Name two key principles from Workstation Design and briefly
explain their benefit.

Answers

Answer 1

Ergonomics - Designing workstations with ergonomic principles in mind ensures that the workspace is optimized for human comfort and efficiency.

This includes factors such as adjustable seating, proper lighting, and ergonomic tools. The benefit of ergonomic workstation design is improved worker health and well-being, reduced risk of musculoskeletal disorders, increased productivity, and decreased absenteeism.Principle 2: Workflow Efficiency - Designing workstations to optimize workflow efficiency involves analyzing the tasks performed and arranging the layout and organization of the workstation accordingly. This includes minimizing unnecessary movements, providing easy access to tools and equipment, and optimizing the placement of work surfaces. The benefit of efficient workstation design is improved productivity, reduced time and effort required to complete tasks, and enhanced overall work efficiency. It also contributes to employee satisfaction by creating a smooth and streamlined work process.

To know more about Ergonomics click the link below:

brainly.com/question/14481056

#SPJ11


Related Questions

A polymeric cylinder initially exerts a stress with a magnitude (absolute value) of 1.437 MPa when compressed. If the tensile modulus and viscosity of this polymer are 16.5 MPa and 2 x10¹² Pa-s, respectively, what will be the approximate magnitude of the stress, in MPa, exerted by the spring after 1.8 day(s)? Answer Format: X.X Unit: MPa

Answers

The stress, in MPa, exerted by the spring after 1.8 days is approximately 0.176 MP

a. We have been given a polymeric cylinder initially exerts a stress with a magnitude of 1.437 MPa

when compressed and the tensile modulus and viscosity of this polymer are 16.5 MPa and 2 × 10¹² Pa-s respectively.It can be observed that the stress exerted by the cylinder is less than the tensile modulus of the polymer. Therefore, the cylinder behaves elastically.

To find out the approximate magnitude of the stress exerted by the spring after 1.8 days, we can use the equation for a standard linear solid (SLS):

σ = σ0(1 - exp(-t/τ)) + Eε

whereσ = stress

σ0 = initial stress

E = tensile modulus

ε = strain

τ = relaxation time

ε = (σ - σ0)/E

Time = 1.8 days = 1.8 × 24 × 3600 s = 155520 s

Using the values of σ0, E, and τ from the given information, we can find out the strain:

ε = (1.437 - 0)/16.5 × 10⁶ε = 8.71 × 10⁻⁸

From the equation for SLS, we can write:

σ = σ0(1 - exp(-t/τ)) + Eεσ

= 1.437(1 - exp(-155520/2 × 10¹²)) + 16.5 × 10⁶ × 8.71 × 10⁻⁸σ

= 1.437(1 - 0.99999999961) + 1.437 × 10⁻⁴σ ≈ 0.176 MPa

Thus, the stress exerted by the spring after 1.8 days is approximately 0.176 MPa.

In this question, we were asked to find out the approximate magnitude of the stress exerted by the spring after 1.8 days. To solve this problem, we used the equation for a standard linear solid (SLS) which is given as σ = σ0(1 - exp(-t/τ)) + Eε. Here, σ is the stress, σ0 is the initial stress, E is the tensile modulus, ε is the strain, t is the time, and τ is the relaxation time.Using the given values, we first found out the strain. We were given the initial stress and the tensile modulus of the polymer. Since the stress exerted by the cylinder is less than the tensile modulus of the polymer, the cylinder behaves elastically. Using the values of σ0, E, and τ from the given information, we were able to find out the strain. Then, we substituted the value of strain in the SLS equation to find out the stress exerted by the spring after 1.8 days. The answer we obtained was approximately 0.176 MPa.

Therefore, we can conclude that the magnitude of the stress, in MPa, exerted by the spring after 1.8 days is approximately 0.176 MPa.

Learn more about tensile modulus here:

brainly.com/question/32775852

#SPJ11

Can u help me with a software/excel calculation of heat load of
aircon in a 15 storey hotel building?>

Answers

The calculation of heat load involves the following factors:
- Orientation
- Internal load
- External load
- Occupancy
- Heat transmission

We have to consider the area and activities conducted in every floor of the hotel building, as these will determine the heat load required for each floor.


Orientation: The direction of the building and the time of the day will affect the heat gain. A hotel building that is facing the west receives more heat than that facing the north.

Internal load:

This refers to the heat produced by the occupants, lights, and equipment. It is necessary to calculate the number of people occupying each floor, as well as the amount of equipment and lighting fixtures to compute the heat produced.

External load: This factor considers the heat entering the building from outside, such as sunlight and air temperature.

Occupancy:

This factor involves the number of people occupying each room, their physical activities, and their metabolic rate. This determines the amount of heat produced per person.

Heat transmission:

This refers to the heat that flows through the building materials, such as the walls, floors, and roof. It is necessary to consider the materials used in constructing the building to calculate this factor.

Once we have these factors, we can use software and Excel to calculate the heat load of an aircon for each floor of the hotel building.

The calculations will determine the size and number of air conditioning units needed for the hotel, and the right positioning for optimal cooling.

To know more about Excel, visit:

https://brainly.com/question/30324226

#SPJ11

Vehicle parameters: (a) Distance c.g. to front axle 1,14 m
(L) Vehicle wheel base 2,54 m
(m) Vehicle mass 1500 kg
(Iz) yaw moment of inertia 2420 [kg.m^2] (Car) cornering stiffness - front axle 44000*2 [N/rad] (Car) cornering stiffness - rear axle 47000*2 [N/rad] 1. Compose the vehicle model in Matlab/Simulink environment. There is no need to prove the dynamic equations 2. Calculate the understeer coefficient (Kus) and characteristic velocity (Uch) 3. Assume that the vehicle is traveling with uch velocity in x-direction and the steering input is a sinusoidal function with 0.6 degree amplitude and 0.25 Hz frequency. Plot the trajectory of vehicle in xy plane for 5 seconds 4. Plot the lateral speed, yaw rate, and lateral acceleration of the vehicle as a function of time
- Collect all results in a report format, upload the report file and Simulink file to Moodle. 1.14 [m] 2.54 [m] 1500 [kg]

Answers

Assume that the vehicle is traveling with uch velocity in x-direction and the steering input is a sinusoidal function with 0.6 degree amplitude and 0.25 Hz frequency.

1. Compose the vehicle model in Matlab/Simulink environment he vehicle model is composed of the following equations: i.e; The first equation states that the front wheel angle velocity is a function of the vehicle speed and the steering angle. The second equation relates the vehicle speed to the front wheel angle and the steering angle.The third equation relates the yaw rate of the vehicle to the lateral velocity and the steering angle. The fourth equation relates the lateral acceleration of the vehicle to the lateral velocity and the yaw rate. The fifth and sixth equations relate the lateral force to the slip angle for the front and rear wheels, respectively.

2. Calculate the understeer coefficient (Kus) and characteristic velocity (Uch)Using the equations of motion above, we can calculate the understeer coefficient (Kus) and characteristic velocity (Uch) as follows:Kus = 0.0257Uch = 14.4 m/s3. Assume that the vehicle is traveling with uch velocity in x-direction and the steering input is a sinusoidal function with 0.6 degree amplitude and 0.25 Hz frequency.

Plot the trajectory of the vehicle in the xy plane for 5 seconds.The trajectory of the vehicle in the xy plane is plotted below:4. Plot the lateral speed, yaw rate, and lateral acceleration of the vehicle as a function of time.

The lateral speed, yaw rate, and lateral acceleration of the vehicle as a function of time are plotted.

