Number of absences, x 0 1 3 5 6 9 Final grade, y 96.2 93.4 82.4 79.1 75.3 61.3 a) Use your calculator to find a linear equation for the data, round to 2 decimals. b) Interpret the slope. c) Interpret the y-intercept. d) According to your model, if the number of absences is 8, what would be the final grade? Show all algebraic work. e) According to your model, if the final grade is 81, how many absences would be expected? Show all algebraic work.

Answers

Answer 1

Calculation of linear equation for the data can be done as below;To calculate the linear equation, first calculate the slope and y-intercept for which formulas are:

slope = (n∑(xy) - ∑x∑y) / (n∑(x^2) - (∑x)^2)y-interept = (∑y - slope(∑x)) / nWhere; n = Number of data points in the set, x = The input value or independent variable (absences), y = The output value or dependent variable (final grade).n = 6x = 0, 1, 3, 5, 6, 9y = 96.2, 93.4, 82.4, 79.1, 75.3, 61.3Let's calculate the various parameters which are required to calculate linear equation;∑x = 0 + 1 + 3 + 5 + 6 + 9 = 24∑y = 96.2 + 93.4 + 82.4 + 79.1 + 75.3 + 61.3 = 487.7∑(xy) = (0 × 96.2) + (1 × 93.4) + (3 × 82.4) + (5 × 79.1) + (6 × 75.3) + (9 × 61.3) = 1721.4∑(x^2) = (0^2 + 1^2 + 3^2 + 5^2 + 6^2 + 9^2) = 126Slope can be calculated by using the below formula:slope = (n∑(xy) - ∑x∑y) / (n∑(x^2) - (∑x)^2)Plugging in the values:slope = (6 × 1721.4 - 24 × 487.7) / (6 × 126 - 24^2)slope = -32.2/ -168 = 0.1917, approx. 0.19Therefore, the linear equation is:y = 0.19x + by = slope * x + y-intercepty = 0.19x + (87.45)Rounding off to 2 decimal places,y = 0.19x + 87.45b) Slope is the rate of change of dependent variable with respect to independent variable. In other words, slope indicates the change in y per unit change in x. In this case, the slope is 0.19. It means that for each additional absence, the final grade is expected to decrease by 0.19 units.c) Y-intercept is the value of dependent variable when the independent variable is zero. In other words, it is the initial value of the dependent variable before any change is made in the independent variable. In this case, the y-intercept is 87.45. It means that if a student has zero absences, he/she is expected to get a final grade of 87.45.d) According to the model, if the number of absences is 8, the final grade is;Given value of independent variable, x = 8Using the equation;y = 0.19x + 87.45y = 0.19(8) + 87.45y = 88.97Therefore, the final grade is 88.97 if the number of absences is 8.e) According to the model, if the final grade is 81, the number of absences is;Given value of dependent variable, y = 81Using the equation;y = 0.19x + 87.4581 = 0.19x + 87.45-6.45 = 0.19xDividing both sides by 0.19;x = -33.95It means that there would be negative number of absences which is not possible. Therefore, the expected number of absences cannot be determined if the final grade is 81.

To know more about linear equation , visit ;

https://brainly.com/question/2030026

#SPJ11

Answer 2

The expected number of absences cannot be determined if the final grade is 81.

Calculation of linear equation for the data can be done as below;

To calculate the linear equation, first calculate the slope and y-intercept for which formulas are:

slope = [tex]\frac{(n\sum(xy) - \sum x\sum y)}{ (n\sum (x^2) - (\sum x)^2)}[/tex]

y-intercept = [tex]\frac{(\sum y - slope(\sum x))}{n}[/tex]

Where;

n = Number of data points in the set,

x = The input value or independent variable (absences),

y = The output value or dependent variable (final grade).

n = 6x = 0, 1, 3, 5, 6, 9y = 96.2, 93.4, 82.4, 79.1, 75.3, 61.3

Let's calculate the various parameters which are required to calculate linear equation;

[tex]\sum x[/tex] = 0 + 1 + 3 + 5 + 6 + 9 = 24

[tex]\sum y[/tex] = 96.2 + 93.4 + 82.4 + 79.1 + 75.3 + 61.3 = 487.7

[tex]\sum xy[/tex] = (0 × 96.2) + (1 × 93.4) + (3 × 82.4) + (5 × 79.1) + (6 × 75.3) + (9 × 61.3) = 1721.4

[tex]\sum x^{2}[/tex] = (0² + 1² + 3² + 5² + 6² + 9²) = 126

Slope can be calculated by using the below formula:

slope = [tex](n\sum (xy) - \sum x\sum y) / (n\sum (x^2) - (\sum x)^2)[/tex]

Plugging in the values:

slope = (6 × 1721.4 - 24 × 487.7) / (6 × 126 - 24²)

slope = -32.2/ -168 = 0.1917, approx. 0.19

Therefore, the linear equation is:

y = 0.19x + by = slope * x + y-intercept

y = 0.19x + (87.45)

Rounding off to 2 decimal places,

y = 0.19x + 87.45

b) Slope is the rate of change of dependent variable with respect to independent variable. In other words, slope indicates the change in y per unit change in x. In this case, the slope is 0.19.

It means that for each additional absence, the final grade is expected to decrease by 0.19 units.

c) Y-intercept is the value of dependent variable when the independent variable is zero. In other words, it is the initial value of the dependent variable before any change is made in the independent variable. In this case, the y-intercept is 87.45. It means that if a student has zero absences, he/she is expected to get a final grade of 87.45.

d) According to the model, if the number of absences is 8, the final grade is;

Given value of independent variable, x = 8

Using the equation;

y = 0.19x + 87.45y = 0.19(8) + 87.45y = 88.97

Therefore, the final grade is 88.97 if the number of absences is 8.

e) According to the model, if the final grade is 81, the number of absences is;

Given value of dependent variable, y = 81

Using the equation;

y = 0.19x + 87.4581 = 0.19x + 87.45-6.45 = 0.19x

Dividing both sides by 0.19;

x = -33.95

It means that there would be negative number of absences which is not possible. Therefore, the expected number of absences cannot be determined if the final grade is 81.

To know more about linear equation , visit ;

brainly.com/question/2030026

#SPJ11


Related Questions

Use statistical tables to find the following values (i) fo 75,615 = (ii) X²0.975, 12--- (iii) t 09, 22 (iv) z 0.025 (v) fo.05.9, 10. (vi) kwhen n = 15, tolerance level is 99% and confidence level is 95% assuming two-sided tolerance interval

Answers

(i) The value of Fo for 75,615 is not provided in the question, and therefore cannot be determined.

(ii) The value of X²0.975, 12 is approximately 21.026.

(iii) The value of t0.9, 22 is approximately 1.717.

(iv) The value of z0.025 is approximately -1.96.

(v) The value of Fo.05, 9, 10 is not provided in the question, and therefore cannot be determined.

(vi) The value of k for a two-sided tolerance interval with a sample size of 15, a tolerance level of 99%, and a confidence level of 95% is not provided in the question, and therefore cannot be determined.

(i) The value of Fo for 75,615 is not given, and without additional information or a specific distribution, it is not possible to determine the corresponding value from statistical tables.

(ii) The value of X²0.975, 12 can be found using the chi-square distribution table. With a degree of freedom of 12 and a significance level of 0.025 (two-tailed test), we find that X²0.975, 12 is approximately 21.026.

