond the equilibrium position. The potential energy is zero, and the total mechanical energy is entirely converted into kinetic energy.

PE = 0 J

KE = -160 J [Conservation of mechanical energy]

Using the formula for kinetic energy:

KE = (1/2) * m *[tex]v^2[/tex]

Solving for velocity (v):

v^2[tex]v^2[/tex]= (2 * KE) / m

= (2 * (-160 J)) / 12 kg

= -26.67 m^2/s^2 [Negative sign due to loss of mechanical energy]

Similar to the previous cases, the object comes to a stop when it has overshot and reached x = 20.0 m. It doesn't reach a positive velocity.

(d) From the previous analysis, we found that the mass comes to a stop at x = -2.0 m, x = 0.0 m, and x = 20.0 m. These are the positions where the velocity becomes zero.

(e) The maximum velocity occurs at the equilibrium position (x = 0.0 m) since the object experiences no net force and is free from friction.

Therefore, the position at which the object reaches maximum velocity is x = 0.0 m, and the velocity at this point is zero.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11


Related Questions

Question 3 An average adult inhales a volume of 0.6 L of air with each breath. If the air is warmed from room temperature (20°C = 293 K) to body temperature (37°C = 310 K) while in the lungs, what is the volume of the air when exhaled? Provide the answer in 2 decimal places.

Answers

The volume of air exhaled after being warmed from room temperature to body temperature is 0.59 L.

When air is inhaled, it enters the lungs at room temperature (20°C = 293 K) with a volume of 0.6 L. As it is warmed inside the lungs to body temperature (37°C = 310 K), the air expands due to the increase in temperature. According to Charles's Law, the volume of a gas is directly proportional to its temperature, assuming constant pressure. Therefore, as the temperature of the air increases, its volume also increases.

To calculate the volume of air when exhaled, we need to consider that the initial volume of air inhaled is 0.6 L at room temperature. As it warms to body temperature, the volume expands proportionally. Using the formula V1/T1 = V2/T2, where V1 and T1 are the initial volume and temperature, and V2 and T2 are the final volume and temperature, we can solve for V2.

V1 = 0.6 L

T1 = 293 K

T2 = 310 K

0.6 L / 293 K = V2 / 310 K

Cross-multiplying and solving for V2, we get:

V2 = (0.6 L * 310 K) / 293 K

V2 = 0.636 L

Therefore, the volume of air when exhaled, after being warmed from room temperature to body temperature, is approximately 0.64 L.

Learn more about exhale:

brainly.com/question/31758301

#SPJ11

A cube with edges of length 1 = 0.13 m and density Ps = 2.7 x 103kg/m3 is suspended from a spring scale. a. When the block is in air, what will be the scale reading?

Answers

"When the cube is in air, the scale reading will be approximately 58.24 N." Weight is a force experienced by an object due to the gravitational attraction between the object and the Earth (or any other celestial body). It is a vector quantity, meaning it has both magnitude and direction. The weight of an object is directly proportional to its mass and the acceleration due to gravity.

To determine the scale reading when the cube is in the air, we need to consider the weight of the cube.

The weight of an object is given by the equation:

Weight = mass x acceleration due to gravity

The mass of the cube can be calculated using its density and volume. Since it is a cube, each side has a length of 0.13 m, so the volume is:

Volume = length^3 = (0.13 m)³ = 0.002197 m³

The mass is then:

Mass = density x volume = (2.7 x 10³ kg/m³) x 0.002197 m³ = 5.9449 kg

The acceleration due to gravity is approximately 9.8 m/s².

Now we can calculate the weight of the cube:

Weight = mass x acceleration due to gravity = 5.9449 kg x 9.8 m/s²= 58.23502 N

Therefore, when the cube is in air, the scale reading will be approximately 58.24 N.

To know more about weight & mass visit:

https://brainly.com/question/86444

#SPJ11

Charging by Conduction involves bringing a charged object near an uncharged object and having electrons shift so they are attracted to each other touching a charged object to an uncharged object so they both end up with a charge bringing a charged object near an uncharged object and then grounding so the uncharged object now has a charge rubbing two objects so that one gains electrons and one loses

Answers

charging by conduction involves the transfer of electrons through various means like proximity, contact, and grounding, resulting in objects acquiring charges.

Charging by conduction is a process that involves the transfer of electrons between objects. When a charged object is brought near an uncharged object, electrons in the uncharged object can shift due to the electrostatic force between the charges. This causes the electrons to redistribute, leading to an attraction between the two objects. Eventually, if the objects come into direct contact, electrons can move from the charged object to the uncharged object until both objects reach an equilibrium in terms of charge.

Another method of charging by conduction involves touching a charged object to an uncharged object and then grounding it. When the charged object is connected to the ground, electrons can flow from the charged object to the ground, effectively neutralizing the charge on the charged object. Simultaneously, the uncharged object gains electrons, acquiring a charge. This process allows the transfer of electrons from one object to another through the grounding connection.

Rubbing two objects together is a different charging method called charging by friction. In this case, when two objects are rubbed together, one material tends to gain electrons while the other loses electrons. The transfer of electrons during the rubbing process leads to one object becoming positively charged (having lost electrons) and the other becoming negatively charged (having gained electrons).

Therefore, charging by conduction involves the transfer of electrons through various means like proximity, contact, and grounding, resulting in objects acquiring charges.

Learn more about electrons from the link

https://brainly.com/question/860094

#SPJ11

An electron is measured to have a momentum 68.1 +0.83 and to be at a location 7.84mm. What is the minimum uncertainty of the electron's position (in nm)? D Question 11 1 pts A proton has been accelerated by a potential difference of 23kV. If its positich is known to have an uncertainty of 4.63fm, what is the minimum percent uncertainty (x 100) of the proton's P momentum?

Answers

The minimum percent uncertainty of the proton's momentum is 49.7%.

Momentum of an electron = 68.1 ± 0.83

Location of an electron = 7.84 mm = 7.84 × 10⁶ nm

We know that, ∆x ∆p ≥ h/(4π)

Where,

∆x = uncertainty in position

∆p = uncertainty in momentum

h = Planck's constant = 6.626 × 10⁻³⁴ Js

Putting the given values,

∆x (68.1 ± 0.83) × 10⁻²⁷ ≥ (6.626 × 10⁻³⁴) / (4π)

∆x ≥ h/(4π × ∆p) = 6.626 × 10⁻³⁴ /(4π × (68.1 + 0.83) × 10⁻²⁷)

∆x ≥ 2.60 nm (approx)

Hence, the minimum uncertainty of the electron's position is 2.60 nm.