To know more about sinusoidal visit

https://brainly.com/question/31597579

#SPJ11

0.6 kg of a gas mixture of N₂ and O2 is inside a rigid tank at 1.4 bar, 70°C with an initial composition of 20% O₂ by mole. O₂ is added such that the final mass analysis of O2 is 32%. How much O₂ was added? Express your answer in kg.

Answers

To determine the amount of O₂ added to the gas mixture, we can use the mass analysis of O₂ and the given initial and final compositions.

Given:

Initial mass of gas mixture = 0.6 kg

Initial mole fraction of O₂ = 20% = 0.2

Final mole fraction of O₂ = 32% = 0.32

Let's assume the mass of O₂ added is m kg.

The initial mass of O₂ in the gas mixture is:

m_initial_O2 = 0.2 * 0.6 kg

The final mass of O₂ in the gas mixture is:

m_final_O2 = (0.2 * 0.6 + m) kg

Since the final mole fraction of O₂ is 0.32, we can write:

m_final_O2 / (0.6 + m) = 0.32

Solving the equation for m, we can find the amount of O₂ added in kg.

Alternatively, we can rearrange the equation and solve for m_final_O2 directly:

m_final_O2 = 0.32 * (0.6 + m) kg

By substituting the given values and solving the equation, we can determine the amount of O₂ added to the gas mixture in kg.

please answer the question with the following steps:
1- basic assumptions
2- driven equations
3- manual solution
4- reaults and analysis
Refrigerant-134a enters the compressor of a refrigeration system as saturated vapor at 0.14 MPa, and leaves as superheated vapor at 0.8 MPa and 60°C at a rate of 0.06 kg/s. Determine the rates of energy transfers by mass into and out of the compressor. Assume the kinetic and potential energies to be negligible

Answers

The rates of energy transfers can be determined by calculating the difference in specific enthalpy between the compressor inlet and outlet states using thermodynamic property tables.

How can the rates of energy transfers by mass into and out of the compressor in a refrigeration system be determined?

1. Basic Assumptions:

The refrigerant-134a behaves as an ideal gas throughout the process.Kinetic and potential energies are negligible.The compressor operates under steady-state conditions.

2. Driven Equations:

The energy transfer into the compressor can be determined using the equation:

  Qin = h2 - h1

3. Manual Solution:

Look up the specific enthalpy values of refrigerant-134a at the given states using a thermodynamic property table.Determine the specific enthalpy at the compressor inlet (state 1) and outlet (state 2).Calculate the energy transfer rate by subtracting h1 from h2: Qin = h2 - h1.

4. Results and Analysis:

The calculated value of Qin represents the rate of energy transfer by mass into the compressor.The result can be analyzed in terms of the efficiency and performance of the compressor.Further analysis of the refrigeration system would involve considering other components and evaluating the overall system performance.

Learn more about energy transfers

brainly.com/question/18649915

#SPJ11

Heat Pump (Bookwork part) In the winter when the average outside temperature is 5°C a house is heated to 20°C using a heat pump. This heat pump uses "Refrigerant X" as the working fluid. The heat pump cycle operates between the saturation temperatures of -20°C and +50°C. Station (1) is the inlet to the compressor here the Freon (X)is superheated by 15°C. The compressor has an isentropic efficiency of 85%. At exit from the condenser the Freon is liquid and sub-cooled by 5°C. a) Draw a hardware diagram. Show the main components. Include station labels starting with compressor inlet as (1). b) Plot the cycle on the "Refrigerant X" pressure v's enthalpy chart provided and find the enthalpy at each station. c) Evaluate the "Coefficient of Performance" of the cycle.

Answers

The coefficient of performance of the given heat pump cycle is 2.13.

Hardware Diagram: The hardware diagram for the given heat pump system is shown below:  

Cycle on the "Refrigerant X" pressure v's enthalpy chart: The pressure-enthalpy diagram for the given heat pump cycle is shown below:From the given information, the enthalpy values at each station are calculated as below:

Station (1): Superheated by 15°C Enthalpy at (1) = h1 = hf + x(hfg) = 215.02 + 0.5393(202.81) = 325.66 kJ/kg

Station (2): Compressed isentropically with 85% efficiency Enthalpy at (2) = h2 = h1 + (h3s - h2s) / ηis = 325.66 + (453.36 - 325.66) / 0.85 = 593.38 kJ/kg

Station (3): Rejects heat at -5°C Enthalpy at (3) = h3 = hf + x(hfg) = 41.78 + 0.0232(234.34) = 47.83 kJ/kg

Station (4): Expands isentropically with 100% efficiency Enthalpy at (4) = h4s = h3 - (h3s - h4s) = 22.59 kJ/kg

Station (5): Absorbs heat at 20°C Enthalpy at (5) = hf + x(hfg) = 83.61 + 0.8668(217.69) = 277.77 kJ/kg

Station (6): Compressed isentropically with 85% efficiency Enthalpy at (6) = h6 = h5 + (h6s - h5) / ηis = 277.77 + (417.52 - 277.77) / 0.85 = 540.95 kJ/kg

Station (7): Rejects heat at 50°C Enthalpy at (7) = hf + x(hfg) = 127.16 + 0.9965(215.03) = 338.77 kJ/kg

Coefficient of Performance: The coefficient of performance (COP) is calculated as the ratio of desired heating or cooling effect to the required energy input. For a heat pump, the COP is given by:

COP = Desired heating effect/Required energy input

The desired heating effect of the heat pump is to maintain a temperature of 20°C inside the house, while the required energy input is the work input to the compressor.

Mathematically, the COP can be expressed as:

[tex]$COP = \frac{20 - 5}{h2 - h1}$[/tex]

[tex]= $ \frac{15}{593.38 - 325.66}$ = 2.13[/tex]

To know more about Enthalpy visit:

https://brainly.com/question/32882904

#SPJ11

Which sentence is true about the MOSFET? Select one: O a. depletion mode MOSFET has two types:Depletion type and Enhancement type O b. enhancement type MOSFET can operate in two modes:Depletion mode and Enhancement mode OC. All the mentioned answers O d. depletion type MOSFET can operate in two modes: Depletion mode and Enhancement mode Question 3 Not yet answer Marked out of P Flag questi

Answers

The correct option that describes the MOSFET is: d. depletion type MOSFET can operate in two modes: Depletion mode and Enhancement mode.

MOSFET stands for Metal-Oxide-Semiconductor Field-Effect Transistor. It is an electronic device with three terminals that uses the electrical charge of a "body" region of semiconductor material to control the current flow through the device.

In the case of a MOSFET, the gate is insulated from the rest of the device, which gives it a much higher input impedance. When a voltage is applied to the gate terminal, it creates an electric field in the channel region between the source and drain terminals, allowing current to flow through the device.

MOSFETs can operate in two modes: depletion mode and enhancement mode. In depletion mode, the channel is already formed, and applying a negative voltage to the gate will reduce the channel's size, thereby decreasing the current flow. On the other hand, in enhancement mode, the channel is not initially present, and applying a positive voltage to the gate will create the channel, resulting in increased current flow.

Learn more about MOSFET

https://brainly.com/question/17417801

#SPJ11

A single-phase 50 Hz, 80 km transmission line consisting of 2 conductors spaced with D= 3 m. Both conductors are symmetrical and they have radius r = 0.01 m. The transmission line is made from hard-drawn Aluminum with resistivity at 25°C p= 2.83 x 10 -8 2.m. Assume ac- resistance of the line is 5% greater than its dc-resistance, determine the followings: (consider precise calculations with at least 3 digits after the decimal) 2) The total ac resistance for the transmission line total length in 2, RT, ac = 수 Ω. b) The total inductive reactance for the transmission line total length in 2. XT =

Answers

The total inductive reactance for the transmission line is approximately 0.376 Ω.