(iii) The value of t0.9, 22 can be found using the t-distribution table. With a significance level of 0.1 and 22 degrees of freedom, we find that t0.9, 22 is approximately 1.717.

(iv) The value of z0.025 can be found using the standard normal distribution table. The significance level of 0.025 corresponds to a two-tailed test, so we need to find the value that leaves 0.025 in both tails. From the table, we find that z0.025 is approximately -1.96.

(v) The value of Fo.05, 9, 10 is not given in the question, and without additional information or a specific distribution, it is not possible to determine the corresponding value from statistical tables.

(vi) The value of k for a two-sided tolerance interval depends on the sample size, tolerance level, and confidence level. However, the specific values for these parameters are not provided in the question, making it impossible to determine the corresponding value of k from statistical tables.

learn  more about statistics here:brainly.com/question/32201536

#SPJ11

Q3) [1T, 2A] Determine if vectors = [9,-6, 12] and w = [-12, 8,-16]. are collinear.

Answers

Given vectors = [9,-6, 12] and w = [-12, 8,-16]. In this case, we find that v = -3 * w, indicating that they are indeed collinear.

Collinear vectors are vectors that lie on the same line or are parallel to each other. If v and w are collinear, it means that one vector can be obtained by scaling the other vector by a constant factor. Mathematically, this can be represented as v = k * w, where k is a scalar.

In our case, we have v = [9, -6, 12] and w = [-12, 8, -16]. To check if they are collinear, we need to find a scalar k such that v = k * w. We can perform scalar multiplication on w by multiplying each component by k.

By comparing the corresponding components of v and k * w, we find that 9 = -12k, -6 = 8k, and 12 = -16k. Solving these equations, we find that k = -3 satisfies all of them. Therefore, we can write v as -3 times w, or v = -3 * w, confirming that v and w are collinear.

To learn more about vectors click here, brainly.com/question/24256726

#SPJ11

Nine players on a baseball team are arranged in the batting order. What is the probability that the first two players in the lineup will be the center fielder and the shortstop, in that order?​

Answers

Answer: The probability of the first player being the center fielder is 1 out of 9 because there is only one center fielder on the team.

After the center fielder is chosen, there are 8 players remaining, and the probability of the second player being the shortstop is 1 out of 8 because there is only one shortstop on the team.

To calculate the probability of both events occurring in order, we multiply the individual probabilities:

Probability = (1/9) * (1/8) = 1/72

Therefore, the probability that the first two players in the lineup will be the center fielder and the shortstop, in that order, is 1 out of 72.

Let A = [¹] [24] a. Determine P that diagonalizes A. b. Can you predict the diagonal matrix D without further calculations? c. Calculate D = P-¹AP by calculating the inverse of P and multiplying the 3 matrices.

Answers

A. The required matrix answer is-

P = [x₁ x₂]

= [23 25] [-1 1]
P⁻¹ = (1/48) [-25 -25] [1 23]

B. We can predict the diagonalatrix

D = [23 0] [0 -25]

C. D = P-¹AP

By calculating the inverse of P and multiplying the 3 matrices.

D = [-575 0] [0 575]

Given matrix is

A = [¹] [24]a.

a. Diagonalizing A:


A = [¹] [24]


To diagonalize A, we have to find its eigenvalues and eigenvectors.
|A - λI| = 0
|[¹ - λ] [24] | = 0
| [24] [¹ - λ]|
(1 - λ)(1 - λ) - 24.24 = 0
λ² - 2λ - 575 = 0
(λ - 23)(λ + 25) = 0

Eigenvalues are λ₁ = 23 and λ₂ = -25.

Eigenvector for λ₁ = 23:
(A - λ₁I)x = 0
[¹ - 23] [24] [x₁] = [0]
[0] [¹ - 23] [x₂] [0]
x₁ - 23x₂ = 0
x₁ = 23x₂

Eigenvector for λ₂ = -25:
(A - λ₂I)x = 0
[¹ + 25] [24] [x₁] = [0]
[0] [¹ + 25] [x₂]=[0]
x₁ + 25x₂ = 0
x₁ = -25x₂
Let P = [x₁ x₂] be the matrix of eigenvectors.

Then P⁻¹AP = D is the diagonal matrix whose diagonal entries are the eigenvalues of A.
P = [x₁ x₂]

= [23 25] [-1 1]
P⁻¹ = (1/48) [-25 -25] [1 23]
b. Diagonal matrix D:


We can predict the diagonal matrix D without further calculations because D is obtained by replacing the eigenvalues of A along the diagonal of a square matrix of size n.

Therefore,

D = [23 0] [0 -25]


c. D = P⁻¹AP:


D = P⁻¹AP
D = (1/48) [-25 -25] [1 23] [¹ 24] [23 -25]
D = (1/48) [-25 -25] [1 23] [23 24(25)] [-23 24(23)]
D = [-575 0] [0 575]

To know more about matrix visit:

https://brainly.com/question/27929071

#SPJ11

Solve the given equation for a. log102 + logıo(2 − 21) = 2 +log10( If there is more than one answer write them separated by commas. x=
Solve the given equation for a. log102 + logıo(2 − 21) = 2 +log10( If there is more than one answer write them separated by commas. x=
Solve the given equation for a. log102 + logıo(2 − 21) = 2 +log10( If there is more than one answer write them separated by commas. x=

Answers

The value of x in the logarithm is 4/2100

What is logarithm?

A logarithm is a mathematical operation that determines how many times a certain number, called the base, is multiplied by itself to reach another number. It is the inverse function to exponentiation, meaning that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. Logarithms relate geometric progressions to arithmetic progressions, and examples are found throughout nature and art, such as the spacing of guitar frets, mineral hardness, and the intensities of sounds, stars, windstorms, earthquakes, and acids

The given logarithm is log₁₀2 + log₁₀(2 − 21) = 2 +log₁₀X

Taking the logarithm of the both sides we have

log[2/1 *2/21) = (100*X)]

4/21 = 100x/1

cross and multiply to have

4/2100 = 2100x/2100

x= 4/210

Learn more about logarithm on https://brainly.com/question/30226560

#SPJ4

PROBLEM!! HIGHLIGHTED IN YELLOW!!
Problem 23 Evaluate the indicated line integral using Green's Theorem. (a) ∮ F.dr
where F = (eˣ² - y, e²ˣ + y) and C is formed by y = 1-x² and y = 0. (b) ∮ [y³ -In(x + 1)] dx + (√y² + 1 + 3x) dy
where C is formed by x = y² and x = 4. (c) ∮ [y sec² x -2] dx + (tan x - 4y²)dy where C is formed by x = 1 - y² and x = 0.

Answers

Green's Theorem relates a line integral around a closed curve to a double integral over the region enclosed by the curve. It states that for a vector field F = (P, Q) and a curve C enclosing a region D.

The line integral ∮ F · dr can be calculated as the double integral over D of (∂Q/∂x - ∂P/∂y) dA, where dA represents the infinitesimal area element.To evaluate a line integral using Green's Theorem, we need to follow these steps:

Determine the vector field F = (P, Q).

Find the partial derivatives ∂P/∂y and ∂Q/∂x.

Calculate the double integral (∂Q/∂x - ∂P/∂y) dA over the region D enclosed by the curve C.

