O fungos, no passado ,ja foram considerados plantas. entretanto, alguma caracteristicas permitem diferencia-los dos vegetais .sobre os reinos fungi ee plantae marque a alternativa correta

Answers

Answer 1

Characteristics that differentiate fungi from plants include: the lack of chlorophyll, the absence of sap-conducting tissues, the way nutrients are obtained through absorption, and the composition of the cell wall.

Fungi are eukaryotic organisms that belong to the Fungi kingdom, while plants are part of the Plantae kingdom. The main difference between them is related to their way of obtaining nutrients. Plants are autotrophic, that is, they are capable of producing their own food through photosynthesis, using the chlorophyll present in their cells to convert solar energy into nutrients. On the other hand, fungi are heterotrophic, which means that they depend on external sources for their nutrients, mainly through the decomposition of organic matter or through symbiosis with other organisms.

Furthermore, fungi have a cell wall composed mainly of chitin, while plants have a cell wall composed of cellulose. These fundamental differences between the Fungi and Plantae kingdoms make it possible to distinguish them from each other.

To know more about Characterestic :

brainly.com/question/30984112

#SPJ11


Related Questions

At a pressure of 5.0 atmospheres, a sample of gas occupies 40 liters. What volume will the same sample hold at 1.0 atmosphere

Answers

The volume that the sample holds at 1.0 atmosphere can be calculated by applying the combined gas law equation. The combined gas law equation relates the pressure, temperature, and volume of an enclosed gas.

It is a combination of Boyle's Law, Charles' Law, and Gay-Lussac's Law.

The general formula of the combined gas law is given as follows:`P₁V₁/T₁ = P₂V₂/T₂`

Here,`P₁ = 5.0 atm`,

`V₁ = 40 L`, and

`P₂ = 1.0 atm`

Let's determine the volume of the sample at 1.0 atm.`P₁V₁/T₁ = P₂V₂/T₂`

Rearrange the formula to solve for `V₂`:`V₂ = (P₁V₁T₂)/(T₁P₂)`

Plug in the values:`V₂ = (5.0 atm × 40 L × T₂)/(T₁ × 1.0 atm)

`Simplify:`V₂ = 200 L × T₂/T₁`

Therefore, the volume that the sample holds at 1.0 atmosphere is `200 L  T2/T1. The volume depends on the temperature.

To know more about the gas law equation, visit:

https://brainly.com/question/30935329

#SPJ11

how many times is/are the tetrahedral intermediate(s) formed during the complete enzymatic cycle of chymotrypsin?

Answers

During the complete enzymatic cycle of chymotrypsin, a serine protease enzyme, a tetrahedral intermediate is formed once. This intermediate plays a crucial role in the catalytic mechanism of chymotrypsin.

Chymotrypsin catalyzes the hydrolysis of peptide bonds in proteins. The enzymatic cycle of chymotrypsin involves multiple steps, including substrate binding, acylation, and deacylation. One of the key steps in this process is the formation of a tetrahedral intermediate.

The tetrahedral intermediate is formed when the peptide substrate interacts with the active site of chymotrypsin. This intermediate is characterized by the formation of a covalent bond between the active site serine residue of the enzyme and the carbonyl group of the peptide substrate.

The formation of the tetrahedral intermediate allows for efficient cleavage of the peptide bond and subsequent hydrolysis. Once the hydrolysis is complete, the tetrahedral intermediate is resolved, and the enzyme is ready for another catalytic cycle.

Therefore, during the complete enzymatic cycle of chymotrypsin, a single tetrahedral intermediate is formed, playing a critical role in the catalytic mechanism of the enzyme.

To know more about chymotrypsin, click here-

brainly.com/question/30655599

#SPJ11

rank the following glassware used in lab from least accurate (1) to most accurate (3). graduated cylinder choose... beaker choose... volumetric pipette choose...

Answers

The beaker is the least accurate glassware, followed by the graduated cylinder, and the volumetric pipette is the most accurate.

The ranking of the glassware used in a lab from least accurate to most accurate is as follows:

1) Beaker: A beaker is the least accurate glassware in terms of measurement. It is primarily used for holding and mixing liquids, but it does not have precise volume markings. The graduations on a beaker are approximate and not suitable for accurate measurements.

2) Graduated Cylinder: A graduated cylinder is more accurate than a beaker. It has volume markings along its length, allowing for relatively accurate measurements. However, due to the difficulty in accurately reading the meniscus (the curved surface of a liquid), the precision may still be limited.

3) Volumetric Pipette: A volumetric pipette is the most accurate glassware for measuring liquids. It is designed to deliver a specific volume of liquid with high precision. Volumetric pipettes have a single calibration mark and are used for accurate and precise measurements in volumetric analysis.

You can learn more about graduated cylinders at: brainly.com/question/14427988

#SPJ11

Given the following equation: mg+2hci = mgcl2+h2 how many moles of h2 can be produced by reacting 2 moles of hci

Answers

The balanced chemical equation is:

Mg + 2HCl → MgCl2 + H2

According to the stoichiometry of the equation, for every 2 moles of HCl reacted, 1 mole of H2 is produced. Therefore, if we react 2 moles of HCl, we can expect to produce 1 mole of H2.

In this particular reaction, the mole ratio between HCl and H2 is 2:1, meaning that for every 2 moles of HCl, we obtain 1 mole of H2. So, if we start with 2 moles of HCl, we can expect to produce 1 mole of H2 as a result of the reaction.

To know more about Chemical equation :

brainly.com/question/28792948

#SPJ11

What is the empirical formula of a compound that breaks down into 4.12g of n and 0.88g of h? nh4 nh3 n5h n4h

Answers

The substance has the empirical formula NH4.