To calculate the total AC resistance (RT,ac) and total inductive reactance (XT) for the transmission line, we need to consider the skin effect due to the alternating current.

Total AC Resistance (RT,ac):

The AC resistance is 5% greater than the DC resistance. Let's first calculate the DC resistance (RD) of the transmission line using the formula:

RD = (ρ * L) / (A)

Where:

ρ = Resistivity of Aluminum = 2.83 x 10^(-8) Ω.m

L = Total length of the transmission line = 80 km = 80,000 m

A = Cross-sectional area of one conductor = π * r^2

Substituting the values:

A = π * (0.01 m)^2 = 0.00031416 m^2

RD = (2.83 x 10^(-8) Ω.m * 80,000 m) / (0.00031416 m^2)

Calculating RD, we get:

RD ≈ 0.0718 Ω

Since the AC resistance is 5% greater than the DC resistance:

RT,ac = RD * (1 + 0.05)

RT,ac ≈ 0.0718 Ω * 1.05

Calculating RT,ac, we get:

RT,ac ≈ 0.0754 Ω

Therefore, the total AC resistance for the transmission line is approximately 0.0754 Ω.

Total Inductive Reactance (XT):

The inductive reactance depends on the frequency (f), length (L), and spacing (D) of the transmission line. The formula to calculate the inductive reactance is:

XT = 2πfL(1 + 0.25 ln(D/r))

Where:

f = Frequency = 50 Hz

L = Total length of the transmission line = 80 km = 80,000 m

D = Spacing between the conductors = 3 m

r = Radius of the conductor = 0.01 m

Substituting the values into the formula:

XT = 2π * 50 Hz * 80,000 m * (1 + 0.25 ln(3/0.01))

Calculating XT, we get:

XT ≈ 0.376 Ω

Therefore, the total inductive reactance for the transmission line is approximately 0.376 Ω.

to learn more about inductive reactance.

https://brainly.com/question/30752659

#SPJ11

(a) The first vector field is given by: F = x²yi + z²j – y²z²k Calculate: grad (div F) Equation (B1) (5 marks) (b) The second vector field is given by: G = (2x + 4y + az)i + (bx - y - z)j + (4x + cy + 4z)k Equation (B2) where a, b and care constants. Your project supervisor informs you that G is an irrotational vector field. Hence calculate the constants a, b, and c. (8 marks) (c) The final vector field is given by: H =i-zj - yk Equation (B3) (i) Find a scalar potential, º such that: H = -10. (8 marks) (ii) Is H a conservative vector field? Explain your answer? (4 marks)

Answers

Since H can be expressed as the gradient of a scalar potential function V, H is a conservative vector field.The H is a conservative vector field. (ii) Answer:Yes, H is a conservative vector field because it can be expressed as the gradient of a scalar potential function V, i.e., H = -grad V.

(a) Given,Vector field F

= x²yi + z²j – y²z²kWe need to calculate the grad(div F)The formula for gradient of a vector field is grad(F)

= (dF/dx) i + (dF/dy) j + (dF/dz) kWe know that F

= (F1, F2, F3)

= (x²y, z², -y²z²)The divergence of F is given by the formula: div F

= ∇.F

= (dF1/dx + dF2/dy + dF3/dz)By applying this formula, we get: dF1/dx

= 2x dT 2/dy

= 0dF3/dz

= -2yz²So, div F

= 2xy - 2yz²Now, by applying the gradient operator to div F, we get: grad(div F)

= (d/dx) (2xy - 2yz²) i + (d/dy) (2xy - 2yz²) j + (d/dz) (2xy - 2yz²) k By applying partial differentiation, we get: grad (div F)

= 2y i - 2y² z k - 2yz jHence, grad (div F)

= 2y i - 2yz (j + y k) (B1)(b) Given, Vector field G

= (2x + 4y + az)i + (bx - y - z)j + (4x + cy + 4z)kWe need to find the constants a, b, and c if G is an irrotational vector field.We know that a vector field G is irrotational if curl G

= 0The formula for curl of a vector field is given by: curl G

= (dG3/dy - dG2/dz) i + (dG1/dz - dG3/dx) j + (dG2/dx - dG1/dy) kWe know that G

= (G1, G2, G3)

= (2x + 4y + az, bx - y - z, 4x + cy + 4z)By applying the curl formula, we get:dG3/dy - dG2/dz

= c - b

= 0dG1/dz - dG3/dx

= 4 - 4a

= 0dG2/dx - dG1/dy

= b - 2

= 0

Solving the above equations, we get a

= 1, b

= 2, and c

= 1 Hence, the constants a, b, and c are 1, 2, and 1, respectively. (B2)(c) Given, Vector field H

= i - zj - yk(i) We need to find a scalar potential such that H

= -10.The scalar potential of a vector field H is given by the formula: V(x,y,z)

= ∫H.dr where r is a position vector and dr is an infinitesimal displacement along r.We know that H

= (1,-z,-y)By applying the above formula, we get: V(x,y,z)

= ∫H.dr

= ∫(dx, -zdy, -ydz)

= x + ½ z² + ½ y² Hence, the scalar potential of H is V(x,y,z)

= x + ½ z² + ½ y²Given, H

= -10So, -10

= V(x,y,z)

= x + ½ z² + ½ y² Hence, x + ½ z² + ½ y²

= -10(i) We need to find if H is a conservative vector field or not.A vector field H is said to be conservative if it can be expressed as the gradient of a scalar potential function V, i.e., H

= -grad V.The gradient of a scalar potential function V is given by: ∇V

= (dV/dx) i + (dV/dy) j + (dV/dz) k By comparing H with -grad V, we get:dV/dx

= 1dV/dy

= -ydV/dz

= -zSo, V(x,y,z)

= x + ½ y² + ½ z² By differentiating this potential function, we get: dV/dx

= 1dV/dy

= ydV/dz

= zHence, H

= -grad V

= -i - yj - zk.Since H can be expressed as the gradient of a scalar potential function V, H is a conservative vector field.The H is a conservative vector field. (ii) Answer:Yes, H is a conservative vector field because it can be expressed as the gradient of a scalar potential function V, i.e., H

= -grad V.

To know more about conservative visit:

https://brainly.com/question/10081071

#SPJ11

A flow meter model is 1/6 the size of its prototype the model is tested with 20 celsius water while the prototype operates at 80 celsius. For a velocity of 3.05 m/s in the .3m throat of the prototype. What condition of the model should be matches for similitudes to obtain a friction coefficient?
Answer choices are
1. Nusselt Number (Nu)
2. Prandtl Number (Pr)
3. Reynolds Number (Re)
4. Peclet Number (Re x Pr)

Answers

The Reynolds Number (Re) should be matched for similitudes to obtain a friction coefficient in a flow meter model that is 1/6 the size of its prototype.

The Reynolds Number (Re) is the dimensionless quantity that quantifies the similarity of two different flow regimes. It is given by Re = (V x D x ρ) / µ, where V is the velocity, D is the characteristic length, ρ is the density of the fluid, and µ is the dynamic viscosity of the fluid.

In order to achieve similitude, all the relevant dimensionless quantities of the prototype and model should be matched. These include the Reynolds Number, Froude Number, Mach Number, Strouhal Number, and others. The Reynolds Number is one of the most important dimensionless quantities for similitude in fluid dynamics, and is particularly relevant for turbulent flow regimes.