For each part of the problem, the specific vector field F and the curves C formed by the given equations need to be identified. Then, the corresponding partial derivatives can be computed, and the double integral can be evaluated to find the value of the line integral.

In conclusion, Green's Theorem provides a method to evaluate line integrals by converting them into double integrals over the region enclosed by the curve. By following the steps mentioned above, one can calculate the line integrals for each given vector field and curve in the problem using Green's Theorem.

To learn more about Green's Theorem click here : brainly.com/question/30763441

#SPJ11

Find the product of -1 -3i and its conjugate. The answer is a + bi where The real number a equals The real number b equals Submit Question

Answers

Given that the two numbers are -1 - 3i and its conjugate. We need to find the product of these numbers. Let's begin the solution : Solution We know that [tex](a + bi)(a - bi) = a^2]^2 - (bi)^2i^2 = a^2 + b^2[/tex]Where a and b are real numbers

Now, we will calculate the product of -1 - 3i and its conjugate.

[tex]\[\left( { - 1 - 3i} \right)\left( { - 1 + 3i} \right)\] = \[1 + 3i - 3i - 9{i^2}\] = \[1 - 9\left( { - 1} \right)\] = 1 + 9 = 10[/tex]

Therefore, the product of -1 - 3i and its conjugate is 10.We know that the product of -1 - 3i and its conjugate is 10.

So, the real number a equals 5 and the real number b equals 0. The answer is:Real number a = 5Real number b = 0.

To know more about real numbers visit -

brainly.com/question/31715634

#SPJ11

Use Taylors formula for f(x, y) at the origin to find quadratic and cubic approximations of f near the origin f(x, y) = 2 1-3x - 3y

The quadratic approximation is
The cubic approximation is

Answers

We are given the function f(x, y) = 2(1 - 3x - 3y), and we need to find the quadratic and cubic approximations of f near the origin using Taylor's formula.  The quadratic and cubic approximations of f near the origin are the same. Both approximations yield the function 2 - 6x - 6y.

To find the quadratic approximation of f near the origin, we use the second-order Taylor expansion. The quadratic approximation is given by:

Q(x, y) = f(0, 0) + ∇f(0, 0) · (x, y) + (1/2) Hf(0, 0) · (x, y)²,

where f(0, 0) is the value of f at the origin, ∇f(0, 0) is the gradient of f at the origin, Hf(0, 0) is the Hessian matrix of f at the origin, and (x, y)² represents the element-wise square of (x, y).

Calculating the necessary terms:

f(0, 0) = 2(1 - 0 - 0) = 2,

∇f(0, 0) = (-6, -6),

Hf(0, 0) = [[0, 0], [0, 0]].

Substituting these values into the quadratic approximation formula, we have:

Q(x, y) = 2 - 6x - 6y.

For the cubic approximation, we use the third-order Taylor expansion. The cubic approximation is given by:

C(x, y) = f(0, 0) + ∇f(0, 0) · (x, y) + (1/2) Hf(0, 0) · (x, y)² + (1/6) ∇³f(0, 0) · (x, y)³,

where ∇³f(0, 0) is the third derivative of f at the origin.

Calculating the necessary term:

∇³f(0, 0) = 0.

Substituting this value into the cubic approximation formula, we have:

C(x, y) = 2 - 6x - 6y.

In this case, the quadratic and cubic approximations of f near the origin are the same. Both approximations yield the function 2 - 6x - 6y.

Learn more about Taylor expansion here:

https://brainly.com/question/32291388

#SPJ11

The position of a particle, y, is given by y(t) = t³ − 14t² + 9t − 1 where t represents time in seconds. On your written working find the values of the position and acceleration of the particle when its velocity is 0. Using these results sketch the graph of y(t) for 0 ≤ t ≤ 11.

Answers

The position of a particle y, as per the given function, is y(t) = t³ − 14t² + 9t − 1.The acceleration of the particle is represented by the second derivative of the position function with respect to time. So, here is the solution to the given problem;

Position of a particle: The position of a particle y, as per the given function, is

y(t) = t³ − 14t² + 9t − 1.Velocity of the particle:

To find out the velocity of the particle we can take the first derivative of the position function with respect to time. So, the velocity function will be:

v(t) = dy(t)/dt

= 3t² - 28t + 9.

We need to find the values of t where the velocity function is equal to zero.

So, we will equate the above velocity function to zero:0 = 3t² - 28t + 9t = 1/3(28 ± √(28² - 4(3)(9)))/6 = 0.1849 sec and t = 7.4818 sec. Thus, the velocity of the particle is zero at t = 0.1849 sec and t = 7.4818 sec.Position of the particle at t = 0.1849 sec:

To find out the position of the particle at t = 0.1849 sec, we will substitute this value in the position function:y(0.1849)

= (0.1849)³ − 14(0.1849)² + 9(0.1849) − 1y(0.1849)

= -0.7237 units.

Thus, the position of the particle at t = 0.1849 sec is -0.7237 units.

Position of the particle at t = 7.4818 sec:To find out the position of the particle at t = 7.4818 sec, we will substitute this value in the position function:y(7.4818)

= (7.4818)³ − 14(7.4818)² + 9(7.4818) − 1y(7.4818) = -321.096 units. Thus, the position of the particle at t = 7.4818 sec is -321.096 units.

Acceleration of the particle:To find out the acceleration of the particle we can take the second derivative of the position function with respect to time. So, the acceleration function will be:a(t) = d²y(t)/dt²= 6t - 28.Now, we can substitute the values of t where the velocity of the particle is zero:At t = 0.1849 sec:a(0.1849) = 6(0.1849) - 28a(0.1849) = -25.686 sec^-2.At t = 7.4818 sec: a(7.4818) = 6(7.4818) - 28a(7.4818) = 22.891 sec^-2.Graph of y(t) for 0 ≤ t ≤ 1.

To know more about particle  visit:-

https://brainly.com/question/14476224

#SPJ11

Use the following probability distribution to answer the following questions Pa) 0:14 0.1 16 18 5 0.09 0.67 Calculate the mean, Varance, and standard deviation of the distribution You may round your answers to two decimal places, il necessary What is the expected value of the distribution

Answers

The expected value of the distribution is 1.98.

Given probability distribution is, [tex]X  0 1 2 3 4 5[/tex]

Probability [tex](P(X)) 0.14 0.1 0.16 0.18 0.05 0.09 0.67(i) \\Mean (μ) \\= ∑xP(X)X P(X)0 0.14 1 0.1 2 0.16 3 0.18 4 0.05 5 0.09μ \\= ∑xP(X) \\= (0 × 0.14) + (1 × 0.1) + (2 × 0.16) + (3 × 0.18) + (4 × 0.05) + (5 × 0.09) \\= 1.98[/tex]

Therefore, the mean is 1.98.

(ii) Variance (σ2) [tex]= ∑ (x - μ)2P(X)x P(X)x - μP(X)(x - μ)2P(X)0 0 - 1.98 (-1.98)2 0.03842 1 0.1 - 1.98 (-0.98)2 0.08408 2 0.16 - 1.98 (-0.98)2 0.08408 3 0.18 - 1.98 (1.02)2 0.18612 4 0.05 - 1.98 (2.98)2 0.22322 5 0.09 - 1.98 (3.98)2 0.28326 σ2 = ∑ (x - μ)2P(X) \\= 0.03842 + 0.08408 + 0.08408 + 0.18612 + 0.22322 + 0.28326 \\= 0.89918[/tex]

Therefore, the variance is 0.89918.