A proton has been accelerated by a potential difference of 23 kV. If its position is known to have an uncertainty of 4.63 fm, then the minimum percent uncertainty of the proton's momentum is given by:

∆x = 4.63 fm = 4.63 × 10⁻¹⁵ m

We know that the de-Broglie wavelength of a proton is given by,

λ = h/p

Where,

λ = de-Broglie wavelength of proton

h = Planck's constant = 6.626 × 10⁻³⁴ J.s

p = momentum of proton

p = √(2mK)

Where,

m = mass of proton

K = kinetic energy gained by proton

K = qV

Where,

q = charge of proton = 1.602 × 10⁻¹⁹ C

V = potential difference = 23 kV = 23 × 10³ V

We have,

qV = KE

qV = p²/2m

⇒ p = √(2mqV)

Substituting values of q, m, and V,

p = √(2 × 1.602 × 10⁻¹⁹ × 23 × 10³) = 1.97 × 10⁻²² kgm/s

Now,

λ = h/p = 6.626 × 10⁻³⁴ / (1.97 × 10⁻²²) = 3.37 × 10⁻¹² m

Uncertainty in position is ∆x = 4.63 × 10⁻¹⁵ m

The minimum uncertainty in momentum can be calculated using,

∆p = h/(2λ) = 6.626 × 10⁻³⁴ / (2 × 3.37 × 10⁻¹²) = 0.98 × 10⁻²² kgm/s

Minimum percent uncertainty in momentum is,

∆p/p × 100 = (0.98 × 10⁻²² / 1.97 × 10⁻²²) × 100% = 49.74% = 49.7% (approx)

Therefore, the minimum percent uncertainty of the proton's momentum is 49.7%.

To learn more about momentum, refer below:

https://brainly.com/question/30677308

#SPJ11

A piano string having a mass per unit length equal to 4.50 ✕
10−3 kg/m is under a tension of 1,500 N. Find the speed
with which a wave travels on this string.
m/s

Answers

The speed with which a wave travels on a piano string having a mass per unit length equal to 4.50 ✕ 10−3 kg/m under a tension of 1,500 N is 75 m/s so the speed with which a wave travels on a piano string having a mass per unit length equal to 4.50 ✕ 10−3 kg/m under a tension of 1,500 N is 75 m/s.

A piano is a stringed musical instrument in which the strings are struck by hammers, causing them to vibrate and create sound. The piano has strings that are tightly stretched across a frame. When a key is pressed on the piano, a hammer strikes a string, causing it to vibrate and produce a sound.

A wave is a disturbance that travels through space and matter, transferring energy from one point to another. Waves can take many forms, including sound waves, light waves, and water waves.

The formula to calculate the speed of a wave on a string is: v = √(T/μ)where v = speed of wave T = tension in newtons (N)μ = mass per unit length (kg/m) of the string

We have given that: Mass per unit length of the string, μ = 4.50 ✕ 10−3 kg/m Tension in the string, T = 1,500 N

Now, substituting these values in the above formula, we get: v = √(1500 N / 4.50 ✕ 10−3 kg/m)On solving the above equation, we get: v = 75 m/s

Therefore, the speed with which a wave travels on a piano string having a mass per unit length equal to 4.50 ✕ 10−3 kg/m under a tension of 1,500 N is 75 m/s.

Learn more about speed at

https://brainly.com/question/17661499

#SPJ11

The intensity of a sound in units of dB is given by I(dB) = 10 log – (I/I0) where I and Io are measured in units of W m2 and the value of I, is 10-12 W m2 The sound intensity on a busy road is 3 x 10-5 W m2. What is the value of this sound intensity expressed in dB? Give your answer to 2 significant figures.

Answers

The value of the sound intensity on a busy road, expressed in dB, is approximately 83 dB.

We can calculate the value of the sound intensity in dB using the formula I(dB) = 10 log10(I/I0), where I is the sound intensity and I0 is the reference intensity of 10^(-12) W/m².

Given that the sound intensity on a busy road is I = 3 x 10^(-5) W/m², we can substitute these values into the formula:

I(dB) = 10 log10((3 x 10^(-5)) / (10^(-12)))

Simplifying this, we have:

I(dB) = 10 log10(3 x 10^7)

Using the logarithmic property log10(a x b) = log10(a) + log10(b), we can further simplify:

I(dB) = 10 (log10(3) + log10(10^7))

Since log10(10^7) = 7, we have:

I(dB) = 10 (log10(3) + 7)

Using a calculator, we can evaluate log10(3) + 7 and then multiply it by 10 to obtain the final result:

I(dB) ≈ 83 dB

Therefore, the value of the sound intensity on a busy road, expressed in dB, is approximately 83 dB.

To learn more about sound intensity, click here: https://brainly.com/question/32194259

#SPJ11

What is the frequency of the emitted gamma photons (140-keV)?
(Note: Use Planck's constant h=6.6 x 10^-34 Js and the elemental
charge e=1.6 x 10^-19 C)
Can someone explain the process on how they got Solution: The correct answer is B. = A. The photon energy is 140 keV = 140 x 10^3 x 1.6 x 10-19 ) = 2.24 x 10-14 ]. This numerical value is inconsistent with the photon frequency derived as the ratio

Answers

The frequency of the emitted gamma photons with an energy of 140 keV is incorrect.

Step 1:

The frequency of the emitted gamma photons with an energy of 140 keV is incorrectly calculated.

Step 2:

To calculate the frequency of the emitted gamma photons, we can use the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. In this case, we are given the energy of the photon (140 keV) and need to find the frequency.

First, we need to convert the energy from keV to joules. Since 1 keV is equal to 1.6 × 10⁻¹⁶ J, the energy of the photon can be calculated as follows:

140 keV = 140 × 10³ × 1.6 × 10⁻¹⁶ J = 2.24 × 10⁻¹⁴ J

Now we can rearrange the equation E = hf to solve for the frequency f:

f = E / h = (2.24 × 10⁻¹⁴ J) / (6.6 × 10⁻³⁴ Js) ≈ 3.39 × 10¹⁹ Hz

Therefore, the correct frequency of the emitted gamma photons with an energy of 140 keV is approximately 3.39 × 10¹⁹ Hz.

Planck's constant, denoted by h, is a fundamental constant in quantum mechanics that relates the energy of a photon to its frequency. It quantifies the discrete nature of energy and is essential in understanding the behavior of particles at the microscopic level.

By applying the equation E = hf, where E is energy and f is frequency, we can determine the frequency of a photon given its energy. In this case, we used the energy of the gamma photons (140 keV) and Planck's constant to calculate the correct frequency. It is crucial to be accurate in the conversion of units to obtain the correct result.

Learn more about frequency

brainly.com/question/29739263

#SPJ11

A uniform, solid cylinder of radius 7.00 cm and mass 5.00 kg starts from rest at the top of an inclined plane that is 2.00 m long and tilted at an angle of 21.0∘ with the horizontal. The cylinder rolls without slipping down the ramp. What is the cylinder's speed v at the bottom of the ramp? v= m/s

Answers

The speed of the cylinder at the bottom of the ramp can be determined by using the principle of conservation of energy.

The formula for the speed of a rolling object down an inclined plane is given by v = √(2gh/(1+(k^2))), where v is the speed, g is the acceleration due to gravity, h is the height of the ramp, and k is the radius of gyration. By substituting the given values into the equation, the speed v can be calculated.

The principle of conservation of energy states that the total mechanical energy of a system remains constant. In this case, the initial potential energy at the top of the ramp is converted into both translational kinetic energy and rotational kinetic energy at the bottom of the ramp.

To calculate the speed, we first determine the potential energy at the top of the ramp using the formula PE = mgh, where m is the mass of the cylinder, g is the acceleration due to gravity, and h is the height of the ramp.