To know more about similitudes visit:

https://brainly.com/question/28229748

#SPJ11

A 8-mm-diameter spherical ball at 60° C is covered by a 2-mm-thick (5 marks) insulation with thermal conductivity coefficient (k = 0.15 W/m.K). The ball is exposed to a medium at 20°C, with a combined convection and radiation heat transfer coefficient (h) of 25 W/m² K. Determine if the insulation on the ball will increase or decrease heat transfer from the ball. (If the last digit of your student number is even number, then "k" = 0.15 W/m -K. And if it is odd number, then "k"=0.20 W/m -K.)

Answers

Given data:

Diameter of a spherical ball = 8 mm

The radius of a spherical ball

= r

= 8 / 2

= 4 mm

= 4 × 10⁻³ m

The thickness of insulation = 2 mm

= 2 × 10⁻³ m

The temperature of the spherical ball = 60 °C

Temperature of medium = 20 °C

Thermal conductivity coefficient = k = 0.15 W/m.

K (If the last digit of the student number is even.)

Combined convection and radiation heat transfer coefficient = h

= 25 W/m²K

The formula used:

Heat transfer rate = [(4 × π × r² × h × ΔT) / (1 / kA + 1 / hA)]

Where,

ΔT = Temperature difference

= (T₁ - T₂)

= (60 - 20)

= 40 °C

= 40 K

If the last digit of the student number is even, then "k" = 0.15 W/m -K.

Ans:

The insulation on the ball will decrease heat transfer from the ball.

Calculation:

Area of a spherical ball = 4πr²

A = 4 × π × (4 × 10⁻³)²

A = 2.01 × 10⁻⁴ m²

Heat transfer rate = [(4 × π × r² × h × ΔT) / (1 / kA + 1 / hA)]

Putting the values,

Heat transfer rate = [(4 × π × (4 × 10⁻³)² × 25 × 40) / (1 / (0.15 × 2.01 × 10⁻⁴) + 1 / (25 × 2.01 × 10⁻⁴))]

≈ 6.95 W

As the thickness of the insulation is increasing, hence the area for heat transfer is decreasing which results in a decrease of heat transfer from the ball.

So, the insulation on the ball will decrease heat transfer from the ball.

To know more about decrease  visit:

https://brainly.com/question/25677078

#SPJ11

MCQ: Which one of the following statements is true about a dual-voltage capacitor-start motor?
A. The auxiliary-winding circuit operates at 115 volts on 115-volt and 230-volt circuits.
B. The main windings are identical to obtain the same starting torques on 115-volt and 230-volt circuits.
C. The direction of rotation is reversed by interchanging the leads of one main winding.
D. The main windings are connected in series for 115-volt operation.
2. An auxiliary phase winding is used in a single-phase fractional horsepower motor to
A. decrease flux density. B. decrease motor heating. C. reverse motor rotation. D. increase motor speed.
3. The device which responds to the heat developed within the motor is the
A. shading coil. B. short-circuiter. C. bimetallic protector. D. current-operated relay.

Answers

The correct statement about a dual-voltage capacitor-start motor is option B. The main windings are identical to obtain the same starting torques on 115-volt and 230-volt circuits.

A capacitor start motor is a type of electric motor that employs a capacitor and a switch for starting purposes.

It consists of a single-phase induction motor that is made to rotate by applying a starter current to one of the motor’s windings while the other remains constant.

This is accomplished by using a capacitor, which produces a phase shift of 90 degrees between the two windings.

2. The answer to the second question is option C. Reverse motor rotation is achieved by using an auxiliary phase winding in a single-phase fractional horsepower motor.

In order to start the motor, this auxiliary winding is used. A switch may be included in this configuration, which can be opened when the motor achieves its full operating speed. This winding will keep the motor running in the right direction.

3. The device which responds to the heat developed within the motor is the option C. A bimetallic protector responds to the heat produced inside the motor.

It's a heat-operated protective device that detects temperature changes and protects the equipment from excessive temperatures.

When a predetermined temperature is reached, the bimetallic protector trips the circuit and disconnects the equipment from the power source.

To know more about capacitor visit:

https://brainly.com/question/31627158

#SPJ11

1. Write a subroutine named "UB RCC GPIO_CFG" that (a) turns the GPIOA periph. To on and () configures pins 0 & 1 to be outputs and 2 & 3 to be inputs. help you, an Fauates.s file is provided for you on the assignment's page on Canvas. 2. Write a subroutine named "SUB_TOGGLE_LIGHT" that takes in an argument via ro. If ro = 0, GPIOA pin 0 (which you previously set to be an output, you can presume) will have its state toggled. If r0 = 1, you do a similar thing to pin 1. You can presume ro will be one of these two values. 3. Write a subroutine named "SUB_GET_BUTTON" that returns the state of GPIOA Dins 2 & 3. However, you want to return the sh ted state of these pins: have it so the state of pin 2 is represented in bit position 0 and the state of pin 3 is represented in bit position 1. Return the value through to. ; ; ===========================================
; STM32F4xx Register Addresses and Constants ; RCC RCC_BASE EQU 0x40023800 ;RCC base address
RCC_AHB1ENR EQU 0x30 ; ABB1ENR offset RCC_AHB1ENR_GPIOAEN EQU 0x00000001 ;GPIOAEN bit ;GPIO registers GPIOA_BASE EQU 0x40020000 ;GPIA base adress
GPIOX_MODER EQU 0x00 ;mode selection register
GPIOX_OTYPER EQU 0x04 ;output type register
GPIOX_OSPEEDR EQU 0x08 ; output speed register
GPIOX_PUPDR EQU 0x0C ; pull-p/pull-down register
GPIOX_IDR EQU 0x10 ; input data register
GPIOX_ODR EQU 0x14 ; output data register
END
Please do this by assembly ARM

Answers

Here is the subroutine named "UB_RCC_GPIO_CFG" that turns the GPIOA periph. To on and configures pins 0 & 1 to be outputs and 2 & 3 to be inputs. The solution is given below:```
UB_RCC_GPIO_CFG
LDR R0,=RCC_BASE
LDR R1,[R0,#RCC_AHB1ENR] ; read the AHB1ENR
ORR R1,R1,#RCC_AHB1ENR_GPIOAEN ; set GPIOAEN
STR R1,[R0,#RCC_AHB1ENR] ; write AHB1ENR
LDR R0,=GPIOA_BASE
MOV R1,#0x01 ; set the mode of pin 0
LSL R1,#GPIOA_MODER_MODE0
STR R1,[R0,#GPIOA_MODER] ; write to moder
MOV R1,#0x01 ; set the mode of pin 1
LSL R1,#GPIOA_MODER_MODE1
STR R1,[R0,#GPIOA_MODER] ; write to moder
BX LR
ENDFUNC
SUB_TOGGLE_LIGHT
CMP R0,#0 ; check whether it is 0 or 1
BEQ toggle0 ; if it is 0 then jump to toggle0
toggle1
LDR R0,=GPIOA_BASE
LDR R1,[R0,#GPIOA_ODR] ;
EOR R1,R1,#(1<<1) ;
STR R1,[R0,#GPIOA_ODR] ;
BX LR
toggle0
LDR R0,=GPIOA_BASE
LDR R1,[R0,#GPIOA_ODR] ; read the current state of the pin
EOR R1,R1,#(1<<0) ; toggle the value of the bit 0
STR R1,[R0,#GPIOA_ODR] ; write to the output data register
BX LR
ENDFUNC
SUB_GET_BUTTON
LDR R0,=GPIOA_BASE
LDR R1,[R0,#GPIOA_IDR] ; read the current state of the pin
AND R1,R1,#(1<<2|1<<3) ; keep only the required bits
LSR R1,R1,#2 ; shift right by 2 so that bit 2 appears in bit 0
STR R1,[R0,#GPIOA_ODR] ; write to the output data register
BX LR
ENDFUNC

To know more about subroutine  visit:

brainly.com/question/32886096

#SPJ11

Could you show me how to calculate the power?
Option #3 - DC Machine Rated power: P = 3.73 kW Rated voltage: 240 V Rated current: 16 A Rated speed: 1220 rpm Rated torque: 28.8 Nm Winding resistance: R = 0.6 Torque constant: Kt = 1.8 F
lux constant: Kb = 1.8

Answers

The power of the DC machine is 3840 W.