(iii) Standard deviation

[tex](σ) = √σ2\\= √0.89918\\= 0.9482(approx)[/tex]

Therefore, the standard deviation is 0.9482 (approx).

(iv) Expected value [tex]= E(X) \\= ∑xP(X)x P(X)0 0.14 1 0.1 2 0.16 3 0.18 4 0.05 5 0.09E(X) \\= ∑xP(X) \\= (0 × 0.14) + (1 × 0.1) + (2 × 0.16) + (3 × 0.18) + (4 × 0.05) + (5 × 0.09) \\= 1.98[/tex]

Therefore, the expected value of the distribution is 1.98.

Know more about probability   here:

https://brainly.com/question/25839839

#SPJ11

Evaluate the definite integral. [^; 4 dx 1x + 6

Answers

We need to evaluate the definite integral [tex]\int\frac{dx}{x+6}[/tex]. The definite integral is a mathematical operation that calculates the signed area between the curve of a function and the x-axis over a given interval.

To evaluate the definite integral [tex]\int\frac{dx}{x+6}[/tex], we can apply the fundamental theorem of calculus. The integral represents the area under the curve of the function [tex]\frac{1}{x+6}[/tex] over the interval from x = 0 to x = 4.

To find the antiderivative of [tex]\frac{1}{x+6}[/tex] , we can use the natural logarithm function. Applying the logarithmic property, we can rewrite the integral as ln|x + 6| evaluated from x = 0 to x = 4. The antiderivative is ln|x + 6|.

Applying the fundamental theorem of calculus, the definite integral evaluates to ln|4 + 6| - ln|0 + 6|. Simplifying further, we get ln(10) - ln(6).

The final result of the definite integral is ln(10) - ln(6), which represents the area under the curve of the function [tex]\frac{1}{x+6}[/tex]from x = 0 to x = 4.

Learn more about definite integral here:

brainly.com/question/30760284

#SPJ11

"


A manufacturer has a monthly fixed cost of $70,000 and a production cost of $25 for each unit produced. The product sells for $30 per unit. (Show all your work.) (a) What is the cost function C(x)?

Answers

The cost function is given by C(x) = $70,000 + $25x.

Given data:Fixed monthly cost = $70,000

Production cost per unit = $25

Selling price per unit = $30

Let's assume the number of units produced per month to be x

.The cost function C(x) is given by the sum of the fixed monthly cost and the production cost per unit multiplied by the number of units produced per month.

C(x) = Fixed monthly cost + Production cost per unit × Number of units produced

C(x) = $70,000 + $25x

Hence, the cost function is given by C(x) = $70,000 + $25x.

To know more about cost estimate visit :-

https://brainly.com/question/27993465

#SPJ11

(Getting Matriz Inverses Using Gauss-Jordan Elimination). For each of the following (nonsingular) square matrices A: transform the matrix. (AI), where I is the identity matrix of the same size as A, first to row echelon form, and then to reduced row-echelon form, (AI)→→ (A-¹); write down the inverse matrix A-1 (and make sure to verify your answer by the direct matrix multiplication!): -2 -1 -2 (1) -3 -3. 1 -2 3 -2 1 ; (iii) 2 -2 -2 -2 -1 2 2 -2 1 77-7

Answers

To find the inverse of a given matrix, we will perform Gaussian elimination to transform the matrix into row echelon form and then into reduced row-echelon form.

By doing so, we can obtain the inverse matrix and verify our answer using direct matrix multiplication.

Let's solve each matrix separately:

(i) Matrix A:

-2 -1 -2

-3 -3 1

-2 3 -2

We will perform row operations to convert the matrix into row echelon form:

R2 = R2 + (3/2)R1

R3 = R3 + R1

The resulting matrix in row echelon form is:

-2 -1 -2

0 3 2

0 2 0

Next, we perform row operations to convert the matrix into reduced row-echelon form:

R2 = (1/3)R2

R3 = R3 - (2/3)R2

The resulting matrix in reduced row-echelon form is:

-2 -1 -2

0 1 2/3

0 0 -4/3

Therefore, the inverse matrix A^-1 is:

-2 -1 -2

0 1 2/3

0 0 -4/3

To verify our answer, we can multiply matrix A with its inverse A^-1 and check if the result is the identity matrix:

A * A^-1 = I

(ii) Matrix A:

1 1 1

1 2 -1

2 -1 -2

By following the same steps as in (i), we obtain the inverse matrix A^-1:

1/3 1/3 -1/3

-1/3 1/3 2/3

-1/3 2/3 1/3

To verify our answer, we can multiply matrix A with its inverse A^-1 and check if the result is the identity matrix.

(iii) The matrix provided in (iii) seems to have some formatting issues. Please double-check and provide the correct matrix, so I can assist you with finding its inverse.

Note: The explanation provided above assumes familiarity with the Gaussian elimination method and the concepts of row echelon form and reduced row-echelon form.

To learn more about Gaussian elimination visit:

brainly.com/question/30400788

#SPJ11

You want to obtain a sample to estimate a population proportion. Based on previous evidence, you believe the population proportion is approximately p∗=38%p∗=38%. You would like to be 99.9% confident that your esimate is within 1% of the true population proportion. How large of a sample size is required?

n =

You want to obtain a sample to estimate a population proportion. Based on previous evidence, you believe the population proportion is approximately p∗=27%p∗=27%. You would like to be 99.5% confident that your esimate is within 1.5% of the true population proportion. How large of a sample size is required?

n =

You are interested in estimating the the mean age of the citizens living in your community. In order to do this, you plan on constructing a confidence interval; however, you are not sure how many citizens should be included in the sample. If you want your sample estimate to be within 4 years of the actual mean with a confidence level of 96%, how many citizens should be included in your sample? Assume that the standard deviation of the ages of all the citizens in this community is 22 years.

Sample Size:

Answers

The sample size at 99.9% confidence is 25517

The sample size at 99.5% confidence is 6902

The sample size at 96% confidence is 127

How large of a sample size is required?

99.9% confident within 1% of the true population proportion

The sample size can be calculated using

n = (z² * p * (1-p)) / E²

Where

z = 3.291 i.e. z-score at 99.9% CI

p = 0.38

E = 1% = 0.01

So, we have

n = (3.291² * 0.38 * (1-0.38)) / 0.01²

Evaluate

n = 25517

99.5% confident within 1.5% of the true population proportion

The sample size can be calculated using

n = (z² * p * (1-p)) / E²

Where

z = 2.807 i.e. z-score at 99.5% CI

p = 0.27

E = 1.5% = 0.015

So, we have

n = (2.807² * 0.27 * (1 - 0.27)) / 0.015²

Evaluate

n = 6902

96% confidence level

The sample size can be calculated using

n = (z² * σ²) / E²

Where

z = 2.05 i.e. z-score at 99.5% CI

σ = 22

E = 4

So, we have

n = (2.05² * 22²) /4²

Evaluate

n = 127

Hence, the sample size is 127

Read more about confidence level at

https://brainly.com/question/17097944

#SPJ4

Determine whether the following expression is a vector, scalar or meaningless: (ả × ĉ) · (à × b) - (b + c). Explain fully

Answers

The given expression is not purely a vector or scalar but a combination of both. It is a meaningful expression, but it represents a combination of a scalar and a vector.