We must compute the molar ratios of the components in the compound in order to establish the empirical formula. Using the relative atomic weights of each element, we can determine the moles of each element present in the compound given that it includes 4.12g of nitrogen (N) and 0.88g of hydrogen (H).

The molar masses of nitrogen and hydrogen are respectively 14.01 g/mol and 1.01 g/mol. Each element's mass is divided by its molar mass to determine the number of moles:

0.294 moles of nitrogen (N) are equal to 4.12g / 14.01 g/mol.

0.871 mol of hydrogen (H) is equal to 0.88 g divided by 1.01 g/mol.

The simplest whole-number ratio between these two elements is determined by dividing both moles by the least amountof moles (0.294):

N ≈ 0.294 mol / 0.294 mol ≈ 1

H ≈ 0.871 mol / 0.294 mol ≈ 2.97

Since we need whole-number ratios, we round the value for hydrogen to the nearest whole number, which is 3. Thus, the empirical formula of the compound is NH₄, indicating that it contains one nitrogen atom and four hydrogen atoms.

learn more about compound here

https://brainly.com/question/13516179

#SPJ11

Calculate the pH of the solution resulting from the addition of 20.0 mL of 0.100 M NaOH to 30.0 mL of 0.100 M HNO3.

Answers

The pH of the solution resulting from the addition of 20.0 mL of 0.100 M NaOH to 30.0 mL of 0.100 M HNO3 is approximately 1.22.

To calculate the pH of the solution resulting from the addition of NaOH and HNO3, we need to determine the concentration of the resulting solution and then calculate the pH using the equation -log[H+].

The addition of NaOH (a strong base) to HNO3 (a strong acid) will result in the formation of water and a neutral salt, NaNO3. Since NaNO3 is a neutral salt, it will not affect the pH of the solution significantly.

Explanation:

First, we need to determine the amount of moles of NaOH and HNO3 that were added to the solution. Given the volumes and concentrations, we can calculate the moles using the equation Moles = Concentration × Volume:

Moles of NaOH = 0.100 M × 0.020 L = 0.002 moles

Moles of HNO3 = 0.100 M × 0.030 L = 0.003 moles

Since NaOH and HNO3 react in a 1:1 ratio, the limiting reagent is NaOH, and all of it will be consumed in the reaction. Therefore, after the reaction, we will have 0.003 moles of HNO3 left in the solution.

Now, we can calculate the concentration of HNO3 in the resulting solution. The total volume of the solution is the sum of the volumes of NaOH and HNO3:

Total volume = 20.0 mL + 30.0 mL = 50.0 mL = 0.050 L

The concentration of HNO3 in the resulting solution is:

Concentration of HNO3 = Moles of HNO3 / Total volume = 0.003 moles / 0.050 L = 0.06 M

Finally, we can calculate the pH of the resulting solution using the equation -log[H+]:

pH = -log[H+] = -log(0.06) ≈ 1.22

Therefore, the pH of the solution resulting from the addition of 20.0 mL of 0.100 M NaOH to 30.0 mL of 0.100 M HNO3 is approximately 1.22.

Learn more about pH here :
brainly.com/question/2288405

#SPJ11

if there are 10 low-energy conformational states per backbone unit, calculate the number of conformers per molecule

Answers

The number of conformers per molecule can be calculated by multiplying the number of low-energy conformational states per backbone unit by the number of backbone units in the molecule. In this case, with 10 low-energy conformational states per backbone unit, the total number of conformers per molecule would depend on the size of the molecule and the number of backbone units it contains.

To calculate the number of conformers per molecule, we need to know the number of backbone units in the molecule. Let's assume the molecule has 'n' backbone units. Since there are 10 low-energy conformational states per backbone unit, each backbone unit can adopt any one of the 10 states independently. Therefore, the number of conformers per backbone unit is 10.

To calculate the total number of conformers per molecule, we multiply the number of conformers per backbone unit (10) by the number of backbone units in the molecule ('n'). So, the total number of conformers per molecule is 10 * n.

In summary, the number of conformers per molecule is equal to the number of low-energy conformational states per backbone unit (10) multiplied by the number of backbone units in the molecule ('n'). This calculation assumes that each backbone unit can independently adopt any one of the 10 conformational states.

Learn more about molecule here:

brainly.com/question/32298217?

#SPJ11

draw out the expected step-wise reaction mechanism. predict the step that you would expect to be most effectively stabilized along the reaction pathway by the enzyme and briefly explain why. are both of the potential hydride donors hs and hr of the nadh equivalent? briefly explain why or why not. would you expect the lactate (2-hydroxy propanoic acid) formed as a product of this reaction to be optically active? briefly justify your answer. draw the complete structure of the oxidized form of nicotine amide dinucleotide (nad ).

Answers

The expected step-wise reaction mechanism can be drawn by considering the reactants and the potential intermediates. To predict the most effectively stabilized step along the reaction pathway by the enzyme, we need more information about the specific enzyme and reaction.

Regarding the potential hydride donors HS and HR of NADH, they are not equivalent. HS is the hydride donor, while HR is involved in the transfer of protons. Whether the lactate formed as a product of this reaction is optically active depends on the stereochemistry of the starting material and the reaction conditions.

If the starting material is optically active and the reaction is carried out under conditions that preserve the stereochemistry, then the lactate formed will be optically active. To draw the complete structure of the oxidized form of nicotine amide dinucleotide (NAD+), more specific information about the structure is needed.

To know more about enzyme visit:-

https://brainly.com/question/29990904

#SPJ11

5.0 mL of 1.0M NaOH solution is added to 200.0 mL of a 0.150M formate buffer at a pH of 4.10. Calculate the new pH after the NaOH has been added. pKa formic acid

Answers

The new pH after the NaOH has been added is 1.93

Moles of NaOH added = Molarity × Volume = 1.0 × 0.005 = 0.005mol

Initial moles of formate ion = Molarity × Volume = 0.15 × 0.2 = 0.03mol.