Given data, Rated power: P = 3.73 kW, Rated voltage: V = 240 V, Rated current: I = 16 A, Rated speed: N = 1220 rpm, Rated torque: T = 28.8 Nm, Winding resistance: R = 0.6, Torque constant: Kt = 1.8 and Flux constant: Kb = 1.8.

1. To calculate the power, use the formula: P = VI Where V is voltage, I is current, and P is power.

Now, the values are given in the question, Substitute the given values,

P = VI= 240 × 16= 3840 W

2. To calculate the back EMF, use the formula:

Eb = (Kb × Φ × N)/60

Where Eb is back EMF, Kb is the flux constant, Φ is the magnetic flux, and N is the speed.

Now, the values are given in the question, Substitute the given values, Eb = (Kb × Φ × N)/60= (1.8 × Φ × 1220)/60----------------------(1)

3. To calculate magnetic flux, use the formula:Φ = T/Kt

Where Φ is the magnetic flux, T is the torque, and Kt is the torque constant.

Now, the values are given in the question, Substitute the given values,Φ = T/Kt= 28.8/1.8= 16 Wb

4. Substitute this value of Φ in the equation (1), we get; Eb = (1.8 × 16 × 1220)/60= 585.6 V

5. To calculate the current, use the formula: I = (V - Eb)/R

Where V is the voltage, Eb is the back EMF, R is the winding resistance.

Now, the values are given in the question, Substitute the given values, I = (V - Eb)/R= (240 - 585.6)/0.6= -490.94 A

As you see the value of current is negative, so it's not possible, Hence there's some problem with the question. The power calculation is correct. Therefore, the power of the DC machine is 3840 W.

To know more about  DC machine visit:

https://brainly.com/question/33181337

#SPJ11

Given E=3 e^-13z ax in free space. What is the associated phasor of the magnetic field? Find the phasor of the emf developed about the closed path having corners at (0,0,0), (1,0,0), (1,0,1), and (0,0,1). Take the frequency as f= 1.0 GHz.

Answers

The emf developed about a closed path can be obtained by taking the line integral of the electric field, E about the path. Let's apply the Maxwell's equation;[tex]∮ E. dl = - dΦ/dt[/tex]

Therefore, the phasor of the emf developed is given as, [tex]Emf = - jωΦ[/tex]

where,Φ = Magnetic flux through the surface enclosed by the closed path. From the given corners, the surface enclosed is a rectangle of dimensions 1 × 1.

Thus, the magnetic flux through this surface can be given as,[tex]Φ = ∫∫ B. d S[/tex]where, B = Magnetic field at any point on the surface We know that the magnetic field is given as, Substituting the values of H0 and β, we get, The magnetic field is perpendicular to the surface.

To know more about developed visit:

https://brainly.com/question/30715659

#SPJ11

1. Explain any one type of DC motor with a neat
diagram.
2. Explain any one type of enclosure used in DC motors
with the necessary diagram.

Answers

1. DC motorA DC motor is an electrical machine that converts direct current electrical power into mechanical power. These types of motors function on the basis of magnetic forces. The DC motor can be divided into two types:Brushed DC motorsBrushless DC motorsBrushed DC Motors: Brushed DC motors are one of the most basic and simplest types of DC motors.

They are commonly used in low-power applications. The rotor of a brushed DC motor is attached to a shaft, and it is made up of a number of coils that are wound on an iron core. A commutator, which is a mechanical component that helps switch the direction of the current, is located at the center of the rotor.

Brushless DC Motors: Brushless DC motors are more complex than brushed DC motors. The rotor of a brushless DC motor is made up of permanent magnets that are fixed to a shaft.

To know more about electrical visit:

https://brainly.com/question/31173598

#SPJ11

In MOSFET small-signal models, DC voltage sources and DC current sources should be respectively. The analysis is then performed on the resulting replaced by equivalent circuit. a. Short Circuits and Short Circuits b. Short Circuits and Open Circuits c. Open Circuits and Short Circuits d. Open Circuits and Open Circuits e. AC Ground and Short Circuits f. Short Circuits and AC Ground

Answers

In MOSFET small-signal models, DC voltage sources and DC current sources should be respectively replaced by open circuits and short circuits.

This is because the small-signal models assume that the MOSFET is operating in its linear region, where small variations in voltage and current can be used to model the device's behavior. In this region, the MOSFET can be modeled as a voltage-controlled current source, where the gate voltage controls the amount of current flowing through the channel.

By using small variations in voltage and current, we can model the device's behavior without significantly affecting its operation.

Therefore, when analyzing MOSFET circuits using small-signal models, DC voltage sources and DC current sources should be replaced by their equivalent open circuit and short circuit, respectively.

This allows us to focus on the small-signal behavior of the circuit without being distracted by the large DC voltages and currents that are present.

To know more about models visit;

brainly.com/question/33240027

#SPJ11

Consider ammonium throttling at constant enthalpy from 2Mpa(a)(saturated liquid) to 0,1Mpa(a)and Find initial and end temperature by ammonium chart. Estimate ammonium steam quality after throttling

Answers

By finding the initial and end temperatures of ammonium during throttling, we can use the ammonium chart in enthalpy

The chart provides properties of ammonium at different pressures and temperatures. Here are the steps to estimate the temperatures:

1. Locate the initial pressure of 2 MPa(a) on the pressure axis of the ammonium chart.

2. From the saturated liquid region, move horizontally to intersect the line of constant enthalpy.

3. Read the initial temperature at this intersection point. This will give the initial temperature of ammonium before throttling.

4. Locate the final pressure of 0.1 MPa(a) on the pressure axis.

5. From the initial temperature, move vertically until you reach the line of the final pressure (0.1 MPa(a)).

6. Read the temperature at this intersection point. This will give the final temperature of ammonium after throttling.

To estimate the ammonium steam quality after throttling, we need to know the specific enthalpy before and after throttling. With this information, we can calculate the steam quality using the equation:

Steam Quality (x) = (h - hf) / (hfg)

Where:

h is the specific enthalpy after throttling

hf is the specific enthalpy of the saturated liquid at the final temperature

hfg is the specific enthalpy of vaporization at the final temperature

Please note that to provide the exact initial and end temperatures and steam quality, we would need the specific values from the ammonium chart.

To know more about enthalpy visit:

brainly.com/question/30464179

SPJ11

The absorption test is primarily used to evaluate the: 1)Flow ability 2)Durability 3)Strength

Answers

The absorption test is primarily used to evaluate the flow ability of a material.

The absorption test is an important method for assessing the flow ability of a material. It measures the amount of liquid that a material can absorb and retain. This test is particularly useful in industries such as construction and manufacturing, where the flow ability of materials plays a crucial role in their performance.

Flow ability refers to how easily a material can be poured, spread, or shaped. It is a key property that affects the workability and handling characteristics of various substances. For example, in construction, the flow ability of concrete is essential for proper placement and consolidation. If a material has poor flow ability, it may lead to issues such as segregation, voids, or an uneven distribution, compromising the overall quality and durability of the final product.

By conducting the absorption test, engineers and researchers can determine the flow ability of a material by measuring its ability to absorb and retain a liquid. This test involves saturating a sample of the material with a liquid and measuring the weight gain over a specified time period. The greater the weight gain, the higher the material's absorption capacity, indicating better flow ability.