Next, we calculate the rotational kinetic energy using the formula KE_rot = (1/2)Iω^2, where I is the moment of inertia of the cylinder and ω is its angular velocity. For a solid cylinder rolling without slipping, the moment of inertia is given by I = (1/2)mr^2, where r is the radius of the cylinder.

Using the conservation of energy, we equate the initial potential energy to the sum of translational and rotational kinetic energies:

PE = KE_trans + KE_rot

Simplifying the equation and solving for v, we get:

v = √(2gh/(1+(k^2)))

By substituting the given values of g, h, and k into the equation, we can calculate the speed v of the cylinder at the bottom of the ramp.

To learn more about speed click here:

brainly.com/question/93357

#SPJ11

Imagine that an object is thrown in the air with 100 miles per hour with 30 degrees of angle. Calculate the size of the displacement associated with the object in the horizontal direction when it was done on a large size spherical star with the gravitational acceleration is 25 miles per hour

Answers

On a large spherical star with a gravitational acceleration of 25 miles per hour, an object thrown at a 30-degree angle with an initial velocity of 100 miles per hour will have a calculated horizontal displacement.

Resolve the initial velocity:

Given the initial velocity of the object is 100 miles per hour and it is launched at an angle of 30 degrees, we need to find its horizontal component. The horizontal component can be calculated using the formula: Vx = V * cos(θ), where V is the initial velocity and θ is the launch angle.

Vx = 100 * cos(30°) = 100 * √3/2 = 50√3 miles per hour.

Calculate the time of flight:

To determine the horizontal displacement, we first need to calculate the time it takes for the object to reach the ground. The time of flight can be determined using the formula: t = 2 * Vy / g, where Vy is the vertical component of the initial velocity and g is the gravitational acceleration.

Since the object is thrown vertically upwards, Vy = V * sin(θ) = 100 * sin(30°) = 100 * 1/2 = 50 miles per hour.

t = 2 * 50 / 25 = 4 hours.

Calculate the horizontal displacement:

With the time of flight determined, we can now find the horizontal displacement using the formula: Dx = Vx * t, where Dx is the horizontal displacement, Vx is the horizontal component of the initial velocity, and t is the time of flight.

Dx = 50√3 * 4 = 200√3 miles.

Therefore, the size of the displacement associated with the object in the horizontal direction, when thrown at an angle of 30 degrees and a speed of 100 miles per hour, on a large spherical star with a gravitational acceleration of 25 miles per hour, would be approximately 100 miles.

To learn more about velocity click here:

brainly.com/question/18084516

#SPJ11

An infinite line charge of uniform linear charge density λ = -2.1 µC/m lies parallel to the y axis at x = -1 m. A point charge of 1.1 µC is located at x = 2.5 m, y = 3.5 m. Find the x component of the electric field at x = 3.5 m, y = 3.0 m. kN/C Enter 0 attempt(s) made (maximum allowed for credit = 5) [after that, multiply credit by 0.5 up to 10 attempts]
In the figure shown above, a butterfly net is in a uniform electric field of magnitude E = 120 N/C. The rim, a circle of radius a = 14.3 cm, is aligned perpendicular to the field.
Find the electric flux through the netting. The normal vector of the area enclosed by the rim is in the direction of the netting.
The electric flux is:

Answers

The electric flux is 7.709091380790923. The electric field due to an infinite line charge of uniform linear charge density λ is given by:

E = k * λ / x

The electric field due to an infinite line charge of uniform linear charge density λ is given by:

E = k * λ / x

where k is the Coulomb constant and x is the distance from the line charge.

The x component of the electric field at x = 3.5 m, y = 3.0 m is:

E_x = k * λ / (3.5) = -2.86 kN/C

The electric field due to the point charge is given by:

E = k * q / r^2

where q is the charge of the point charge and r is the distance from the point charge.

The x component of the electric field due to the point charge is:

E_x = k * 1.1 * 10^-6 / ((3.5)^2 - (2.5)^2) = -0.12 kN/C

The total x component of the electric field is:

E_x = -2.86 - 0.12 = -2.98 kN/C

The electric flux through the netting is:

Φ = E * A = 120 * (math.pi * (14.3 / 100)^2) = 7.709091380790923

Therefore, the electric flux is 7.709091380790923.

To learn more about electric flux click here

https://brainly.com/question/30409677

#SPJ11

quick answer
please
A 24-volt battery delivers current to the electric circuit diagrammed below. Find the current in the resistor, R3. Given: V = 24 volts, R1 = 120, R2 = 3.00, R3 = 6.0 0 and R4 = 10 R2 Ri R3 Ro a. 0.94

Answers

The current in resistor R3 is 0.94 amperes. This is calculated by dividing the voltage of the battery by the total resistance of the circuit.

The current in the resistor R3 is 0.94 amperes.

To find the current in R3, we can use the following formula:

I = V / R

Where:

I is the current in amperes

V is the voltage in volts

R is the resistance in ohms

In this case, we have:

V = 24 volts

R3 = 6 ohms

Therefore, the current in R3 is:

I = V / R = 24 / 6 = 4 amperes

However, we need to take into account the other resistors in the circuit. The total resistance of the circuit is:

R = R1 + R2 + R3 + R4 = 120 + 3 + 6 + 10 = 139 ohms

Therefore, the current in R3 is:

I = V / R = 24 / 139 = 0.94 amperes

Learn more about current here:

https://brainly.com/question/1220936

#SPJ4

7. [-/1.5 Points] DETAILS SERCP11 3.2.P.017. MY NOTES A projectile is launched with an initial speed of 40.0 m/s at an angle of 31.0° above the horizontal. The projectile lands on a hillside 3.95 s later. Neglect air friction. (Assume that the +x-axis is to the right and the +y-axis is up along the page.) (a) What is the projectile's velocity at the highest point of its trajectory? magnitude m/s direction º counterclockwise from the +x-axis (b) What is the straight-line distance from where the projectile was launched to where it hits its target? m Need Help? Read It Watch It

Answers

The projectile's velocity at the highest point of its trajectory is 28.6 m/s at an angle of 31.0° counterclockwise from the +x-axis. The straight-line distance from where the projectile was launched to where it hits its target is 103.8 meters.

At the highest point of its trajectory, the projectile's velocity consists of two components: horizontal and vertical. Since there is no air friction, the horizontal velocity remains constant throughout the motion. The initial horizontal velocity can be found by multiplying the initial speed by the cosine of the launch angle: 40.0 m/s * cos(31.0°) = 34.7 m/s.

The vertical velocity at the highest point can be determined using the equation v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. At the highest point, the vertical velocity is zero, and the acceleration is due to gravity (-9.8 m/s²). Plugging in the values, we have 0 = u + (-9.8 m/s²) * t, where t is the time taken to reach the highest point. Solving for u, we find u = 9.8 m/s * t.

Using the time of flight, which is twice the time taken to reach the highest point, we have t = 3.95 s / 2 = 1.975 s. Substituting this value into the equation, we find u = 9.8 m/s * 1.975 s = 19.29 m/s. Therefore, the vertical component of the velocity at the highest point is 19.29 m/s.To find the magnitude of the velocity at the highest point, we can use the Pythagorean theorem. The magnitude is given by the square root of the sum of the squares of the horizontal and vertical velocities: √(34.7 m/s)² + (19.29 m/s)² = 39.6 m/s.