Formate ion reacts with NaOH to form sodium formate and water

HCOO- (aq) + Na+ (aq) + OH- (aq) → Na+ (aq) + HCOO- (aq) + H₂O (l)

Moles of formate ion reacted with NaOH = 0.005mol

Final moles of formate ion = Initial moles - Moles reacted = 0.03 - 0.005 = 0.025mol

Final volume of buffer = Volume of buffer before + Volume of NaOH added = 0.2L + 0.005L = 0.205L

Concentration of formate ion in the buffer after reaction with NaOH = Final moles of formate ion / Final volume of buffer= 0.025 / 0.205= 0.122M.

Concentration of formic acid in the buffer after reaction with NaOH = Molarity - Concentration of formate ion = 0.15 - 0.122= 0.028M

HCOOH ⇌ HCOO- + H+Ka of formic acid = [H+][HCOO-] / [HCOOH]3.75 = [H+][0.122] / [0.028]

0.028 × 3.75 = [H+] × 0.122[H+] = 0.0118pHpH = -log[H+]pH = -log[0.0118]pH = 1.93.

Therefore, the new pH after 5.0 mL of 1.0M NaOH solution is added to 200.0 mL of a 0.150 M formate buffer at a pH of 4.10 is 1.93.

To know more about pH click on below link :

https://brainly.com/question/30532689#

#SPJ11

What is the formula of the precipitate that forms when aqueous ammonium phosphate and aqueous copper(II) chloride are mixed? Question 16 options: Cu3P2 Cu2ClO3 Cu(NH4)2 Cu3(PO4)2 Cu2PO3

Answers

The formula of the precipitate that forms when aqueous ammonium phosphate and aqueous copper(II) chloride are mixed is Cu3(PO4)2.

The reaction between ammonium phosphate (NH4)3PO4 and copper(II) chloride CuCl2 results in the formation of copper(II) phosphate (Cu3(PO4)2) as a precipitate. In this reaction, the ammonium ions (NH4+) from ammonium phosphate combine with the chloride ions (Cl-) from copper(II) chloride to form ammonium chloride (NH4Cl), which remains in the solution. Meanwhile, the phosphate ions (PO4^3-) from ammonium phosphate combine with the copper(II) ions (Cu^2+) from copper(II) chloride to form the insoluble copper(II) phosphate precipitate, Cu3(PO4)2.

To know more about ammonium phosphate visit:

https://brainly.com/question/30459644

#SPJ11

Explain why or why you would expect bisulfate to be a good leaving group for substitution reaction?

Answers

Due to the presence of sulfonic acid functional group, bisulfate is considered a good leaving group for substitution reaction.

A substitution reaction is a chemical reaction in which an atom or group of atoms in a molecule is replaced by another atom or group of atoms. A leaving group is a part of a molecule that takes with it a pair of electrons when it departs from the molecule. It is a species that can accept a pair of electrons to form a new bond.

A good leaving group is generally an anion that is either neutral or a weak base.

In organic chemistry, bisulfate is a good leaving group for substitution reactions because it is an excellent leaving group due to its sulfonic acid functional group, which makes it a strong acid. The negatively charged oxygen atom can stabilize the negative charge created when it departs from the molecule by donating its lone pair of electrons. As a result, the sulfonic acid's anionic character, which makes it a good leaving group.

Because the molecule's ability to donate its lone pair of electrons stabilizes the leaving group, a compound with a better leaving group will be able to perform substitution more readily. This makes bisulfate an excellent leaving group for substitution reactions.

Thus, the reason is sulfonic acid functional group.

To learn more about susbtitution reaction :

https://brainly.com/question/10143438

#SPJ11

Is the group of atoms indicated with an arrow nucleophilic, electrophilic, acidic, more than one of these choices, or none of these choices? (for purposes of this question, acidic is defined as

Answers

The alpha carbon is acidic due to the presence of an electron-withdrawing group (e.g., Ph group).

The correct option is acidic. In certain organic compounds, the alpha carbon atom, which is the carbon directly bonded to a functional group, can exhibit acidic properties when it is covalently bonded to a hydrogen atom. This acidity arises from the influence of electron-withdrawing groups, such as a phenyl (Ph) group, which withdraws electron density from the alpha carbon. The presence of the electron-withdrawing group creates a partial positive charge on the alpha carbon, making it susceptible to donation of a proton (H+ ion).

The acidity of the alpha carbon is evident when the compound is subjected to appropriate conditions, such as a basic environment or a strong base, which can readily abstract the hydrogen atom. This deprotonation process results in the formation of a carbanion intermediate, where the negative charge is localized on the alpha carbon. The carbanion intermediate can participate in various reactions, such as nucleophilic substitutions or elimination reactions.

It is important to note that the acidity of the alpha carbon is relative and depends on factors like the strength of the electron-withdrawing group, the solvent, and the steric hindrance around the alpha carbon. However, in the presence of a phenyl group, the alpha carbon can be considered acidic due to the electron-withdrawing nature of the Ph group.

Learn more about acidic from the given link:

https://brainly.com/question/24255408

#SPJ11

The group of atoms indicated with an arrow  is acidic.

When an alpha carbon atom is covalently bonded to a hydrogen atom, the carbon atom attached to hydrogen atom is acidic.

The carbon is acidic because of the presence of the Ph group which acts as an electron withdrawing group.

An electron withdrawing group attached to a molecule increases the overall acidity of the molecule by destabilizing it so that the hydrogen ions, H⁺ is easily released from the molecule. The electrons of the C-H bond is pulled more towards itself by the carbon atom. whereas an electron donating group decreases the acidity as it stabilizes the molecule.

To know more about acidic here

https://brainly.com/question/31327399

#SPJ4

Why should you not use the same HCl solution for both the original and dilute NaOH solutions?