Learn more about absorption

brainly.com/question/30697449

#SPJ11

In a lossless dielectric for which = 1807, E = 2, and H=0.1 sin(+ 1.5x) ay+0.1 costcot + 1.5x) a A/m. Calculate: 1) Hr 2) 3) E 4) wave polarization

Answers

Given that 

ε = 1807,

 E = 2, and 

H = 0.1 sin(ωt + 1.5x) ay + 0.1 cos(ωt + 1.5x) a A/m,

where ω = 1.5 rad/s.

We are required to calculate the following:

1) Hr2) λ3) E4) wave polarization

The equation to calculate Hr is given as;

Hr = H / √(εr)

Where εr is the relative permittivity.

εr = ε / ε0

= 1807 / 8.85 x 10^-12

= 2.04 x 10^14 F/m

Thus,

Hr = 0.1 / √(2.04 x 10^14)

Hr = 7.03 x 10^-16 A/m

The equation to calculate λ is given as;

λ = 2π / β,

where β is the phase constant and is given as;

β = ω / vp

where vp is the phase velocity.

vp = 1 / √(με)

where μ is the permeability of free space,

 μ = 4π x 10^-7 H/m

Thus,

vp = 1 / √(4π x 10^-7 x 1807 x 8.85 x 10^-12)

vp = 3.27 x 10^8 m/s

Therefore,

β = ω / vpβ

= 1.5 / 3.27 x 10^8β

= 4.59 x 10^-9 m^-1λ

= 2π / βλ

= 2π / 4.59 x 10^-9λ

= 1.37 μm

The electric field, E is given as;

E = vp / √(με)

Hence,

E = 3 x 10^8 / √(4π x 10^-7 x 1807 x 8.85 x 10^-12)

E = 35.63 V/m

The polarization of the wave can be determined from the direction of the electric field.

Since the electric field is in the y direction, the wave is polarized in the vertical plane and is therefore vertically polarized.

Answer:

1) Hr = 7.03 x 10^-16 A/m

2) λ = 1.37 μm

3) E = 35.63 V/m

4) Vertically polarized

To know more about vertical  visit:

https://brainly.com/question/30105258

#SPJ11

The velocity profile for a fluid flow over a flat plate is given as u/U=(3y/58) where u is velocity at a distance of "y" from the plate and u=U at y=o, where ō is the boundary layer thickness. Determine the displacement thickness and the momentum thickness for the above velocity profile

Answers

The displacement thickness is (58/9)*(1-(1/3)*(δ*/ō)²), and the momentum thickness is (116/81)*[(δ*/ō)²-(1/4)*(δ*/ō[tex])^4[/tex]].

We are given the velocity profile for a fluid flow over a flat plate is:

u/U = (3y/58)

Where:

u is the velocity at a distance of "y" from the plate and u = U at y = 0.

U is the free-stream velocity.

ō is the boundary layer thickness.

We need to find the displacement thickness and the momentum thickness for the above velocity profile.

Displacement Thickness:

It is given by the integral of (1-u/U)dy from y=0 to y=ō.

Therefore, the displacement thickness can be calculated as:

δ* = ∫[1-(u/U)] dy, 0 to δ*

δ* = ∫[1-(3y/58U)] dy, 0 to δ*

δ* = [(58/9)*((y/ō)-(y³)/(3ō³))] from 0 to δ*

δ* = (58/9)*[(δ*/ō)-((δ*/ō)³)/3]

δ* = (58/9)*(1-(1/3)*(δ*/ō)²)

Momentum Thickness:

IT  is given by the integral of (u/U)*(1-u/U)dy from y=0 to y=ō.

Therefore, the momentum thickness can be written as;

θ = ∫[(u/U)*(1-(u/U))] dy, 0 to δ*

θ = ∫[(3y/58U)*(1-(3y/58U))] dy, 0 to δ*

θ = [(116/81)*((y/ō)²)-((y/ō[tex])^4[/tex])/4] from 0 to δ*

θ = (116/81)*[(δ*/ō)²-(1/4)*(δ*/ō[tex])^4[/tex]]

Learn more about Thickness here;

https://brainly.com/question/28222770

#SPJ4

Question 6 (easy) The main purpose of adding Derivative (D) control is to O A. to increase the time constant O B. to increase settling time O C. to decrease or eliminate steady state error O D. to increase damping ratio

Answers

The main purpose of adding Derivative (D) control is to increase the damping ratio of a system. D control is used in feedback systems to change the system response characteristics in ways that cannot be achieved by merely changing the gain.

By adding derivative control to the feedback control system, it helps to increase the damping ratio to improve the performance of the system. Let's discuss how D control works in a feedback control system. The D term in the feedback system provides the change in the error over time, and the value of D term is proportional to the rate of change of the error. Thus, as the rate of change of the error increases, the output of the D term also increases, which helps to dampen the system's response.

This is useful when the system is responding too quickly, causing overshoot and oscillations. The main benefit of the derivative term is that it improves the stability and speed of the feedback control system. In summary, the primary purpose of adding the derivative term is to increase the damping ratio of a system, which results in a more stable system.

To know more about  feedback systems visit:

brainly.com/question/30676829

#SPJ11

Flight path, is the path or the line along which the c.g. of the airplane moves. The tangent to this curve at a point gives the direction of flight velocity at that point on the flight path. True False

Answers

The given statement that "Flight path, is the path or the line along which the c.g. of the airplane moves.

The tangent to this curve at a point gives the direction of flight velocity at that point on the flight path." is True. It is because of the following reasons:

Flight path:It is defined as the path or the line along which the c.g. of the airplane moves. In other words, it is the trajectory that an aircraft follows during its flight.

The direction and orientation of the flight path are determined by the movement of the aircraft's center of gravity (CG). It is important to note that the flight path is not always straight but can be curved as well.

Tangent:In geometry, a tangent is a straight line that touches a curve at a single point, known as the point of tangency. In the context of an aircraft's flight path, the tangent is the straight line that touches the path at a single point. The direction of the flight velocity at that point on the flight path is given by the tangent.

In conclusion, it can be stated that the given statement, "Flight path, is the path or the line along which the c.g. of the airplane moves. The tangent to this curve at a point gives the direction of flight velocity at that point on the flight path," is true.

To know more about tangent  visit:

brainly.com/question/10053881

#SPJ11

explain what parameters affect the welding results, explain
along with what effects are caused by these factors

Answers

It is essential to control these parameters accurately to achieve the desired welding results.

The parameters affecting the welding results are welding voltage, welding current, electrode force, and welding time. When it comes to welding, each of these parameters affects the final results. Let's see how each of these parameters affects welding results:
Welding voltage: The voltage is the measure of the electric potential difference between two conductive materials in a welding process. If the voltage is too low, it may lead to improper fusion, while if it is too high, it may lead to deep penetration and distortion.
Welding current: The welding current is the current that flows through the welding gun. If the current is too low, it may lead to weak fusion or incomplete penetration, while if it is too high, it may lead to excessive melting.
Electrode force: Electrode force refers to the force applied to the electrode tip when it is in contact with the workpiece. If the force is too low, it may cause poor fusion, while if it is too high, it may cause deformation and warpage.
Welding time: The welding time refers to the duration for which the current is supplied to the welding gun. If the welding time is too low, it may lead to weak fusion, while if it is too high, it may lead to excessive melting and burn-through.
In conclusion, the welding voltage, welding current, electrode force, and welding time are the four parameters affecting welding results. Each of these parameters has its effects, such as incomplete penetration, poor fusion, deformation, and warpage. Therefore, it is essential to control these parameters accurately to achieve the desired welding results.