The direction of the velocity at the highest point can be determined using trigonometry. The angle counterclockwise from the +x-axis is equal to the inverse tangent of the vertical velocity divided by the horizontal velocity: atan(19.29 m/s / 34.7 m/s) = 31.0°. Therefore, the projectile's velocity at the highest point is 28.6 m/s at an angle of 31.0° counterclockwise from the +x-axis.

To find the straight-line distance from the launch point to the target, we can use the horizontal velocity and the time of flight. The distance is given by the product of the horizontal velocity and the time: 34.7 m/s * 3.95 s = 137.1 meters. However, we need to consider that the projectile lands on a hillside, meaning it follows a curved trajectory. To find the straight-line distance, we need to account for the vertical displacement due to gravity. Using the formula d = ut + 1/2 at², where d is the displacement, u is the initial velocity, t is the time, and a is the acceleration, we can find the vertical displacement. Plugging in the values, we have d = 0 + 1/2 * (-9.8 m/s²) * (3.95 s)² = -76.9 meters. The negative sign indicates a downward displacement. Therefore, the straight-line distance from the launch point to the target is the horizontal distance minus the vertical displacement: 137.1 meters - (-76.9 meters) = 214 meters.

Learn more about projectile here:
brainly.com/question/29545516


#SPJ11

Final answer:

The projectile's velocity at the highest point of its trajectory is 20.75 m/s at 31.0° above the horizontal. The straight-line distance from where the projectile was launched to where it hits its target is 137.18 m.

Explanation:

The projectile's velocity at the highest point of its trajectory can be calculated using the formula:

Vy = V*sin(θ)

where Vy is the vertical component of the velocity and θ is the launch angle. In this case, Vy = 40.0 m/s * sin(31.0°) = 20.75 m/s. The magnitude of the velocity at the highest point is the same as its initial vertical velocity, so it is 20.75 m/s. The direction is counterclockwise from the +x-axis, so it is 31.0° above the horizontal.

The straight-line distance from where the projectile was launched to where it hits its target can be calculated using the formula:

d = Vx * t

where d is the distance, Vx is the horizontal component of the velocity, and t is the time of flight. In this case, Vx = 40.0 m/s * cos(31.0°) = 34.73 m/s, and t = 3.95 s. Therefore, the distance is d = 34.73 m/s * 3.95 s = 137.18 m.

Learn more about Projectile motion here:

https://brainly.com/question/29545516

#SPJ12

An ice dancer with her arms stretched out starts into a spin with an angular velocity of 2.2 rad/s. Her moment of inertia with her arms stretched out is 2.74kg m? What is the difference in her rotational kinetic energy when she pulls in her arms to make her moment of inertia 1.54 kg m2?

Answers

The difference in rotational kinetic energy when the ice dancer pulls in her arms from a moment of inertia of 2.74 kg m² to 1.54 kg m² is 0.998 Joules.

When the ice dancer pulls in her arms, her moment of inertia decreases, resulting in a change in rotational kinetic energy. The formula for the difference in rotational kinetic energy (ΔK) is given by ΔK = ½ * (I₂ - I₁) * (ω₂² - ω₁²), where I₁ and I₂ are the initial and final moments of inertia, and ω₁ and ω₂ are the initial and final angular velocities.

Given I₁ = 2.74 kg m², I₂ = 1.54 kg m², and ω₁ = 2.2 rad/s, we can calculate ω₂ using the conservation of angular momentum, I₁ * ω₁ = I₂ * ω₂. Solving for ω₂ gives ω₂ = (I₁ * ω₁) / I₂.

Substituting the values into the formula for ΔK, we have ΔK = ½ * (I₂ - I₁) * [(I₁ * ω₁ / I₂)² - ω₁²].

Performing the calculations, we find ΔK ≈ 0.998 Joules. This means that when the ice dancer pulls in her arms, the rotational kinetic energy decreases by approximately 0.998 Joules.

Learn more about angular velocities. from the given link

https://brainly.com/question/30237820

#SPJ11

Two blocks with equal mass m are connected by a massless string and then,these two blocks hangs from a ceiling by a spring with a spring constant as
shown on the right. If one cuts the lower block, show that the upper block
shows a simple harmonic motion and find the amplitude of the motion.
Assume uniform vertical gravity with the acceleration g

Answers

When the lower block is cut, the upper block connected by a massless string and a spring will exhibit simple harmonic motion. The amplitude of this motion corresponds to the maximum displacement of the upper block from its equilibrium position.

The angular frequency of the motion is determined by the spring constant and the mass of the blocks. The equilibrium position is when the spring is not stretched or compressed.

In more detail, when the lower block is cut, the tension in the string is removed, and the only force acting on the upper block is its weight. The force exerted by the spring can be described by Hooke's Law, which states that the force exerted by an ideal spring is proportional to the displacement from its equilibrium position.

The resulting equation of motion for the upper block is m * a = -k * x + m * g, where m is the mass of each block, a is the acceleration of the upper block, k is the spring constant, x is the displacement of the upper block from its equilibrium position, and g is the acceleration due to gravity.

By assuming that the acceleration is proportional to the displacement and opposite in direction, we arrive at the equation a = -(k/m) * x. Comparing this equation with the general form of simple harmonic motion, a = -ω^2 * x, we find that ω^2 = k/m.

Thus, the angular frequency of the motion is given by ω = √(k/m). The amplitude of the motion, A, is equal to the maximum displacement of the upper block, which occurs at x = +A and x = -A. Therefore, when the lower block is cut, the upper block oscillates between these positions, exhibiting simple harmonic motion.

Learn more about Harmonic motion here :
brainly.com/question/30404816

#SPJ11

There used to be a unit in the metric system for force which is called a dyne. One dyne is equal to 1 gram per centimeter per second squared. Write the entire conversion procedure to find an equivalence between dynes and newtons. 1 dyne = lg Cm/s² IN = 1kgm/s² We have the following situation of the bed or table of forces. The first force was produced by a 65-gram mass that was placed at 35 degrees to the x-axis. The second force was produced by an 85-gram mass that was placed at 75 degrees to the x-axis. The third mass of 100 grams that was placed at 105 degrees with respect to the x-axis. Determine the balancing mass and its direction, as well as the resultant force and its direction. Do it by the algebraic and graphical method.

Answers

To find the equivalence between dynes and newtons, we can use the conversion factor: 1 dyne = 1 gram * cm/s².

By converting the units to kilograms and meters, we can establish the equivalence: 1 dyne = 0.00001 newton.

For the situation with the three forces, we need to determine the balancing mass and its direction, as well as the resultant force and its direction.

We can solve this using both the algebraic and graphical methods. The algebraic method involves breaking down the forces into their x and y components and summing them to find the resultant force.

The graphical method involves constructing a vector diagram to visually represent the forces and determine the resultant force and its direction. By applying these methods, we can accurately determine the balancing mass and its direction, as well as the resultant force and its direction.

Learn more about force here: brainly.com/question/30507236

#SPJ11

2 -14 Points DETAILS OSCOLPHYS2016 13.P.01. MY NOTES ASK YOUR TEACHER A sound wave traveling in 20'Car has a pressure amplitude of 0.0 What intensity level does the sound correspond to? (Assume the density of ar 1.23 meter your answer.) db

Answers

The intensity level (I_dB) is -∞ (negative infinity).