The given expression is:

(ả × ĉ) · (à × b) - (b + c)

To determine whether this expression is a vector, scalar, or meaningless, we need to examine the properties and definitions of vectors and scalars.

In the given expression, we have the cross product of two vectors: (ả × ĉ) and (à × b). The cross product of two vectors results in a new vector that is orthogonal (perpendicular) to both of the original vectors. The dot product of two vectors, on the other hand, yields a scalar quantity.

Let's break down the expression:

(ả × ĉ) · (à × b) - (b + c)

The cross product (ả × ĉ) results in a vector, and the cross product (à × b) also results in a vector. Therefore, the first part of the expression, (ả × ĉ) · (à × b), is a dot product between two vectors, which yields a scalar.

The second part of the expression, (b + c), is the sum of two vectors, which also results in a vector.

So overall, the expression consists of a scalar (from the dot product) subtracted from a vector (from the sum of vectors).

Therefore, the given expression is not purely a vector or scalar but a combination of both. It is a meaningful expression, but it represents a combination of a scalar and a vector.

To learn more about vector click here:

brainly.com/question/32068252

#SPJ11

In a BIP problem, which of the following constraints will enforce a contingent relationship between project 1 and 2 such that project 1 can be accepted only if project 2 is also accepted (but project 2 could be accepted without project 1)?

Multiple Choice

x1 + x2 ≤ 1

x1 + x2 = 1

x1 ≤ x2

x2 ≤ x1

None of the answer choices is correct.

Answers

The correct choice is: None of the answer choices is correct as to properly capture the contingent relationship, we need to add an additional constraint beyond the given answer choices.

To enforce a contingent relationship between project 1 and project 2, where project 1 can be accepted only if project 2 is also accepted (but project 2 could be accepted without project 1), we need to introduce additional constraints that explicitly express this relationship.

The given answer choices do not capture this contingent relationship because they only include constraints that specify the relationship between the decision variables (x₁ and x₂) without considering the interdependency between the projects.

In order to enforce the contingent relationship, we would need to introduce a constraint that states that if project 1 is accepted (x₁ = 1), then project 2 must also be accepted (x₂ = 1).

To know more about contingent relationship,

https://brainly.com/question/32596034

#SPJ11

"probability distribution
B=317
3) An electronic company produces keyboards for the computers whose life follows a normal distribution, with mean (150+ B) months and standard deviation (20 + B) months. If we choose a hard disc at random what is the probability that its lifetime will be
a. Less than 120 months?
b. More than 160 months?
c. Between 100 and 130 months?"

Answers

In this probability distribution problem, we are given that the lifetime of keyboards produced by an electronic company follows a normal distribution with a mean of (150 + B) months and a standard deviation of (20 + B) months.

We need to calculate the probability of the keyboard's lifetime being less than 120 months, more than 160 months, and between 100 and 130 months.

a) To find the probability that the keyboard's lifetime is less than 120 months, we can standardize the value using the z-score formula:

z = (x - μ) / σ

where x is the given value, μ is the mean, and σ is the standard deviation. By substituting the given values into the formula, we can calculate the corresponding z-score. Then, using a standard normal distribution table or software, we can find the probability associated with the calculated z-score.

b) To find the probability that the keyboard's lifetime is more than 160 months, we follow a similar process. We standardize the value using the z-score formula and calculate the corresponding z-score. Then, we find the area under the standard normal distribution curve beyond the calculated z-score to determine the probability.

c) To find the probability that the keyboard's lifetime is between 100 and 130 months, we calculate the z-scores for both values using the same formula. Then, we find the difference between the probabilities associated with the z-scores to determine the probability of the lifetime falling within the given range.

Learn more about mean here: brainly.com/question/31101410

#SPJ11

O Find the distance between the points (-2,-3) and (1,-7). Find the equation of the circle that has a radius of 5 and center (2,3). Find an equation of the line with slope and passing through the point (0,-3). - Find the equation of the line passing through the point (-1,-2) and parallel to the line passing through the points (0,0)and (3,5).

Answers

The equation of the line passing through the point (-1,-2) and parallel to the line passing through the points (0,0) and (3,5) is y = 2x.

1. Distance between points (-2,-3) and (1,-7)

To find the distance between two points in a Cartesian plane, we can use the distance formula:

d=√((x2-x1)²+(y2-y1)²)

Using the points (-2,-3) and (1,-7) in the distance formula,

d=√((1-(-2))²+(-7-(-3))²)=√(3²+(-4)²)=√(9+16)=√25=5

Therefore, the distance between the points (-2,-3) and (1,-7) is 5 units.

2. Equation of the circle with a radius of 5 and center (2,3)

The standard equation of a circle is:(x-h)² + (y-k)² = r²where (h,k) is the center of the circle and r is the radius.Substituting the given values, we have:

(x-2)² + (y-3)² = 5²

Expanding and simplifying the equation,(x-2)² + (y-3)² = 25x² - 4x + 4 + y² - 6y + 9 = 25x² + y² - 4x - 6y - 12 = 0

Therefore, the equation of the circle with a radius of 5 and center (2,3) is x² + y² - 4x - 6y - 12 = 0.3.

Equation of the line with slope and passing through the point (0,-3)

To find the equation of a line, we need the slope and a point that lies on the line.

We are given the point (0,-3) and the slope.

Let the slope be m and the equation of the line be y = mx + b.

Substituting the point (0,-3) and the slope into the equation, we have:-3 = m(0) + b-3 = b

Therefore, b = -3.

Substituting the slope and the y-intercept into the equation of the line, we have:

y = mx - 3Therefore, the equation of the line with slope and passing through the point (0,-3) is y = mx - 3.4.

Equation of the line passing through the point (-1,-2) and parallel to the line passing through the points (0,0) and (3,5)

To find the equation of a line parallel to a given line, we use the same slope as the given line.

Let the equation of the line be y = mx + b.

Substituting the point (-1,-2) into the equation and using the slope of the given line, we have:-

2 = m(-1) + bm+m = 0+m = 2

Substituting the slope and the y-intercept into the equation of the line, we have:y = 2x + b

To find the value of b, we substitute the point (-1,-2) into the equation of the line.-2 = 2(-1) + bb = 0

Substituting the value of b into the equation of the line, we have:y = 2x

Therefore, the equation of the line passing through the point (-1,-2) and parallel to the line passing through the points (0,0) and (3,5) is y = 2x.

To know more about Cartesian plane, visit:

https://brainly.com/question/32222840

#SPJ11

Find an equation of the tangent plane to the graph of F(r, s) at the given point:
F(r, s) = 3 1/3^3 - 3r^2 1/s^05, (2, 1,-9)
z =

Answers

An equation of the tangent plane to the graph of F(r, s) at the given point above is z = -12r - 57s + 69.

Given the function F(r, s) = 3(1/3)^3 - 3r^2(1/s)^05. We need to find the equation of the tangent plane to the graph of F(r, s) at the given point (2,1,-9).

The formula to find the equation of the tangent plane at (a,b,c) to the surface z = f(x,y) is given by:

z - c = f x (a,b) (x - a) + f y (a,b) (y - b)

where f x and f y are the partial derivatives of the function f(x,y) with respect to x and y respectively.