Learn more about voltage :

https://brainly.com/question/27206933

#SPJ11

roblem 6 Using a clear sketch show the heat affected zone of a weld. What is its significance? Problem 7 What are the main three cutting parameters and how do they affect tool life

Answers

Problem 6 - Heat Affected Zone of a Weld The heat-affected zone is a metallurgical term that refers to the area of a welded joint that has been subjected to heat, which affects the mechanical properties of the base metal.

This region is often characterized by a decrease in ductility, toughness, and strength, which can compromise the overall structural integrity of a component. The heat-affected zone is typically characterized by a series of microstructural changes that occur as a result of thermal cycling, including: grain growth, phase transformations, and precipitation reactions.

The significance of the heat-affected zone lies in its potential to compromise the overall mechanical properties of a component and the need to take it into account when designing welded structures.

Problem 7 - Main Three Cutting Parameters and Their Effects on Tool Life Cutting parameters refer to the various operating conditions that can be adjusted during a cutting process to optimize performance and tool life. The main three cutting parameters are speed, feed, and depth of cut.

Speed - This refers to the rate at which the cutting tool moves across the workpiece surface. Increasing the cutting speed can help to reduce cutting forces and heat generation, but it can also lead to higher tool wear rates due to increased temperatures and stresses.
Feed - This refers to the rate at which the cutting tool is fed into the workpiece material. Increasing the feed rate can help to improve material removal rates and productivity, but it can also lead to higher cutting forces and tool wear rates.
Depth of Cut - Increasing the depth of cut can help to reduce the number of passes required to complete a cut, but it can also lead to higher cutting forces and tool wear rates due to increased stresses and temperatures.

The effects of these cutting parameters on tool life can be complex and interdependent. In general, higher cutting speeds and feeds will lead to shorter tool life due to increased temperatures and wear rates. optimizing the cutting parameters for a given application can help to balance these tradeoffs and maximize productivity while minimizing tool wear.

To know more about metallurgical visit:-

https://brainly.com/question/32005998

#SPJ11

A double acting, two-stage air compressor delivers 3 kg of air per minute at a pressure of 1,5 MPa. The intake conditions are 98 kPa and 28 °C. The compression and expansion index for both stages is 1,3. The volumetric efficiencies based on inlet conditions are 92% for the low pressure cylinder and 90% for the high pressure cylinder. The compressor rotates at 240 r/min. Intercooling at 360 kPa is complete and the temperature after intercooling is 87°C. Mechanical efficiency is 85%. Take R for gas as 0,288kJ/kg.K and Cp as 1,005 kJ/kg.K.
Calculate: 1 The power required to drive the compressor in kW 2 The diameter of the low pressure cylinder if the stroke is 1,5 times the diameter 3 The heat transfer during compression in the first stage

Answers

The calculations required include determining the power required to drive the compressor, finding the diameter of the low-pressure cylinder, and calculating the heat transfer during compression in the first stage.

What calculations are required for the given double-acting, two-stage air compressor scenario?

The given information describes a double-acting, two-stage air compressor. The compressor delivers 3 kg of air per minute at a pressure of 1.5 MPa.

The intake conditions are 98 kPa and 28 °C. The compression and expansion index for both stages is 1.3. The volumetric efficiencies based on inlet conditions are 92% for the low-pressure cylinder and 90% for the high-pressure cylinder.

The compressor rotates at 240 r/min. Intercooling at 360 kPa is complete, and the temperature after intercooling is 87°C. The mechanical efficiency is 85%. The gas constant (R) is given as 0.288 kJ/kg.K, and the specific heat capacity (Cp) is 1.005 kJ/kg.K.

The calculations to be performed are:

1. Calculate the power required to drive the compressor in kW.

2. Determine the diameter of the low-pressure cylinder if the stroke is 1.5 times the diameter.

3. Calculate the heat transfer during compression in the first stage.

By applying the relevant formulas and using the given values, the above calculations can be performed to obtain the respective results.

Learn more about compressor

brainly.com/question/31672001

#SPJ11

d²y dx² +0,5+7y = 0, www of the differential equation For initial conditions y(0)=4 and y'(0)=0 and step size h=0.5, find the value y(1) (use at least 3 digits after the decimal point) www mm

Answers

We are given the differential equation:

d²y/dx² + 0.5 + 7y = 0

and initial conditions:

y(0) = 4 and

y'(0) = 0

We have to use the step size of h = 0.5

We have to find the value of y(1) using at least 3 digits after the decimal point.

We have:

y(0) = 4

So, using the above equation, we get:

A = 4 + 0.0714

A= 4.0714 And,

y'(0) = 0

Differentiating the equation, we get:

y'(x) = Aλ cos (λx) - Bλ sin (λx)

On putting x = 0,

we get:

0 = Aλ cos 0 - Bλ sin 0

So, we get:

B = 0

Now, the solution of the differential equation becomes:

y(x) = 4.0714 sin (λx) - 0.0714

We need to find the value of y(1).

So, putting x = 1, we get:

y(1) = 4.0714 sin λ - 0.0714

Now, we can approximate y(1) as:

y(1) ≈ y30 ≈ 8.9123

Answer: 8.912

To know about approximate visit:

https://brainly.com/question/31695967

#SPJ11

You are asked to design a small wind turbine (D = x +1.25 ft, where x is the last two digits of your student ID). Assume the wind speed is 15 mph at T = 10°C and p = 0.9 bar. The efficiency of the turbine is n = 25%, meaning that 25% of the kinetic energy in the wind can be extracted. Calculate the power in watts that can be produced by your turbine.

Answers

The power in watts that can be produced by the turbine is 291.4 W.

From the question above, Diameter of the wind turbine, D = x + 1.25 ft

Efficiency of the wind turbine, n = 25% = 0.25

Wind speed, v = 15 mph

Temperature, T = 10° C

Pressure, p = 0.9 bar

The power in watts that can be produced by the turbine.

Diameter of the turbine, D = x + 1.25 ft

Let's put the value of D in terms of feet,1 ft = 0.3048 m

D = x + 1.25 ft = x + 1.25 × 0.3048 m= x + 0.381 m

Kinetic energy of the wind turbine,Kinetic energy, K.E. = 1/2 × mass × (velocity)²

Since mass is not given, let's assume the mass of air entering the turbine as, m = 1 kg

Kinetic energy, K.E. = 1/2 × 1 × (15.4)² = 1165.5 Joules

Since the efficiency of the turbine, n = 0.25 = 25%The power that can be extracted from the wind is,P = n × K.E. = 0.25 × 1165.5 = 291.4 Joules

So, the power in watts that can be produced by the turbine is 291.4 J/s = 291.4 W.

Learn more about wind speed at

https://brainly.com/question/33305792

#SPJ11

IF an 85% efficient alternator operating at 1800RPM were putting
out 100kW of power how much torque would need tro be delivered by
the prime mover?

Answers

To determine the amount of torque that the prime mover would need to deliver to operate an 85% efficient alternator operating at 1800 RPM and putting out 100 kW of power, the following equation is used:Power = (2π × RPM × Torque) / 60 × 1000 kW = (2π × 1800 RPM × Torque) / 60 × 1000

Rearranging the equation to solve for torque:Torque = (Power × 60 × 1000) / (2π × RPM)Plugging in the given values:Torque = (100 kW × 60 × 1000) / (2π × 1800 RPM)≈ 318.3 Nm

Therefore, the prime mover would need to deliver about 318.3 Nm of torque to operate an 85% efficient alternator operating at 1800 RPM and putting out 100 kW of power. This can also be written as 235.2 lb-ft.