Answers

It is not recommended to use the same hydrochloric acid (HCl) solution for both the original and dilute sodium hydroxide (NaOH) solutions.

The main reason is that any contamination or impurities present in the HCl solution can affect the accuracy and reliability of the results when titrating with the NaOH solution.

If the same HCl solution is used for both the original and dilute NaOH solutions, any impurities or residual substances in the HCl solution could lead to incorrect titration results and affect the concentration determination of the NaOH solution. To ensure accurate and reliable titration, it is best to use fresh and separate HCl solutions for different samples or concentrations of NaOH.

Learn more about titration here: brainly.com/question/31483031

#SPJ11

A solution is prepared by dissolving 26.0 g urea, (NH2)2CO, in 173.3 g water. Calculate the boiling point of the solution.

Answers

The boiling point of a solution is influenced by the concentration of the solutes present in the solution. The higher the solute concentration, the higher the boiling point.

The formula for the boiling point elevation is Tb = Kb  m  i, where Tb is the boiling point elevation, Kb is the boiling point elevation constant, m is the molality of the solution, and i is the van't Hoff factor. Since urea is a molecular compound and does not dissociate in water, i = 1.

The molecular weight of the solution is calculated as follows:

moles of urea = mass / molar mass

= 26.0 g / 60.06 g/mol

= 0.433 mol

molality = moles of solute / mass of solvent (in kg)

= 0.433 mol / 0.1733 kg

= 2.50 m

The boiling point elevation constant for water is 0.512 °C/m.

Tb = Kb × m × iΔTb

= 0.512 °C/m × 2.50 m × 1

= 1.28 °C

The boiling point of the solution is equal to the boiling point of pure water plus the boiling point elevation: boiling point = 100 °C + 1.28 °C = 101.28 °C

Therefore, the boiling point of the solution is 101.28 °C

To know more about the boiling point, visit:

https://brainly.com/question/2153588

#SPJ11

janzen, h. h. and bettany, j. r. 1984. sulfur nutrition of rapeseed: i. influence of fertilizer nitrogen and sulfur rates. soil sci. soc. am. j. 48: 100–107

Answers

The study conducted by Janzen and Bettany in 1984 investigated the influence of nitrogen and sulfur fertilizer rates on the sulfur nutrition of rapeseed plants.

The researchers examined the relationship between the application rates of nitrogen and sulfur fertilizers and their effects on the growth and sulfur uptake of rapeseed plants.

In their study, Janzen and Bettany focused on understanding the impact of nitrogen and sulfur fertilizers on rapeseed plants' sulfur nutrition. They conducted experiments where different rates of nitrogen and sulfur fertilizers were applied to the soil, and the growth and sulfur uptake of rapeseed plants were measured. The researchers aimed to determine the optimal fertilizer rates that would promote adequate sulfur nutrition in the plants, leading to better growth and development.

The study's findings provided insights into the relationship between nitrogen and sulfur fertilizers and their influence on rapeseed plants' sulfur nutrition. This information can be valuable for agricultural practices, helping farmers optimize fertilizer application to enhance crop yield and quality. Additionally, the study contributes to the broader understanding of plant nutrient interactions and the importance of sulfur nutrition in the growth of rapeseed plants.

To learn more about nitrogen, click here:

brainly.com/question/1380063

#SPJ11

for carbon and nitrogen, which variable is different in the expression for the electrostatic force? (go back to your answers on the last slide if you aren't sure.) q1or q2 r smaller larger smaller larger compared to carbon, the electrostatic force between a valence electron and the nucleus in nitrogen is:due to this difference in force, the atomic radius of nitrogen is than that of carbon.

Answers

In the expression for the electrostatic force between two charged particles, the variable that is different for carbon and nitrogen is the charge (q1 or q2). The force depends on the magnitude of the charges involved.

Compared to carbon, the electrostatic force between a valence electron and the nucleus in nitrogen is larger due to the higher charge on the nitrogen nucleus.

This increased force results in a smaller atomic radius for nitrogen compared to carbon. the variable that is different for carbon and nitrogen is the charge (q1 or q2). The force depends on the magnitude of the charges involved.

To know more about carbon visit:-

https://brainly.com/question/3049557

#SPJ11

A stock solution of aluminum(III) cations is made by adding aluminum sulfate octadecahydrate (Al2(SO4)3-18H2O) to water. What is the millimolar concentration of Al3 if 2 grams of this compound is added to 200 ml of water and all dissolves

Answers

The millimolar concentration of Al3+ in the solution is 0.045 M.

To find the number of moles of Al2(SO4)3-18H2O, we first need to calculate the mass of 2 grams of this compound. Since the molar mass of Al2(SO4)3-18H2O is 666.44 g/mol, we can calculate the number of moles as follows:

2 g / 666.44 g/mol = 0.003 moles of Al2(SO4)3-18H2O

The aluminum sulfate octadecahydrate fully dissociates in water, and each formula unit yields 3 aluminum ions (Al3+). Therefore, the number of moles of aluminum ions is:

0.003 moles Al2(SO4)3-18H2O x 3 moles Al3+/1 mole Al2(SO4)3-18H2O = 0.009 moles Al3+

The volume of the solution is given as 200 ml, which is equal to 0.2 liters.

Therefore, the millimolar concentration of Al3+ is:0.009 moles Al3+ / 0.2 L = 0.045 M

Learn more about concentration visit:

brainly.com/question/13872928

#SPJ11

Give a test that can be used to differentiate between saturated and unsaturated hydrocarbons.

Answers

One test that can be used to differentiate between saturated and unsaturated hydrocarbons is the bromine test. In this test, a solution of bromine in an organic solvent, such as carbon tetrachloride, is added to the hydrocarbon.