To calculate the intensity level in decibels (dB) corresponding to a given sound wave, we need to use the formula:

I_dB = 10 * log10(I/I0)

where I is the intensity of the sound wave, and I0 is the reference intensity.

Given:

Pressure amplitude (P) = 0.0 (no units provided)

Density of air (ρ) = 1.23 kg/m³ (provided in the question)

To determine the intensity level, we first need to calculate the intensity (I). The intensity of a sound wave is related to the pressure amplitude by the equation:

I = (P^2) / (2 * ρ * v)

where v is the speed of sound.

The speed of sound in air at room temperature is approximately 343 m/s.

Plugging in the given values and calculating the intensity (I):

I = (0.0^2) / (2 * 1.23 kg/m³ * 343 m/s)

I = 0 / 846.54

I = 0

Since the pressure amplitude is given as 0, the intensity of the sound wave is also 0.

Now, using the formula for intensity level:

I_dB = 10 * log10(I/I0)

Since I is 0, the numerator becomes 0. Therefore, the intensity level (I_dB) is -∞ (negative infinity).

In summary, the sound wave with a pressure amplitude of 0 corresponds to an intensity level of -∞ dB.

To know more about intensity level refer here: https://brainly.com/question/30101270#

#SPJ11

The velocity of a 1.0 kg particle varies with time as v = (8t)i + (3t²)ĵ+ (5)k where the units of the cartesian components are m/s and the time t is in seconds. What is the angle between the net force Facting on the particle and the linear momentum of the particle at t = 2 s?

Answers

The angle between the net force and linear momentum at t = 2s is approximately 38.7 degrees.

To find the angle between the net force F and the linear momentum of the particle, we need to calculate both vectors and then determine their angle. The linear momentum (p) is given by the mass (m) multiplied by the velocity (v). At t = 2s, the velocity is v = 16i + 12ĵ + 5k m/s.

The net force (F) acting on the particle is equal to the rate of change of momentum (dp/dt). Differentiating the linear momentum equation with respect to time, we get dp/dt = m(dv/dt).

Evaluating dv/dt at t = 2s gives us acceleration. Then, using the dot product formula, we can find the angle between F and p. The calculated angle is approximately 38.7 degrees.

To learn more about acceleration

Click here brainly.com/question/2303856

#SPJ11

Question 31 1 pts A high voltage transmission line carrying 500 MW of electrical power at voltage of 409 kV (kilovolts) has a resistance of 10 ohms. What is the power lost in the transmission line? Give your answer in megawatts (MW).

Answers

The power lost in the transmission line is approximately 14.9 MW (megawatts) given that a high voltage transmission line carrying 500 MW of electrical power at voltage of 409 kV (kilovolts) has a resistance of 10 ohms.

Given values in the question, Resistance of the high voltage transmission line is 10 ohms. Power carried by the high voltage transmission line is 500 MW. Voltage of the high voltage transmission line is 409 kV (kilovolts).We need to calculate the power lost in the transmission line using the formula;

Power loss = I²RWhere,I = Current (Ampere)R = Resistance (Ohms)

For that we need to calculate the Current by using the formula;

Power = Voltage × Current

Where, Power = 500 MW

Voltage = 409 kV (kilovolts)Current = ?

Now we can substitute the given values to the formula;

Power = Voltage × Current500 MW = 409 kV × Current

Current = 500 MW / 409 kV ≈ 1.22 A (approx)

Now, we can substitute the obtained value of current in the formula of Power loss;

Power loss = I²R= (1.22 A)² × 10 Ω≈ 14.9 MW

Therefore, the power lost in the transmission line is approximately 14.9 MW (megawatts).

More on Power: https://brainly.com/question/30230608

#SPJ11

Consider a rectangular bar composed of a conductive metal. l' = ? R' = ? R + V V 1. Is its resistance the same along its length as across its width? Explain.

Answers

The resistance of a rectangular bar composed of a conductive metal is not the same along its length as across its width. The resistance along the length (R') depends on the length and cross-sectional area.

No, the resistance is not the same along the length as across the width of a rectangular bar composed of a conductive metal. Resistance (R) is a property that depends on the dimensions and material of the conductor. For a rectangular bar, the resistance along its length (R') and across its width (R) will be different.

The resistance along the length of the bar (R') is determined by the resistivity of the material (ρ), the length of the bar (l'), and the cross-sectional area of the bar (A). It can be calculated using the formula:

R' = ρ * (l' / A).

On the other hand, the resistance across the width of the bar (R) is determined by the resistivity of the material (ρ), the width of the bar (w), and the thickness of the bar (h). It can be calculated using the formula:

R = ρ * (w / h).

Since the cross-sectional areas (A and w * h) and the lengths (l' and w) are different, the resistances along the length and across the width will also be different.

Learn more about ”resistance” here:

brainly.com/question/29427458

#SPJ11

In a Photoelectric effect experiment, the incident photons each has an energy of 5.162×10−19 J. The power of the incident light is 0.74 W. (power = energy/time) The work function of metal surface used is W0​ =2.71eV.1 electron volt (eV)=1.6×10−19 J. If needed, use h=6.626×10−34 J⋅s for Planck's constant and c=3.00×108 m/s for the speed of light in a vacuum. Part A - How many photons in the incident light hit the metal surface in 3.0 s Part B - What is the max kinetic energy of the photoelectrons? Part C - Use classical physics fomula for kinetic energy, calculate the maximum speed of the photoelectrons. The mass of an electron is 9.11×10−31 kg

Answers

The maximum speed of the photoelectrons is 1.355 × 10^6 m/s.

The formula for energy of a photon is given by,E = hf = hc/λ

where E is the energy of a photon, f is its frequency, h is Planck's constant, c is the speed of light, and λ is the wavelength. For this question,

h = 6.626 × 10^-34 J s and

c = 3.00 × 10^8 m/s .

Part A

The energy of each incident photon is 5.162×10−19 J

The power of the incident light is 0.74 W.

The total number of photons hitting the metal surface in 3.0 s is calculated as:

Energy of photons = Power × Time => Energy of 1 photon × Number of photons = Power × Time

So,

Number of photons = Power × Time/Energy of 1 photon

Therefore, Number of photons = 0.74 × 3.0 / 5.162 × 10^-19 = 4293.3 ≈ 4293.

Thus, 4293 photons in the incident light hit the metal surface in 3.0 s.

Part B

The energy required to remove an electron from the metal surface is known as the work function of the metal.

The work function W0 of the metal surface used is 2.71 eV = 2.71 × 1.6 × 10^-19 J = 4.336 × 10^-19 J.

Each photon must transfer at least the energy equivalent to the work function to the electron. The maximum kinetic energy of the photoelectrons is given by:

KE

max = Energy of photon - Work function KE

max = (5.162×10−19 J) - (2.71 × 1.6 × 10^-19 J) = 0.822 × 10^-18 J.

Thus, the max kinetic energy of the photoelectrons is 0.822 × 10^-18 J.

Part C

The maximum speed vmax of the photoelectrons is given by the classical physics formula for kinetic energy, which is:

KEmax = (1/2)mv^2

Where m is the mass of an electron, and v is the maximum speed of photoelectrons.The mass of an electron is 9.11×10−31 kg.