So, here, we have, f(r,s) = 3(1/3)^3 - 3r^2(1/s)^05

Differentiating partially with respect to r, we get:

f r = -6r/s^05

Differentiating partially with respect to s, we get:f s = 9/s^6 - 15r^2/s^6

Substituting the values of (r,s) = (2,1) in f(r,s) and the partial derivatives f r and f s , we get:

f(2,1) = 3(1/3)^3 - 3(2)^2(1/1)^05= 3(1/27) - 12 = -11/3

f r (2,1) = -6(2)/1^05 = -12

f s (2,1) = 9/1^6 - 15(2)^2/1^6= -57

The equation of the tangent plane to the graph of F(r, s) at the point (2,1,-9) is given by:

z - (-9) = (-12)(r - 2) + (-57)(s - 1) => z = -12r - 57s + 69.

Hence, the required answer is z = -12r - 57s + 69.

Learn more about functions at:

https://brainly.com/question/31397815

#SPJ11

A 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A salt solution with 1/4 pound of salt per gallon is added to the tank of 4 gal/min, and resulting mixture is drained out at 2gal/min.
(a) Write a differential equation for Q(t) which is valid up until the point at which the tank overflows.
Q'(t) = __
(b) Find the quantity of salt in the tank as it's about to overflow.

Answers

The capacity of the tank (whether it overflows or not) and the specific time when it's about to overflow are not provided in the given question. Without these values, it is not possible to determine the quantity of salt in the tank as it's about to overflow.

To write a differential equation for Q(t), which represents the quantity of water in the tank at time t, we need to consider the rates at which water enters and leaves the tank.

The differential equation for Q(t) can be written as follows:Q'(t) = 4 - 2 This equation represents the net rate of change of water in the tank, which is the difference between the rate at which water is added and the rate at which it is drained out. Since the rate of water being added is 4 gallons per minute and the rate of water being drained out is 2 gallons per minute, the net rate of change is 4 - 2 = 2 gallons per minute.

To find the quantity of salt in the tank as it's about to overflow, we need to consider the initial quantity of salt and the rates at which salt enters and leaves the tank. Initially, the tank contains 20 pounds of salt. The salt solution being added to the tank has a concentration of 1/4 pound of salt per gallon. Since 4 gallons of solution are being added per minute, the rate at which salt enters the tank is (1/4) * 4 = 1 pound per minute.

To find the quantity of salt in the tank as it's about to overflow, we need to consider the time it takes for the tank to reach its capacity. However, the capacity of the tank (whether it overflows or not) and the specific time when it's about to overflow are not provided in the given question. Without these values, it is not possible to determine the quantity of salt in the tank as it's about to overflow.

Learn more about differential equation here: brainly.com/question/1183311
#SPJ11

1. You and friends go to the gym to play badminton. There are 4 courts, and only your group is waiting. Suppose each group on court plays an exponen- tial random time with mean 20 minutes. What is the probability that your group is the last to hit the shower?

Answers

The probability that your group is the last to hit the shower when playing badminton at the gym is given by the expression e^(-3t/20), where t represents the time in minutes.

Step 1: Understand the problem

You and your friends are at the gym playing badminton. There are 4 courts available, and only your group is waiting to play. Each group playing on a court has an exponential random time with a mean of 20 minutes. You want to calculate the probability that your group is the last to finish playing and hit the shower.

Step 2: Define the random variable

Let's define the random variable X as the time it takes for a group to finish playing on a court and hit the shower. Since X follows an exponential distribution with a mean of 20 minutes, we can denote it as X ~ Exp(1/20).

Step 3: Calculate the probability

The probability that your group is the last to hit the shower can be obtained by calculating the survival function of the exponential distribution. The survival function, denoted as S(t), gives the probability that X is greater than t.

In this case, we want to find the probability that all the other groups finish playing and leave before your group finishes. Since there are 3 other groups, the probability can be calculated as:

P(X > t)^3

where P(X > t) is the survival function of the exponential distribution.

Step 4: Calculate the survival function

The survival function of the exponential distribution is given by:

S(t) = e^(-λt)

where λ is the rate parameter, which is equal to 1/mean. In this case, the mean is 20 minutes, so λ = 1/20.

Step 5: Calculate the final probability

Now, we can substitute the values into the probability expression:

P(X > t)^3 = (e^(-t/20))^3 = e^(-3t/20)

This is the probability that all the other groups finish playing and leave before your group finishes.

To learn more about probability, click here: brainly.com/question/12594357

#SPJ11

Could someone please help with these problems! Thanks so much!
Question 21 For any angle,sin+com²0- A) B) Not enough information. D) 0 Question 22" If tanz-1, then cot z A) 1 B) T C) 0 D) Cannot be determined. Question 23 Simplify (-3¹) A) B) C) D) 90 Question

Answers

A geometric shape known as an angle is created by two rays or line segments that meet at a location known as the vertex. The sides of the angle are the rays or line segments. Correct answer is b.

Angles are commonly expressed as radians (rad) or degrees (°).

For any angle,

sin²θ + cos²θ = 1.

sin²θ + cos²θ = 1 - cos²θ.

Therefore, sin²θ - cos²θ = 1 - 2cos²θ. Hence, the answer is (B).

Question 22: If tanz = 1, then z = 45°. Therefore,

cotz = cosz/sinz. When

sinz = 1/√2 and

cosz = 1/√2, then

cotz = 1. Hence, the answer is (A)

.Question 23: Simplify (-3¹). (-3¹) = -3. Therefore, the answer is (A). Thus, the answers for the given questions are- 21. B22. A23. A

To know more about Geometric Shape visit:

https://brainly.com/question/24088263

#SPJ11

For the numbers 1716 and 936

a. Find the prime factor trees

b. Find the GCD

c. Find the LCM

Answers

For the numbers 1716 and 936

b. The GCD is 52.

c. The LCM is 8586.

a. Prime factor trees for 1716 and 936:

Prime factor tree for 1716:

    1716

   /     \

  2       858

         /    \

        2      429

              /    \

             3      143

                   /    \

                  11     13

Prime factor tree for 936:

     936

   /     \

  2       468

         /    \

        2      234

              /    \

             2      117

                   /    \

                  3      39

                        /   \

                       3     13

b. To find the greatest common divisor (GCD) of 1716 and 936, we identify the common prime factors and their minimum powers. From the prime factor trees, we can see that the common prime factors are 2, 3, and 13. Taking the minimum powers of these common prime factors:

GCD(1716, 936) = 2² × 3¹ × 13¹ = 52

c. To find the least common multiple (LCM) of 1716 and 936, we identify all the prime factors and their maximum powers. From the prime factor trees, we can see the prime factors of 1716 are 2, 3, 11, and 13, while the prime factors of 936 are 2, 3, and 13. Taking the maximum powers of these prime factors:

LCM(1716, 936) = 2² × 3¹ × 11¹ × 13¹ = 8586

Therefore, the GCD of 1716 and 936 is 52, and the LCM of 1716 and 936 is 8586.

To learn more about LCM: https://brainly.com/question/233244

#SPJ11

The lengths of the diagonals of a rhombus are 16 and 30
Find the length of a side of the rhombus.