Saturated hydrocarbons do not react with bromine under normal conditions, while unsaturated hydrocarbons readily undergo addition reactions with bromine, resulting in a color change from reddish-brown to colorless.

The bromine test relies on the reactivity difference between saturated and unsaturated hydrocarbons towards bromine. Saturated hydrocarbons have all available carbon-carbon (C-C) bonds occupied by hydrogen atoms and are considered relatively inert.

On the other hand, unsaturated hydrocarbons contain one or more carbon-carbon double or triple bonds, which provide sites of unsaturation and are more reactive.

In the bromine test, a solution of bromine in an organic solvent is added to the hydrocarbon. Bromine is a reddish-brown liquid. If the hydrocarbon is saturated, no reaction occurs, and the bromine solution retains its color. However, if the hydrocarbon is unsaturated, the double or triple bond(s) present can undergo addition reactions with bromine.

The bromine adds across the carbon-carbon double or triple bond, breaking the pi bond and forming a new single bond with each carbon atom. This results in the decolorization of the bromine solution.

By observing the color change from reddish-brown to colorless, or a significant decrease in color intensity, it can be concluded that the hydrocarbon is unsaturated. In contrast, if the color of the bromine solution remains unchanged, the hydrocarbon is likely saturated.

This test is a useful qualitative tool for distinguishing between saturated and unsaturated hydrocarbons based on their reactivity with bromine.

To learn more about, hydrocarbons:-

brainly.com/question/7509853

#SPJ11

A compound with molecular formula c3h8o produces a broad signal between 3200 and 3600 cm-1 in its ir spectrum and produces two signals in its 13c nmr spectrum. Draw the structure of the compound.

Answers

The compound with the molecular formula C3H8O that produces a broad signal between 3200 and 3600 cm-1 in its IR spectrum and two signals in its 13C NMR spectrum can be identified as 2-propanol.

The molecular formula C3H8O suggests a compound with three carbon atoms, eight hydrogen atoms, and one oxygen atom. By examining the information given about the IR and 13C NMR spectra, we can determine the structure of the compound.

The broad signal between 3200 and 3600 cm-1 in the IR spectrum corresponds to the O-H stretching vibration. This signal indicates the presence of an alcohol functional group, which consists of an oxygen atom bonded to a carbon atom that is also bonded to three hydrogen atoms.

The two signals observed in the 13C NMR spectrum indicate the presence of three distinct carbon environments in the molecule. This suggests that the compound has a propane backbone (C3H8), with one of the carbon atoms being bonded to the hydroxyl group.

Combining this information, we can conclude that the compound is 2-propanol. Its structure consists of a propane backbone with an attached hydroxyl group, as shown below:

         H

         |

    H - C - C - C - H

        |

        O - H

Therefore, the compound with the molecular formula C3H8O and the described spectral data is 2-propanol.

To know more about compound , click here-

brainly.com/question/14782984

#SPJ11

hydrogen sulfide, h2s, is a weak diprotic acid. in a 0.1 m solution the species that would be expected to have the highest concentration is

Answers

In a 0.1 M solution of hydrogen sulfide (H2S), the species that would be expected to have the highest concentration is the undissociated form of H2S. This is because hydrogen sulfide is a weak diprotic acid, meaning it can release two protons (H+) in a stepwise manner. The dissociation of H2S occurs through two equilibrium reactions:

1. H2S ⇌ H+ + HS-

2. HS- ⇌ H+ + S2-

In the first equilibrium, H2S donates one proton to form the hydrosulfide ion (HS-), and in the second equilibrium, the hydrosulfide ion donates another proton to form the sulfide ion (S2-). Since H2S is a weak acid, only a small fraction of H2S molecules dissociate, resulting in a higher concentration of undissociated H2S in the solution.

The concentration of the undissociated H2S can be calculated using an expression called the acid dissociation constant (Ka). For a weak diprotic acid like H2S, the Ka value is typically small. Therefore, at a concentration of 0.1 M, most of the H2S molecules will remain undissociated. The concentration of HS- and S2- ions will be significantly lower compared to the undissociated H2S because the dissociation constants for these reactions (K1 and K2) are generally much smaller than the Ka of H2S. Hence, in a 0.1 M H2S solution, the undissociated H2S would be expected to have the highest concentration among the species present.

Learn more about molecules here:

brainly.com/question/32298217?

#SPJ11

the standard enthalpy of formation of a substance is the enthalpy change for the reaction to prepare one of the substance from its elements under standard conditions.

Answers

Yes, the standard enthalpy of formation of a substance is indeed the enthalpy change for the reaction that forms one mole of the substance from its elements in their standard states under standard conditions.

This standard enthalpy of formation is usually denoted as ΔHf° and is measured in units of energy per mole (such as kilojoules per mole or joules per mole).

It represents the energy change associated with the formation of the substance from its constituent elements. The standard conditions typically refer to a temperature of 298 K (25 degrees Celsius) and a pressure of 1 bar.

The enthalpy change is considered positive when energy is absorbed during the formation of the substance, and negative when energy is released.

This value is useful for calculating the overall enthalpy change in a chemical reaction or determining the energy content of a compound.

to know more about enthalpy visit:

https://brainly.com/question/32882904

#SPJ11

measurements show that the energy of a mixture of gaseous reactants increases by during a certain chemical reaction, which is carried out at a constant pressure. furthermore, by carefully monitoring the volume change it is determined that of work is done on the mixture during the reaction.

Answers

The change in energy of a mixture of gaseous reactants during a chemical reaction indicates that the reaction is exothermic. Additionally, the negative work done on the mixture suggests that the volume of the system decreases during the reaction.

The increase in energy of the gaseous reactants indicates that the reaction releases energy to the surroundings, which is characteristic of an exothermic reaction. In an exothermic reaction, the products have lower energy than the reactants, resulting in a decrease in the total energy of the system. The negative work done on the mixture suggests that the reaction causes a decrease in volume.