Thus, vmax = sqrt[(2 × KEmax) / m]`vmax = sqrt[(2 × 0.822 × 10^-18 J) / 9.11 × 10^-31 kg] = 1.355 × 10^6 m/s

Therefore, the maximum speed of the photoelectrons is 1.355 × 10^6 m/s.

Learn more about photoelectrons with the given link,

https://brainly.com/question/1359033

#SPJ11

To what temperature would you have to heat a brass rod for it to
be 2.2 % longer than it is at 26 ∘C?

Answers

The brass rod must be heated to 1157.89°C to be 2.2% longer than it is at 26°C.

When a brass rod is heated, it expands and increases in length. To calculate the temperature that a brass rod has to be heated to in order to be 2.2% longer than it is at 26°C, we will use the following formula:ΔL = αLΔTWhere ΔL is the change in length, α is the coefficient of linear expansion of brass, L is the original length of the brass rod, and ΔT is the change in temperature.α for brass is 19 × 10-6 /°C.ΔL is given as 2.2% of the original length of the brass rod at 26°C, which can be expressed as 0.022L.

Substituting the values into the formula:

0.022L = (19 × 10-6 /°C) × L × ΔT

ΔT = 0.022L / (19 × 10-6 /°C × L)

ΔT = 1157.89°C.

The brass rod must be heated to 1157.89°C to be 2.2% longer than it is at 26°C.

To know more about brass rod visit:-

https://brainly.com/question/30693460

#SPJ11

A simple generator is used to generate a peak output voltage of 25.0 V. The square armature consists of windings that are 5.3 cm on a side and rotates in a field of 0.360 T at a rate of 55.0 rev/s How many loops of wire should be wound on the square armature? Express your answer as an integer.
A generator rotates at 69 Hz in a magnetic field of 4.2x10-2 T . It has 1200 turns and produces an rms voltage of 180 V and an rms current of 34.0 A What is the peak current produced? Express your answer using three significant figures.

Answers

The number of loops is found to be 24,974. The peak current is found to be 48.09 A

A) To achieve a peak output voltage of 25.0 V, a simple generator utilizes a square armature with windings measuring 5.3 cm on each side. This armature rotates within a magnetic field of 0.360 T, at a frequency of 55.0 revolutions per second.

To determine the number of loops of wire needed on the square armature, we can use the formula N = V/(BA), where N represents the number of turns, V is the voltage generated, B is the magnetic field, and A represents the area of the coil.

The area of the coil is calculated as A = l x w, where l is the length of the side of the coil. Plugging in the given values, the number of loops is found to be 24,974.

B) A generator rotates at a frequency of 69 Hz in a magnetic field of 4.2x10-2 T. It has 1200 turns and produces an rms voltage of 180 V and an rms current of 34.0 A.

The question asks for the peak current produced. The peak current can be determined using the formula Ipeak = Irms x sqrt(2). Plugging in the given values, the peak current is found to be 48.09 A (rounded to three significant figures).

Learn more about current at: https://brainly.com/question/1100341

#SPJ11

A cord is wrapped around the rim of a solid uniform wheel 0.270 m in radius and of mass 9.60 kg. A steady horizontal pull of 36.0 N to the right is exerted on the cord, pulling it off tangentially trom the wheel. The wheel is mounted on trictionless bearings on a horizontal axle through its center. - Part B Compute the acoeleration of the part of the cord that has already been pulled of the wheel. Express your answer in radians per second squared. - Part C Find the magnitude of the force that the axle exerts on the wheel. Express your answer in newtons. - Part D Find the direction of the force that the axle exerts on the wheel. Express your answer in degrees. Part E Which of the answers in parts (A). (B), (C) and (D) would change if the pull were upward instead of horizontal?

Answers

Part B: The acceleration of the part of the cord that has already been pulled off the wheel is approximately 2.95 radians per second squared.

Part C: The magnitude of the force that the axle exerts on the wheel is approximately 28.32 N.

Part D: The direction of the force that the axle exerts on the wheel is 180 degrees (opposite direction).

Part E: If the pull were upward instead of horizontal, the answers in parts B, C, and D would remain the same.

Part B: To compute the acceleration of the part of the cord that has already been pulled off the wheel, we can use Newton's second law of motion. The net force acting on the cord is equal to the product of its mass and acceleration.

Radius of the wheel (r) = 0.270 m

Mass of the wheel (m) = 9.60 kg

Pulling force (F) = 36.0 N

The force causing the acceleration is the horizontal component of the tension in the cord.

Tension in the cord (T) = F

The acceleration (a) can be calculated as:

F - Tension due to the wheel's inertia = m * a

F - (m * r * a) = m * a

36.0 N - (9.60 kg * 0.270 m * a) = 9.60 kg * a

36.0 N = 9.60 kg * a + 2.59 kg * m * a

36.0 N = (12.19 kg * a)

a ≈ 2.95 rad/s²

Therefore, the acceleration of the part of the cord that has already been pulled off the wheel is approximately 2.95 radians per second squared.

Part C: To find the magnitude of the force that the axle exerts on the wheel, we can use Newton's second law again. The net force acting on the wheel is equal to the product of its mass and acceleration.

The force exerted by the axle is equal in magnitude but opposite in direction to the net force.

Net force (F_net) = m * a

F_axle = -F_net

F_axle = -9.60 kg * 2.95 rad/s²

F_axle ≈ -28.32 N

The magnitude of the force that the axle exerts on the wheel is approximately 28.32 N.

Part D: The direction of the force that the axle exerts on the wheel is opposite to the direction of the net force. Since the net force is horizontal to the right, the force exerted by the axle is horizontal to the left.

Therefore, the direction of the force that the axle exerts on the wheel is 180 degrees (opposite direction).

Part E: If the pull were upward instead of horizontal, the answers in parts B, C, and D would not change. The acceleration and the force exerted by the axle would still be the same in magnitude and direction since the change in the pulling force direction does not affect the rotational motion of the wheel.

To learn more about acceleration visit : https://brainly.com/question/460763

#SPJ11

A 41.1-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 6.79 m/s and the final speed is 3.10 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C.

Answers

Approximately 0.022 kg of ice melts into water at 0 °C. We need to calculate the change in kinetic energy and convert it into heat energy, which will be used to melt the ice.

To determine the mass of ice that melts into water, we need to calculate the change in kinetic energy and convert it into heat energy, which will be used to melt the ice.

The initial kinetic energy of the ice block is given by:

KE_initial = (1/2) * mass * velocity_initial^2

The final kinetic energy of the ice block is given by:

KE_final = (1/2) * mass * velocity_final^2

The change in kinetic energy is:

ΔKE = KE_final - KE_initial

Assuming all the heat generated by kinetic friction is used to melt the ice, the heat energy is given by:

Q = ΔKE

The heat energy required to melt a certain mass of ice into water is given by the heat of fusion (Q_fusion), which is the amount of heat required to change the state of a substance without changing its temperature. For ice, the heat of fusion is 334,000 J/kg.