Answers

The length of one side of the rhombus is 17 units. It's worth noting that the length of a side can also be found by using either of the diagonals since they are both equal in a rhombus. However, in this case, we used the Pythagorean theorem to demonstrate the relationship between the diagonals and the sides

In a rhombus, the diagonals intersect at right angles and bisect each other. Let's denote the length of one side of the rhombus as "s."

The diagonals of the rhombus have lengths of 16 and 30 units. Let's label them as "d1" and "d2" respectively.

Since the diagonals bisect each other, they form four congruent right triangles within the rhombus. The sides of these right triangles are half the lengths of the diagonals. Therefore, we can set up the Pythagorean theorem for one of the right triangles:

[tex](d1/2)^2 + (d2/2)^2 = s^2[/tex]

Plugging in the values of the diagonals, we have:

[tex](16/2)^2 + (30/2)^2 = s^2[/tex]

[tex]8^2 + 15^2 = s^2[/tex]

[tex]64 + 225 = s^2[/tex]

[tex]289 = s^2[/tex]

Taking the square root of both sides, we find:

s = √289

s = 17

For more such questions on Pythagoras Theorem

https://brainly.com/question/343682

#SPJ8

You want to fence a rectangular piece of land adjacent to a river. The cost of the fence that faces the river is $10 per foot. The cost of the fence for the other sides is $4 per foot. If you have $1,372, how long should the side facing the river be so that the fenced area is maximum?

Answers

To maximize the fenced area while considering cost, the length of the side facing the river should be 54 feet. Let's denote the length of the side facing the river as 'x' and the length of the adjacent sides as 'y'. The cost of the fence along the river is $10 per foot, so the cost for that side would be 10x.

The cost of the other two sides is $4 per foot, resulting in a combined cost of 8y.

The total cost of the fence is the sum of the costs for each side. It can be expressed as:

Total Cost = 10x + 8y

We know that the total cost is $1,372. Substituting this value, we have:

10x + 8y = 1372

To maximize the fenced area, we need to find the maximum value for xy. However, we can simplify the problem by solving for y in terms of x. Rearranging the equation, we get:

8y = 1372 - 10x

y = (1372 - 10x)/8

Now, we can express the area A in terms of x and y:

A = x * y

A = x * [(1372 - 10x)/8]

To find the maximum area, we can differentiate A with respect to x and set it equal to zero:

dA/dx = (1372 - 10x)/8 - 10x/8 = 0

Simplifying the equation, we get:

1372 - 10x - 10x = 0

1372 - 20x = 0

20x = 1372

x = 68.6

Since the length of the side cannot be in decimal form, we round down to the nearest whole number. Therefore, the length of the side facing the river should be 68 feet.

Learn more about whole number here: https://brainly.com/question/29766862

#SPJ11

You do a poll to see what fraction p of the students participated in the FIT5197 SETU survey. You then take the average frequency of all surveyed people as an estimate p for p. Now it is necessary to ensure that there is at least 95% certainty that the difference between the surveyed rate p and the actual rate p is not more than 10%. At least how many people should take the survey?

Answers

The required sample size necessary for the survey is given as follows:

n = 97.

What is a confidence interval of proportions?

A confidence interval of proportions has the bounds given by the rule presented as follows:

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which the variables used to calculated these bounds are listed as follows:

[tex]\pi[/tex] is the sample proportion, which is also the estimate of the parameter.z is the critical value.n is the sample size.

The confidence level is of 95%, hence the critical value z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so the critical value is z = 1.96.

The margin of error is obtained as follows:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

We have no estimate, hence:

[tex]\pi = 0.5[/tex]

Then the required sample size for M = 0.1 is obtained as follows:

[tex]0.1 = 1.645\sqrt{\frac{0.5(0.5)}{n}}[/tex]

[tex]0.1\sqrt{n} = 1.96 \times 0.5[/tex]

[tex]\sqrt{n} = 1.96 \times 5[/tex]

[tex](\sqrt{n})^2 = (1.96 \times 5)^2[/tex]

n = 97.

More can be learned about the z-distribution at https://brainly.com/question/25890103

#SPJ4

To test the hypothesis that the population mean mu=6.0, a sample size n=15 yields a sample mean 6.346 and sample standard deviation 1.748. Calculate the P- value and choose the correct conclusion. Yanıtınız: O The P-value 0.383 is not significant and so does not strongly suggest that mu>6.0. O The P-value 0.383 is significant and so strongly suggests that mu>6.0. O The P-value 0.028 is not significant and so does not strongly suggest that mu>6.0. O The P-value 0.028 is significant and so strongly suggests that mu>6.0. O The P-value 0.016 is not significant and so does not strongly suggest that mu>6.0. O The P-value 0.016 is significant and so strongly suggests that mu>6.0. O The P-value 0.277 is not significant and so does not strongly suggest that mu>6.0. O The P-value 0.277 is significant and so strongly suggests that mu>6.0. O The P-value 0.228 is not significant and so does not strongly suggest that mu>6.0. O The P-value 0.228 is significant and so strongly suggests that mu>6.0.

Answers

The P-value 0.228 is not significant and so does not strongly suggest that mu > 6.0. Option 9

How to determine the correct conclusion

First, calculate the p-value and compare it to the given significance level

The observed value (6.346) if the null hypothesis is true (mu = 6.0).

To calculate the p - value, we have;

t =[tex]\frac{mean - mu}{\frac{s}{\sqrt{n} } }[/tex]

Such that the parameters are;

s is the standard deviationn is the sample size

Substitute the values, we have;

= (6.346 - 6.0) / (1.748 /√15)

expand the bracket and find the square root, we have;

=  0.346 / 0.451

Divide the values

=  0.767

The degree of freedom is given as;

(n -1)= (15 -1 ) = 14

Then, we have that the p- value is 0.228.

The P-value 0.228 is not significant and so does not strongly suggest that mu > 6.0.

Learn more about standard deviation at: https://brainly.com/question/24298037

#SPJ4

Is there a statistically significant relationship between the 2 variables,pattern or direction and the strength

Do men and women differ in their views on capital punishment?

Men Women

Favor 67.3% 59.6%

Oppose 32.7% 40.4%

Value DF P value

Chi Square 13.758 1 .000

Answers

Based on the information provided, there is a statistically significant relationship between the two variables.

How to know if there is a statistically significant relationship between the two variables?

The relationship between two variables and whether these variables are significant or not is often determined by the p-value. The general rule is that the p-value should be smaller than 0.05 for a variable to be considered significant.

In this case, the p-value is 0.0, which shows its value is smaller than 0.05 and therefore it is significant.

Learn more about variables in https://brainly.com/question/15078630

#SPJ4

Answer quickly pls…..

Answers

The intermediate step in the form (x + a)² = b after completing the square is (x + 3)² = -9

To complete the square for the equation x² + 18 = -6x, we follow these steps:

Move the constant term to the other side of the equation:

x² + 6x + 18 = 0

Divide the coefficient of the linear term (6) by 2 and square the result:

(6/2)² = 9

Add the result from step 2 to both sides of the equation:

x² + 6x + 9 + 18 = 9

x² + 6x + 9 = -9

The intermediate step in the form (x + a)² = b after completing the square is:

(x + 3)² = -9

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ1

consider the compound beam shown in (figure 1). suppose that p1 = 840 n , p2 = 1150 n , w = 410 n/m , and point e is located just to the left of 840 n force. follow the sign convention.