This can occur when the total number of moles of gaseous reactants is greater than the total number of moles of gaseous products, leading to a decrease in volume as the reaction proceeds. The negative work done indicates that the system is doing work on the surroundings, resulting in a decrease in volume.

Learn more about gaseous reactants from the given link: https://brainly.com/question/1418011

#SPJ11

Copper solid is a face-centered cubic unit cell lattice. if the length of the unit cell is 360 pm, calculate the value of the atomic radius (in pm) and the density (in g/cm3) of copper.

Answers

For a face-centered cubic (FCC) unit cell lattice of copper with a unit cell length of 360 pm, the atomic radius is approximately 254.5 pm. The density of copper in this FCC structure is approximately 8.96 g/cm³.

In a face-centered cubic (FCC) unit cell lattice, there are four atoms located at the corners of the unit cell and one atom at the center of each face.

Given:

Length of the unit cell (a) = 360 pm

To calculate the atomic radius (r), we need to consider the relationship between the length of the unit cell and the atomic radius in an FCC structure.

In an FCC structure, the diagonal of the unit cell (d) is related to the length of the unit cell (a) by the equation:

d = a * √2

For a face diagonal, the diagonal passes through two atoms, which is equivalent to two times the atomic radius (2r). Thus, we have:

d = 2r

By substituting these relationships, we can solve for the atomic radius:

a * √2 = 2r

r = (a * √2) / 2

r = (360 pm * √2) / 2

r ≈ 254.5 pm

Therefore, the atomic radius of copper is approximately 254.5 pm.

To calculate the density of copper (ρ), we need to know the molar mass of copper and the volume of the unit cell.

Given:

Molar mass of copper (Cu) ≈ 63.546 g/mol

Length of the unit cell (a) = 360 pm = 360 × 10^(-10) m

The volume of the FCC unit cell (V) is given by the equation:

V = a³

V = (360 × 10^(-10) m)³

V = 4.914 × 10^(-26) m³

To calculate the density, we divide the molar mass by the volume:

ρ = (molar mass) / (volume)

ρ = 63.546 g/mol / (4.914 × 10^(-26) m³)

Converting the units of the density:

ρ = (63.546 g/mol) / (4.914 × 10^(-26) m³) * (1 kg/1000 g) * (100 cm/m)³

ρ ≈ 8.96 g/cm³

Therefore, the density of copper is approximately 8.96 g/cm³.

Learn more about density from the link given below.

https://brainly.com/question/29775886

#SPJ4

The nurse is educating the patient about potential negative effects with monoamine oxidase inhibitors (maois). what type of foods should the nurse inform the patient to avoid?

Answers

When educating a patient about potential negative effects of monoamine oxidase inhibitors (MAOIs), the nurse should inform the patient to avoid certain types of foods that can interact with MAOIs and cause adverse effects. These foods contain high levels of a substance called tyramine, which can lead to a sudden and dangerous increase in blood pressure when combined with MAOIs.

This interaction is known as the "cheese effect" or tyramine reaction.

The nurse should advise the patient to avoid or restrict foods such as.

Aged or matured cheeses (e.g., blue cheese, cheddar, Swiss).Fermented or air-dried meats (e.g., salami, pepperoni, sausages).Fermented or pickled foods (e.g., sauerkraut, kimchi).Certain types of alcoholic beverages, especially those that are aged or fermented (e.g., red wine, beer).Yeast extracts or concentrated yeast products (e.g., Marmite, Vegemite).Overripe fruits (e.g., bananas, avocados).Some types of beans and pods (e.g., broad beans, fava beans).Soy products (e.g., soy sauce, tofu).

These foods contain varying levels of tyramine, which can cause a sudden release of norepinephrine and potentially result in a hypertensive crisis when combined with MAOIs.

Read more about Monoamine oxidase.

https://brainly.com/question/32423036

#SPJ11

Nonpolar covalent compounds will not blend uniformly with water. what are some substances that form a separate layer when mixed with water?

Answers

Nonpolar covalent compounds do not mix uniformly with water due to the differences in their polarities.

Some substances that form a separate layer when mixed with water are typically hydrophobic or nonpolar in nature. Examples include oils, greases, waxes, and certain organic solvents such as benzene, toluene, and hexane.

These substances have weak or no interactions with water molecules and tend to separate and form distinct layers when mixed with water.

Learn more about hydrophobic substances here: brainly.com/question/32469301

#SPJ11

How can the electrophilicity of hydroxyls be increased? suggest several specific ways.

Answers

The electrophilicity of hydroxyls can be increased through several methods, including the use of Lewis acids, the introduction of electron-withdrawing groups, and increasing the acidity of the hydroxyl group.

Lewis acids: One way to increase the electrophilicity of hydroxyls is by utilizing Lewis acids. Lewis acids are electron-pair acceptors that can coordinate with the lone pair of electrons on the hydroxyl oxygen, making the hydroxyl group more electrophilic. For example, adding a Lewis acid such as boron trifluoride (BF3) to a hydroxyl-containing compound can enhance the electrophilicity of the hydroxyl group.

Electron-withdrawing groups: Another approach to increase the electrophilicity of hydroxyls is by introducing electron-withdrawing groups (EWGs) onto the molecule. EWGs are groups that draw electron density away from the hydroxyl oxygen, making it more electrophilic. Common examples of EWGs include nitro (-NO2), carbonyl (C=O), and cyano (-CN) groups. By attaching these groups to the hydroxyl-containing compound, the electron density on the hydroxyl oxygen is reduced, increasing its electrophilicity.