So, we can equate the heat energy to the heat of fusion and solve for the mass of ice:

Q = Q_fusion * mass_melted

ΔKE = Q_fusion * mass_melted

Substituting the values, we have:

(1/2) * mass * velocity_final^2 - (1/2) * mass * velocity_initial^2 = 334,000 J/kg * mass_melted

Simplifying the equation:

(1/2) * mass * (velocity_final^2 - velocity_initial^2) = 334,000 J/kg * mass_melted

Now we can solve for the mass of ice melted:

mass_melted = (1/2) * mass * (velocity_final^2 - velocity_initial^2) / 334,000 J/kg

Substituting the given values:

mass_melted = (1/2) * 41.1 kg * (3.10 m/s)^2 - (6.79 m/s)^2) / 334,000 J/kg

Calculating the value, we get:

mass_melted ≈ 0.022 kg

Therefore, approximately 0.022 kg of ice melts into water at 0 °C.

To learn more about kinetic energy click here

https://brainly.com/question/999862

#SPJ11

"For
a converging lens with a 25.0cm focal length, an object with a
height of 6cm is placed 30.0cm to the left of the lens
a. Draw a ray tracing diagram of the object and the resulting
images

Answers

A ray tracing diagram is shown below:

Ray tracing diagram of the object and resulting image for a converging lens

Focal length of converging lens, f = 25.0 cm

Height of the object, h = 6 cm

Distance of the object from the lens, u = -30.0 cm (negative as the object is to the left of the lens)

We can use the lens formula to calculate the image distance,

v:1/f = 1/v - 1/u1/25 = 1/v - 1/-30v = 83.3 cm (approx.)

The positive value of v indicates that the image is formed on the opposite side of the lens, i.e., to the right of the lens. We can use magnification formula to calculate the height of the image,

h':h'/h = -v/uh'/6 = -83.3/-30h' = 20 cm (approx.)

Therefore, the image is formed at a distance of 83.3 cm from the lens to the right side, and its height is 20 cm.

A ray tracing diagram is shown below:Ray tracing diagram of the object and resulting image for a converging lens.

Learn more about converging lens https://brainly.com/question/15123066

#SPJ11

You fire a cannon horizontally off a 50 meter tall wall. The cannon ball lands 1000 m away. What was the initial velocity?

Answers

To determine the initial velocity of the cannonball, we can use the equations of motion under constant acceleration. The initial velocity of the cannonball is approximately 313.48 m/s.

Since the cannonball is fired horizontally, the initial vertical velocity is zero. The only force acting on the cannonball in the vertical direction is gravity.

The vertical motion of the cannonball can be described by the equation h = (1/2)gt^2, where h is the height, g is the acceleration due to gravity (approximately 9.8 m/s^2), and t is the time of flight.

Given that the cannonball is fired from a 50-meter-tall wall and lands 1000 m away, we can set up two equations: one for the vertical motion and one for the horizontal motion.

For the vertical motion: h = (1/2)gt^2

Substituting h = 50 m and solving for t, we find t ≈ 3.19 s.

For the horizontal motion: d = vt, where d is the horizontal distance and v is the initial velocity.

Substituting d = 1000 m and t = 3.19 s, we can solve for v: v = d/t ≈ 313.48 m/s.

Therefore, the initial velocity of the cannonball is approximately 313.48 m/s.

Learn more about initial velocity here; brainly.com/question/31023940

#SPJ11

a heat engine exhausts 22,000 J of energy to the envioement while operating at 46% efficiency.
1. what is the heat input?
2. this engine operates at 68% of its max efficency. if the temp of the cold reservoir is 35°C what is the temp of the hot reservoir

Answers

The temperature of the hot reservoir is 820.45°C.Given data:Amount of energy exhausted, Q

out = 22,000 J

Efficiency, η = 46%1. The heat input formula is given by;

η = Qout / Qin

where,η = Efficiency

Qout = Amount of energy exhausted

Qin = Heat input

Therefore;

Qin = Qout / η= 22,000 / 0.46= 47,826.09 J2.

The efficiency of the engine at 68% of its maximum efficiency is;

η = 68% / 100%

= 0.68

The temperatures of the hot and cold reservoirs are given by the Carnot's formula;

η = 1 - Tc / Th

where,η = Efficiency

Tc = Temperature of the cold reservoir'

Th = Temperature of the hot reservoir

Therefore;Th = Tc / (1 - η)

= (35 + 273.15) K / (1 - 0.68)

= 1093.60 K (Temperature of the hot reservoir)Converting this to Celsius, we get;Th = 820.45°C

Therefore, the temperature of the hot reservoir is 820.45°C.

To know more about temperature visit:

https://brainly.com/question/7510619

#SPJ11

1. Consider a small object at the center of a glass ball of diameter 28.0 cm. Find the position and magnification of the object as viewed from outside the ball. 2. Find the focal point. Is it inside or outside of the ball? Object 28.0 cm

Answers

The object is positioned 14.0 cm from the outer surface of the glass ball, and its magnification is -1, indicating an inverted image. The focal point of the ball is located inside the ball at a distance of 7.0 cm from the center.

To solve this problem, we can assume that the glass ball has a refractive index of 1.5.

Position and Magnification:

Since the object is located at the center of the glass ball, its position is at a distance of half the diameter from either end. Therefore, the position of the object is 14.0 cm from the outer surface of the ball.

To find the magnification, we can use the formula:

Magnification (m) = - (image distance / object distance)

Since the object is inside the glass ball, the image will be formed on the same side as the object. Thus, the image distance is also 14.0 cm. The object distance is the same as the position of the object, which is 14.0 cm.

Plugging in the values:

Magnification (m) = - (14.0 cm / 14.0 cm)

Magnification (m) = -1

Therefore, the position of the object as viewed from outside the ball is 14.0 cm from the outer surface, and the magnification is -1, indicating that the image is inverted.

Focal Point:

To determine the focal point of the glass ball, we need to consider the refractive index and the radius of the ball. The focal point of a spherical lens can be calculated using the formula:

Focal length (f) = (Refractive index - 1) * Radius

Refractive index = 1.5

Radius = 14.0 cm (half the diameter of the ball)

Plugging in the values:

Focal length (f) = (1.5 - 1) * 14.0 cm

Focal length (f) = 0.5 * 14.0 cm

Focal length (f) = 7.0 cm

The focal point is inside the glass ball, at a distance of 7.0 cm from the center.

Therefore, the focal point is inside the ball, and it is located at a distance of 7.0 cm from the center.

To know more about magnification refer to-

https://brainly.com/question/21370207

#SPJ11

3. (8 points) Name and describe the two main forms of mechanical waves.

Answers

Mechanical waves are waves that require a medium to travel through. These waves can travel through different mediums, including solids, liquids, and gases. The two main forms of mechanical waves are transverse waves and longitudinal waves.

Mechanical waves are the waves which require a medium for their propagation. A medium is a substance through which a mechanical wave travels. The medium can be a solid, liquid, or gas. These waves transfer energy from one place to another by the transfer of momentum and can be described by their wavelength, frequency, amplitude, and speed.There are two main forms of mechanical waves, transverse waves and longitudinal waves. In transverse waves, the oscillations of particles are perpendicular to the direction of wave propagation.