To know more about torque visiṭ:

https://brainly.com/question/30338175

#SPJ11

Question 18 (1 point) Based on your knowledge, which of the following factor can be the most likely the cause of crack at the traditional welded joint Thermal contraction of the materials at the joint Porosity of in the fusion zone of the joint Volumetric contraction of the melted filler and base materials Thermal compressive stresses to the joint Question 19 (1 point) Weldability is related to all of the following conditions EXCEPT Welding process conditions The surface condition of the base material Compatibility of the filler and base metal materials The operators' skills

Answers

Cracks in traditional welded joints are most likely caused by the thermal contraction of the materials at the joint. Weldability isn't related to the operators' skills, although it can influence the quality of the weld.

Cracks in a welded joint are most often due to the thermal contraction of the materials at the joint. When welding, the material heats up and expands, then contracts as it cools down. If the cooling happens too quickly, it can lead to uneven contraction and eventually cracking. Furthermore, materials with different thermal expansion coefficients can exacerbate this issue. On the other hand, weldability primarily depends on welding process conditions, the surface condition of the base material, and the compatibility of the filler and base metal materials. While the skills of the operator are important for achieving a good weld, they do not directly relate to the weldability of the materials themselves, which is inherent to the material properties.

Learn more about weldability here:

https://brainly.com/question/29654991

#SPJ11

Other Questions
Work and jobs Why is work especially important? Check all that apply. It gives people a feeling of autonomy. It attaches people to reality. It connects people in human relationships. It allows people a chance to make money. Which of the following countries defines work most positively? Japan The United States Germany The Netherlands When jobs are inflexible, they become if the tensile strength of the Kevlar 49 fibers is 0.550 x 10s psi and that of the epoxy resin is 11.0 x 103 psi, calculate the strength of a unidirectional Kevlar 49-fiber-epoxy composite material that contains 63 percent by volume of Kevlar 49 fibers and has a tensile modulus of elasticity of 17.53 x 106 psi. What fraction of the load is carried by the Kevlar 49 fibers? Water at 70F passes through 0.75-in-internal-diameter copper tubes at a rate of 0.5 lbm/s. Determine the pumping power per ft of pipe length required to maintain this flow at the specified rate. 5. a) Draw a fully labelled temperature/entropy diagram of the Brayton Cycle (5 Marks) b) Using appropriate thermodynamic terms, explain the Brayton TURN OVER "You are plan to invest RM (3,000+1,000L3D) in a digital company ONE (1) year from now. The investment provides return rate 6% per year compounded quarterly. Assume that you do not withdraw the money earned at the end of each year, but instead let it accumulate. Noted that L3D represents the Last Three Digit of student matric number (i) Calculate the nominal interest rate per quarter (ii) Determine the effective interest rate per year (iii) From Q5(a)(ii), compute the amount of investment after THREE (3) years. The drug fluoxetine (Prozac) is used clinically to treat depression. It increases the amount of serotonin in the synaptic cleft because itGroup of answer choicesswells synaptic vesicles causing them to be overloaded with serotonininhibits the re-uptake of serotonin into the presynaptic terminalblocks the ability of serotonin to bind to the postsynaptic metabotropic receptorincreases the re-uptake of serotonin into the presynaptic terminal What is the energy for \( n=16 \) level in infinite well potential quantum system. A. \( 1026 E \) B. \( 256 E \) C. \( 36 E \) D. \( \frac{1}{2} E \) SWOT ANALYSIS OF AUTO MOBILE INDUSTRY, True/fase4. Deformation by drawing of a semicrystalline polymer increases its tensile strength.5.Does direction of motion of a screw disclocations line is perpendicular to the direction of an applied shear stress?6.How cold-working effects on 0.2% offself yield strength? Example draw a value stream map for the following toy manufacturing: Monthly orders from client Weekly orders to suppliers Weekly production schedule Weekly inventory delivery from suppliers Three production processes: -Assembly -Painting, fitments & other cosmetics -Testing Assembly -Lead time 4hr, C/T 2hr, C/O 4hr -Inventory 500 -Personnel: 2 persons; Uptime: 75%, single shift (day) Painting, fitments & other cosmetics -Lead time: starts next work day, C/T 4hr, C/O 8hr-Inventory 1'000 -Personnel: 4 persons; Uptime: 75%, single shift (day) Testing Lead time: 2 days, C/T 2hr, C/O 4hr draw and label angiosperm mature female gametophyte (embryo sac). Label the following structures: funiculus, integuments, micropyle, egg cell, synergids, polar nuclei, antipodals, chalazal end. Explain MACD and MACD histogram briefly, is there anydifference between them andhow do you trade with these indicators in technicalanalysis What is transcription? What is translation?What is a gene? What are codons? What steps happen to reduce thelength of RNA before it leaves the nucleus?What do we call RNA after these steps have been Fingen's 16-year, $1000 par value bonds pay 12 percent interest annually. The market price of the bonds is $1,120 and the market's required yield to maturity on acomparable-risk bond is 9 percent.a.Compute the bond's yield to maturity.b.Determine the value of the bond to you, given your required rate of return.c.Should you purchase the bond? Consider the (2,1,2) convulitional code with:g = (011)g = (101)A) Construct the encoder block diagram. B) Draw the state diagram of the encoder. C) Draw the trellis diagram of the encoder.D) these bits can be corrected using Viterbi Decoder Hard Decision Algorithm. Show all steps. . as outlined below, a 2-kg bob is compressed 60-cm against a 50 n/m spring while on the other side a 3-kg block is placed 4-m up along a 30 degree incline. both objects are then released from rest. assuming all surfaces are frictionless: a. what will be the velocity of each object before they collide? (10pts) b. if the collision between the objects is elastic, what will be the velocity of each object after the collision? (10pts) c. if either (or both) of the objects moves toward the spring after the collision, determine how much the spring will be compressed by the object(s) (10pts) d. if either (or both) of the objects moves toward the incline after the collision, determine how far up the incline the object(s) will travel (10pts) Medic Enterprise produces masks for the Asian market of 25,000 units per month. The company needs to allow their workers to do overtime every month since the demand for the mask is very high due to the current situation. Total overtime is 8,500 units and the production rate is 48 minutes per unit with 8 working hours per day. The overtime rate is RM10 per hour. Calculate the overtime cost. Answer A. RM 64.000.00 B. RM 63,000.00 C. RM 68,000.00 D. RM 85,000.00 8. Connect channel 1 to the generator output and channel 2 to the inter-connection of the resistor and capacitor. 9. Configure the oscilloscope to capture RMS voltage and frequency. There should be 4 readings available, (VRMS channel 1, Frequency channel 1, VRMS channel 2, Frequency channel 2). 10. Capture a screenshot of the waveforms from both channels along with the measurements for 100 Hz and 500 Hz. 11. Create 2 tables and record the calculated values and measured values for Xc, VR1, VC1, IT, and Zr; make sure you include the correct units. Remember, your equipment will not be able to measure Xc or ZT.Include a column in the table to include the percent error. The formula to calculate the error is below: %6 error = Expected Value - Measured Value/Expected Value x 100%%12. Discuss the following: Expected Value - Measured Value Expected Value X 100% a. Describe the relationship between the frequency and IT. b. What effect does frequency have on ZT? c. From step 10, what do you observe regarding the phase of the 2 voltages? d. How could the circuit be modified to bring the phase angle between the source voltage and current closer to 0? e. What conclusions do you have based on the calculations and equipment readings? In a paragraph discuss why prokaryotes are found wherever thereis life, greatly out numbering the eukaryotes on Earth in your ownwords. If the value of k for a reaction is 1 x 1050, which side of thereaction is favored?