Increasing acidity: The acidity of the hydroxyl group also affects its electrophilicity. A more acidic hydroxyl group tends to be more electrophilic. One way to enhance the acidity is by using a stronger acid as a solvent or catalyst. For instance, replacing water (a relatively weak acid) with a stronger acid like sulfuric acid (H2SO4) can increase the acidity of the hydroxyl group, thereby enhancing its electrophilicity.

By employing these methods, the electrophilicity of hydroxyls can be effectively increased, enabling their involvement in various chemical reactions such as nucleophilic substitution, condensation reactions, and many others.

To learn more about molecule click here:

brainly.com/question/32298217

#SPJ11

a solution of ammonia and water contains 3.90×1025 water molecules and 9.00×1024 ammonia molecules. how many total hydrogen atoms are in this solution? enter your answer numerically.

Answers

- Number of hydrogen atoms in water = 3.90×10²⁵ water molecules * 2 hydrogen atoms per water molecule = 7.80×10²⁵ hydrogen atoms.
- Number of hydrogen atoms in ammonia = 9.00×10²⁴ ammonia molecules * 1 hydrogen atom per ammonia molecule = 9.00×10²⁴ hydrogen atoms.
- Total number of hydrogen atoms in the solution = 7.80×10²⁵ + 9.00×10²⁴ = 8.70×10²⁵ hydrogen atoms.

In a solution of ammonia and water, there are 3.90×10²⁵ water molecules and 9.00×10²⁴ ammonia molecules. To determine the total number of hydrogen atoms in this solution, we need to calculate the number of hydrogen atoms in both water and ammonia, and then add them together.

In a water molecule (H₂O), there are two hydrogen (H) atoms. Therefore, the total number of hydrogen atoms in the water molecules in the solution would be 3.90×10²⁵ multiplied by 2, which is equal to 7.80×10²⁵ hydrogen atoms.

In an ammonia molecule (NH₃), there is one hydrogen atom. Thus, the total number of hydrogen atoms in the ammonia molecules in the solution would be 9.00×10²⁴ multiplied by 1, which is equal to 9.00×10²⁴ hydrogen atoms.

Finally, to find the total number of hydrogen atoms in the solution, we add the number of hydrogen atoms in water and ammonia: 7.80×10²⁵ + 9.00×10²⁴ = 8.70×10²⁵ hydrogen atoms.

Therefore, there are 8.70×10²⁵ hydrogen atoms in the given solution of ammonia and water.



To know more about solution, refer to the link below:

https://brainly.com/question/30388862#

#SPJ11

Write the overall balanced redox reaction for nitrite ion oxidizing iodide in acid to form molecular iodine, nitrogen monoxide and water.

Answers

This redox reaction involves the transfer of electrons from iodide ions to the nitrite ions, resulting in the oxidation of iodide and the reduction of nitrite. The reaction proceeds in an acidic medium and produces molecular iodine, nitrogen monoxide, and water as the final products.

The overall balanced redox reaction for nitrite ion (NO2-) oxidizing iodide (I-) in acid to form molecular iodine (I2), nitrogen monoxide (NO), and water (H2O) can be represented as follows:

2 NO2- + 4 I- + 4 H+ -> I2 + 2 NO + 2 H2O

In this reaction, the nitrite ion (NO2-) acts as the oxidizing agent, while iodide (I-) is being oxidized. The reaction occurs in an acidic solution, which provides the necessary protons (H+) to facilitate the reaction. The products of the reaction are molecular iodine (I2), nitrogen monoxide (NO), and water (H2O).

In the balanced equation, we can observe that 2 nitrite ions (NO2-) react with 4 iodide ions (I-) and 4 protons (H+). This results in the formation of 1 molecule of iodine (I2), 2 molecules of nitrogen monoxide (NO), and 2 molecules of water (H2O). The coefficients in the balanced equation indicate the stoichiometric ratios between the reactants and products, ensuring that mass and charge are conserved.

Learn more bout redox reaction here :
brainly.com/question/28300253

#SPJ11

measurements show that the enthalpy of a mixture of gaseous reactants increases by 397.kj during a certain chemical reaction, which is carried out at a constant pressure. furthermore, by carefully monitoring the volume change it is determined that 110.kj of work is done on the mixture during the reaction.

Answers

According to given information in this reaction, the heat transferred is 287 kJ (397 kJ - 110 kJ).

In this case, the enthalpy of the mixture of gaseous reactants increases by 397 kJ during the reaction.

Additionally, the volume change during the reaction allows us to calculate the work done on the system, which is determined to be 110 kJ.

It's important to note that work done on the system is considered positive.

The relationship between heat, work, and enthalpy change is given by the equation

∆H = q + w,

where ∆H is the enthalpy change, q is the heat transferred, and w is the work done on the system.

The enthalpy change (∆H) of a chemical reaction can be determined by measuring the heat transferred at constant pressure.

to know more about gaseous reactants visit:

https://brainly.com/question/4594811

#SPJ11

1.000 g of caffeine was initially dissolved in 120 ml of water and then extracted with a single 80 ml portion of dichloromethane. what mass of caffeine would be extracted?

Answers

The mass of caffeine extracted would be 1.000 g.

To determine the mass of caffeine that would be extracted, we need to calculate the amount of caffeine in the initial solution and then determine how much is transferred to the dichloromethane layer.

Given:

Initial mass of caffeine = 1.000 g

Volume of water = 120 ml

Volume of dichloromethane = 80 ml

First, we need to calculate the concentration of caffeine in the initial solution:

Concentration of caffeine = mass of caffeine / volume of solution

Concentration of caffeine = 1.000 g / 120 ml

Next, we can determine the amount of caffeine in the initial solution:

Amount of caffeine in initial solution = concentration of caffeine * volume of solution

Amount of caffeine in initial solution = (1.000 g / 120 ml) * 120 ml

Now, we need to consider the extraction with dichloromethane. Assuming caffeine is more soluble in dichloromethane than in water, it will preferentially partition into the dichloromethane layer. Since only a single extraction is performed, we can assume that all the caffeine is transferred to the dichloromethane layer.