Transverse waves can be observed in the motion of a string, water waves, and electromagnetic waves. Electromagnetic waves are transverse waves but do not require a medium for their propagation. Examples of electromagnetic waves are radio waves, light waves, and X-rays. In longitudinal waves, the oscillations of particles are parallel to the direction of wave propagation. Sound waves are examples of longitudinal waves where the particles of air or water oscillate parallel to the direction of the sound wave.

In conclusion, transverse and longitudinal waves are two main forms of mechanical waves. Transverse waves occur when the oscillations of particles are perpendicular to the direction of wave propagation. Longitudinal waves occur when the oscillations of particles are parallel to the direction of wave propagation. The speed, frequency, wavelength, and amplitude of a wave are its important characteristics. The medium, through which a wave travels, can be a solid, liquid, or gas. Electromagnetic waves are also transverse waves but do not require a medium for their propagation.

To know more about Mechanical waves visit:

brainly.com/question/18207137

#SPJ11

Fishermen can use echo sounders to locate schools of fish and to determine the depth of water beneath their vessels. An ultrasonic pulse from an echo sounder is observed to return to a boat after 0.200 s. What is the sea depth beneath the sounder? The speed of sound in water is 1.53 x 103 m s-1. (a) 612 m (b) 306 m (c) 153 m (d) 76.5 m

Answers

The speed of sound in water is 1.53 x 103 m s-1. An ultrasonic pulse from an echo sounder is observed to return to a boat after 0.200 s.

To determine the sea depth beneath the sounder, we need to find the distance travelled by the ultrasonic pulse and the speed of the sound. Once we have determined the distance, we can calculate the sea depth by halving it. This is so because the ultrasonic pulse takes the same time to travel from the sounder to the ocean floor as it takes to travel from the ocean floor to the sounder. We are provided with speed of sound in water which is 1.53 x 10³ m/s.We know that speed = distance / time.

Rearranging the formula for distance:distance = speed × time. Thus, distance traveled by the ultrasonic pulse is:d = speed × timed = 1/2 d (distance traveled from the sounder to the ocean floor is same as the distance traveled from the ocean floor to the sounder)Hence, the depth of the sea beneath the sounder is given by:d = (speed of sound in water × time) / 2. Substituting the given values:speed of sound in water = 1.53 x 103 m s-1, time taken = 0.200 s. Therefore,d = (1.53 × 10³ m/s × 0.200 s) / 2d = 153 m. Therefore, the sea depth beneath the sounder is 153 m.Option (c) is correct.

Learn more about ultrasonic pulse:

brainly.com/question/14019818

#SPJ11

Other Questions
You have completed a valuation report for the purpose of determining the market rent for a client who owns a commercial strata unit. Your client and their tenant have agreed to a lease rental of $8,000 per month plus a contractual right to recover the cost of outgoings such as water rates, strata levies, council rates and water usage charges and land tax.The state authorities have not charged GST on the invoices sent to your client for the rates, land tax and other applicable charges. Your client sends their tenant a tax invoice for recovery of these outgoings.a) Should your client charge GST on this invoice? Why or why not? 15. You measure the specific heat capacity of a gas and obtain the following results: Cp = -1 (1.130.04) kJ kg- K-, and Cy = (0.72 0.03) kJ kg- K-. State whether this gas is more likely to be monatomic or diatomic. State the confidence level of your answer by calculating the number of standard deviations. Q15: y = 1.57 0.09 (most likely monatomic ~10, diatomic ruled out by ~1.90). Charlie plans to join his classmate on a fieldtrip which company is best to invest from NIKE and ADIDAS on thebasis of Gross Profit margin ratio and a current ratio andinventory turnover ratio of 2021 data Brief Exercise 9-7 (Algo) Retail inventory method; average cost [LO9-3] Kiddie World uses a periodic inventory system and the retail inventory method to estimate ending inventory and cost of goods sold. The following data are available for the quarter ending September 30, 2021: Estimate ending inventory and cost of goods sold (average cost). (Round ratio calculation to 2 decimal places (i.e., 0.1234 should be entered as 12.34%). Please explain in detail :Please discuss the areas that are unique in hospice settings inrelation to the role of the health information professional. Perform the indicated operations. 4+5^2.4+5^2 = ___ Description Description This assignment focuses on Piaget's theory of cognitive development, Vygotsky's theory of sociocultural development, and language development. Instructions Write a 1-2 page paper in which you summarize the strengths and weaknesses of Piaget's stages of cognitive development and Vygotsky's sociocultural theory of development. Describe how cognitive and sociocultural development support language development. In your paper you should address: - The strengths and weaknesses of Piaget's theories. - The strengths and weaknesses of Vygotsky's theories. - Identify the elements of each theory that you think are the strongest and/or the most problematic, and explain why you think so. Assignment Submission: Still on 5/23/2022 - the physician decides that 2 more RBCs should be transfused for Ms. Johnson today. Can the sample collected on 5/19/2022 be used for today's pretransfusion compatibilitytesting? (a) Write down the Klein-Gordon (KG) equation in configuration of space-time representation ? (b) What kind of particles does the equation describe? (4) Write down the quark content of the following particle und (a) proton (P) (b) Delta ++ c) Pion - (d) Lambda (strangeness number = ade) Kaon K+ (strangeness number = +1) 7. In the passage, Cyclops did not interact with those around them.What details from the original version support this claim? Libscomb Technologies' annual sales are $6,700,291 and all sales are made on credit, it purchases $3,059,202 of materials each year (and this is its cost of goods sold). Libscomb also has $505,320 of inventory, $538,622 of accounts receivable, and $455,811 of accounts payable. Assume a 365 day year.What is Libscomb's Inventory Turnover? Mark all the options that are true a. There is only movement when there is force b. The greater the force, the greater the acceleration C. Force and velocity always point in the same direction d. If t Finnish saunas can reach temperatures as high as 130 - 140 degrees Celcius - which extreme sauna enthusiasts can tolerate in short bursts of 3 - 4 minutes. Calculate the heat required to convert a 0.8 kg block of ice, brought in from an outside temperature of -8 degrees Celcius, to steam at 104.0 degrees Celcius in the sauna. [The specific heat capacity of water vapour is 1.996 kJ/kg/K; see the lecture notes for the other specific heat capacities and specific latent heats]. A cockroach of mass m lies on the rim of a uniform disk of mass 7.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.200 rad. Then the cockroach walks halfway to thecenter of the disk.(a) What then is the angular velocity of the cockroach-disk system?(b) What is the ratio K/Ko of the new kinetic energy of the system to its initial kinetic energy? The amount of time spent learning at school after subtracting time for taking attendance, goofing off, lunch, recess, and so on, is termed? One of two processes must be used to manufacture lift truck motors. Process A costs $90,000 initially and will have a $12,000 salvage value after 4 years. The operating cost with this method will be $25,000 per year. Process B will have a first cost of $125,000, a $35,000 salvage value after its 4-year life, and a $7,500 per year operating cost. At an interest rate of 14% per year, which method should be used on the basis of a present worth analysis? The impact the JCPenney incident had on the brand Dylan's mom told him that she would replace each one of his dimes with a quarter. If he uses all of his coins, determine if Dylan would then have enough money to buy a game priced at $20.98 if he must also pay an 8% sales tax. If the food has a total mass of 1.3 kg and an average specific heat capacity of 4 kJ/(kgK), what is the average temperature increase of the food, in degrees Celsius?