Answers

Using the quadratic formula to solve quadratic equation, we ge.t L1 = 0.266 m and L2 = 1.23 m.

The compound beam shown in figure 1 is shown below:

Given:

p1 = 840

N p2 = 1150

Nw = 410 N/m.

Point e is located just to the left of 840 N force.

Force equilibrium: ΣFy = 0R1 + R2 = p1 + p2 + wL ----(1)

Moment equilibrium:ΣMy = 0

p1 (L1 + L2) + p2 L2 + wL²/2 = R2 L2 + R1 L1 ----(2)

Here, the length of the first span is L1, the length of the second span is L2, and the total length of the beam is L.

Since point e is located just to the left of 840 N force, it is the location where the first span meets the second span.

Therefore, L1 + e = L2 R1 = ? R2 = ?

Using equation (1),

R1 + R2 = p1 + p2 + wLR1 + R2

= 840 + 1150 + 410 * LR1 + R2

= 1990 + 410 LR2 - R1

= wL R2 - R1

= 410 L - R1

Substituting equation (5) into equation (4),

R1 + 410 L - R1 = 410 LR = 410 L/2R = 205 L.

Therefore, R1 = 205 L - 840 N and

R2 = 1150 + 205 L - 410 L= -255 L + 1150 N.

Now, substituting the values of R1 and R2 into equation (2),

P1 (L1 + L2) + P2 L2 + wL²/2

= (-255 L + 1150 N) L2 + (205 L - 840 N) L1840 (L1 + L2) + 1150 L2 + 410 L²/2

= -255 L³ + 1150 L² + 205 L² - 840 L1 + 840 L1 - 205 L² + 255 L³ 840 L1 + 1395 L² + 895 L - 410 L²/2

= 0L1 + 2.59 L² + 1.06 L - 0.48 = 0.

Using the quadratic formula to solve this quadratic equation, we get L1 = 0.266 m and L2 = 1.23 m.

To know more about quadratic visit:

https://brainly.com/question/22364785

#SPJ11

Other Questions
A cycle graph Cn is a connected graph with n vertices, such that each vertex is adjacent to exactly two other vertices. Prove the statement, "Every Cn has exactly n edges," in two ways:(a) directly.(b) by induction. Given the rational function 1(x)= x-9 /x+7, find thefollowing:(a) The domain.(b) The horizontal andvertical asymptotes.(c) The x-and-y-intercepts.(d) Sketch a complete graph of the function. what is the light intensity (in terms of i0i0 ) at point aa ? which of the following cells and their function are correctly matched? dendritic cells activate the immune system Suppose that the utility function is: U(x1, x2) = min{x, x2} ** Part a (5 marks) Focus on a consumption bundle A = (1, 1). Find the utility of this consumption bundle. ** Part b (5 marks) Show that A B C where B = (1, 3), C = (3, 1). ** Part c (5 marks) Find the demand for x given (P1, P2, m) = (2, 1, 10). (Hint: the tangency condition fails here. Use your intuition and try to sketch a few ICs.) Tofu Burgers are sold in a perfectly competitive market for $10 per burger. A-One Tofu Burgers is a company producing tofu burgers using a building, a tofu machine, some labor, and other miscellaneous items. The price of these items is: Building: $300 per day on a long-term lease Machine: $200 per day rental on a long-term lease Wages: $50 per day per worker Miscellaneous items: $5 per tofu burger When the company hires 5 workers to use along with the other inputs into production, the total output is 1000 tofu burgers a day. a. Given the information above CALCULATE (BE SURE TO SHOW YOUR WORK): 1. total fixed costs (3 points) 2. total variable costs (3 points) 3. average total costs for 1000 tofu burgers (3 points) 4. average fixed costs for 500 tofu burgers (3 points) b. Assume the marginal cost of producing the 1000th burger is $7.50 Explain whether the firm should increase or decrease the production of tofu burgers to maximize profit. (4 points) c. Calculate (SHOW YOUR WORK) the profit for the firm producing and selling 1000 tofu burgers. (4 points) How many Treasury zero-coupon bonds can be created from a T-bond with 30 years to maturity, coupon rate of 9.50%, yield to maturity of 9.55%, face value of $10,000, paying coupons semiannually?3061153160 Provide a paragraph with at least five sentences thatexplain "Place Implications." AND DEFINE (a) Operational Locale,(b) Distribution Channels, and (c) Factors Affecting Channelchoice You've collected the following information about a company: Line item Value Sales 510 Costs 408 Depreciation 40 Interest 25 The company's average tax rate is 14%. Attempt 1/6 for 5 pts. Part 1 Use Excel to find net income. What is net income (profit after taxes) for the year? + decimals How does the solow model imply higher growth rate in poorercountries? How is this ineffective if the countries do not sharethe same steady state? Question 17 1 pts Grace owns a condominium in downtown Miami, which she rents out to a tenant for $2,000 per month. This year the maintenance and repair expenses for the condominium totaled $50,000. A a patient with a herniated disk is prescribed conservative treatment. the nurse includes instruction in which activities based on this treatment plan? select all that apply. Problem 8-19 (Algo) Cash Budget; Income Statement; Balance Sheet [LO8-2, LO8-4, LO8-8, LO8-9, LO8- 10] Minden Company is a wholesale distributor of premium European chocolates. The company's balance s Write a literature review on cybersecurity in supply chainmanagement (minimum 1000 words please) Suppose wealth consists of just two assets; 1 and 2, i.e., W =1 + 2 = 1W + 2W, where = W , is the share of the firstasset in the wealth portfolio Find the volume of the region between the graph of f(x, y) = 9 - x - y and the xyplane. volume = A population of plants has a mixture of individuals with short, wide flowers and long, narrow flowers. Short, wide flowers are more easily pollinated by bees while long, narrow flowers are more easily pollinated by hummingbirds. Over time, the population becomes dominated by long, narrow flowers.Which statement ,begin emphasis,best,end emphasis, explains the increase in number of plants with long, narrow flowers over time?Answer options with 4 options.The environment favors short, wide flowers instead of long, narrow flowers.B.The gene for short, wide flowers is mutated into a gene for long, narrow flowers.C.Individuals with long, narrow flowers are stronger than individuals with short, wide flowers.D.Individuals with long, narrow flowers produce more seeds than individuals with short, wide flowers. The Maintenance Head of IVECO (Ethiopia) wants to know whether or not there is a positive relationship between the annual maintenance cost of their new bus assemblies and their age. He collects the following data: 2 682 3 471 4 708 5 1,049 6 224 7 320 8 651 9 1094 6058 Bus 1 Maintenance 859 cost per birr (Y) Age of years 5 3 9 11 2 1 8 12 Required a. Plot the scatter diagram b. What kind of relationship exists between these two variables? c. Determine the simple regression equation d. Estimate the annual maintenance cost for a five-year-old bus As a preliminary analysis, a simple linear regression model was done. The fitted regression equation was: Y=2259-1418 X. In the analysis of variance table, F value was 114. Is price a good predictor of sales at alpha 0.05? OYes, the intercept is very large. O No, the slope is negative. O yes, the p-value is small. O Not enough information. 1. What would your answers be if:a.. You were asked to identify and summarize three of the six basicfeatures of performance management? 3 marks