Therefore, the mass of caffeine extracted would be equal to the amount of caffeine in the initial solution:

Mass of caffeine extracted = Amount of caffeine in initial solution

Mass of caffeine extracted = (1.000 g / 120 ml) * 120 ml

Mass of caffeine extracted = 1.000 g

Therefore, the mass of caffeine extracted would be 1.000 g.

Learn more about caffeine solubility visit:

https://brainly.com/question/12773946

#SPJ11

The mass of caffeine extracted would be 1.000 g.To determine the mass of caffeine that would be extracted, we need to calculate the amount of caffeine in the initial solution and then determine how much is transferred to the dichloromethane layer.

Initial mass of caffeine = 1.000 g

Volume of water = 120 ml

Volume of dichloromethane = 80 ml

First, we need to calculate the concentration of caffeine in the initial solution:

Concentration of caffeine = mass of caffeine / volume of solution

Concentration of caffeine = 1.000 g / 120 ml

Next, we can determine the amount of caffeine in the initial solution:

Amount of caffeine in initial solution = concentration of caffeine * volume of solution

Amount of caffeine in initial solution = (1.000 g / 120 ml) * 120 ml

Now, we need to consider the extraction with dichloromethane. Assuming caffeine is more soluble in dichloromethane than in water, it will preferentially partition into the dichloromethane layer. Since only a single extraction is performed, we can assume that all the caffeine is transferred to the dichloromethane layer.

Therefore, the mass of caffeine extracted would be equal to the amount of caffeine in the initial solution:

Mass of caffeine extracted = Amount of caffeine in initial solution

Mass of caffeine extracted = (1.000 g / 120 ml) * 120 ml

Mass of caffeine extracted = 1.000 g

Therefore, the mass of caffeine extracted would be 1.000 g.

Learn more about caffeine:

brainly.com/question/12773946

#SPJ11

Other Questions
Formulation of well and effective development and proposal is haalf completion of the project Z varies jointly with x and y. when x=-8 and y=-3, z=6. find z when x=2 and y=10. When ebola patients are isolated for 3 weeks to ensure that they do not expose others, this would be an example of which type of intervention? Patients who develop severe sepsis or septic shock commonly have __________ plasma lactate values For the past year, Pellicier, Incorporated, had depreciation of $2,419, beginning total assets of $23,616, and ending total assets of $21,878. Current assets decreased by $1,356. What was the amount of net capital spending for the year A researcher for a polling organization took a random sample of 1,540 residents in a city and constructed a 95% confidence interval for the proportion of voters in the city who will vote for candidate Jones. The resulting confidence interval was (0.455, 0.505). Which of the following is a correct interpretation of the 95% confidence level Exercise 1 Diagram the following simple sentences with phrases.Will you drive through the tunnel in the mountain? a firm sells its output on a market that is characterized by many sellers and buyers, a identical products, no barriers to competition, and perfect knowledge, then the firm is a Komakula, SSB et al. The DNA Repair Protein OGG1 Protects Against Obesity by Altering Mitochondrial Energetics in White Adipose Tissue. Nature Sci Rep. 8, 14886-14894, 2018. when the production of a good resutlts in an external cost, the unregulated competitive makret equilibrium is inefficient because In a shareholder-bondholder relationship, the Blank______ is the principal. Multiple choice question. CEO shareholder bondholder Chairman of the Board 1. briefly state the factors that influence the running time of an algorithm (that is implemented and run on some machine). (5) 2. briefly state the reasons for the use of asymptotic notation for specifying running time of algorithms. (5) 3. state the recursive definition (include the initial conditions) for each of the following sequences. (15) (a) (1, 2, 4, 8, 16, 32, 64,) (b) (0, 2, 6, 12, 20, 30, 42, 56, ) (c) (4, 5, 7, 11, 19, 35, 67, 131, 259,) 4. write the recursive definition for an = pn n! where a1 = p. (10) 5. questions from chapter 5.3 of your textbook (8th edition) (7+7+6+15+15) q1, q2, q3, q12, q25 6. state the recursive definition (include the initial conditions) for each of the following sequences. (15) (a) s= { x| x= 3k-2, kz+} (b) s= { x| x= 5k+1, kz+ {0}} (c) s= { x| x= 2k+1, kz+} Indiana Co. began a construction project in 2021 with a contract price of $160 million to be received when the project is completed in 2023. During 2021, Indiana incurred $34 million of costs and estimates an additional $84 million of costs to complete the project. Indiana recognizes revenue over time and for this project recognizes revenue over time according to the percentage of the project that has been completed. In 2022, Indiana incurred additional costs of $57 million and estimated an additional $40 million in costs to complete the project. Indiana (Do not round your percentage calculated): Causes and Effects What led to the demand for new homes in the postwar years, and what was the result of this demand? the patients perceived difficulty in swallowing, the general inability to initiate swallowing, or even the feeling that swallowed solids or liquids "stick" in the throat is called group of answer choices dyspepsia stomatitis dysphagia odynophagia What would happen to the action potential in the presence of each of the following (added separately): A. Tetrodotoxin (TTX) A neurotoxin that selectively blocks voltage-gated Na channels. B. Tetraethylammonium (TEA) Ammonium compound that selectively blocks voltage-gated K channels. When evaluating service quality, _____ refers to the knowledge and courtesy of employees and their ability to convey trust. An offer to pay money in satisfaction of a debt or claim when one has the ability to pay is a? The growing use of technology for competitive advantage and mushrooming change in information technology are two areas of technology that affect businesses today. What is the third If a single strand of a gene contains 795 bases, how many amino acids result in the polypeptide prepared from it, assuming every base of the gene is transcribed and then translated