Meather invested her savings in two invertment funds. The 54000 that she invested in fund A returned a 24.6 proft. The amsunt that ohe ifiventat in fund a returned a 505 proft. How moch did the itvest in Fund B, it both funde togther returned a 4 -is peofit?

Answers

Answer 1

When Meather invested her savings in two investment funds, then suppose the amount Meather invested in Fund B as x. After certain calculations, it is determined that Meather has invested 13,284 in Fund B.

The profit from Fund A is given as 24.6% of the investment amount, which is 54000. So the profit from Fund A is: Profit from Fund A = 0.246 * 54000 = 13284.

The profit from Fund B is given as 505.

Since the total profit from both funds is the sum of the individual profits, we have: Total profit = Profit from Fund A + Profit from Fund B.

Total profit = 13284 + 505.

We know that the total profit is positive, so: Total profit > 0.

13284 + 505 > 0.

13889 > 0.

Since the total profit is positive, we can conclude that the amount invested in Fund B (x) must be greater than zero.

To find the exact amount invested in Fund B, we can subtract the amount invested in Fund A (54000) from the total investment amount.

Amount invested in Fund B = Total investment amount - Amount invested in Fund A.

Amount invested in Fund B = (54000 + 13284) - 54000.

Amount invested in Fund B = 13284.

Therefore, Meather invested 13,284 in Fund B.

Read more about Investments.

https://brainly.com/question/15105766

#SPJ11


Related Questions

ten employees of a company are to be assigned to 10 different managerial posts, one to each post. in how many ways can these posts be filled?

Answers

There are 3,628,800 ways in which the posts can be filled. To find the number of ways these posts can be filled, we can use the concept of permutations.

Since there are 10 employees and 10 managerial posts, we can start by selecting one employee for the first post. We have 10 choices for this.

Once the first post is filled, we move on to the second post. Since one employee has already been assigned, we now have 9 employees to choose from.

Following the same logic, for each subsequent post, the number of choices decreases by 1. So, for the second post, we have 9 choices; for the third post, we have 8 choices, and so on.

We continue this process until all 10 posts are filled. Therefore, the total number of ways these posts can be filled is calculated by multiplying the number of choices for each post together.

So, the number of ways = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3,628,800.

Hence, there are 3,628,800 ways in which the posts can be filled.

To know more about permutations visit:

https://brainly.com/question/3867157

#SPJ11

please show work clearly Construct a power series for the function \( f(x)=\frac{1}{(x-22)(x-21)} \). Provide your answer below:

Answers

To construct a power series for the function \( f(x)=\frac{1}{(x-22)(x-21)} \), we can use the concept of partial fraction decomposition and the geometric series expansion.

We start by decomposing the function into partial fractions: \( f(x)=\frac{A}{x-22} + \frac{B}{x-21} \). By finding the values of A and B, we can rewrite the function in a form that allows us to use the geometric series expansion. We have \( f(x)=\frac{A}{x-22} + \frac{B}{x-21} = \frac{A(x-21) + B(x-22)}{(x-22)(x-21)} \). Equating the numerators, we get \( A(x-21) + B(x-22) = 1 \). By comparing coefficients, we find A = -1 and B = 1.

Now, we can rewrite the function as \( f(x)=\frac{-1}{x-22} + \frac{1}{x-21} \). We can then use the geometric series expansion: \( \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \). By substituting \( x = \frac{-1}{22}(x-22) \) and \( x = \frac{-1}{21}(x-21) \) into the expansion, we can obtain the power series representation for \( f(x) \).

Learn more about power series here: https://brainly.com/question/29896893

#SPJ11

Solve the following integrals ∫ c

x 2
+y 2

dsr(t)=(4cost,4sint,3t)
∫ c

(x−y)dx+(x+y)dy(counterclockwise)

Vertices (0,0)(1,0)(0,1)

Answers

The value of the line integral along the curve \(C\) is \(0\). To solve the given integrals, we need to find the parameterization of the curve \(C\) and calculate the line integral along \(C\). The curve \(C\) is defined by the vertices \((0,0)\), \((1,0)\), and \((0,1)\), and it is traversed counterclockwise.

We parameterize the curve using the equation \(r(t) = (4\cos(t), 4\sin(t), 3t)\). Then, we evaluate the integrals by substituting the parameterization into the corresponding expressions. To calculate the line integral \(\int_C (x-y)dx + (x+y)dy\), we first parameterize the curve \(C\) using the equation \(r(t) = (4\cos(t), 4\sin(t), 3t)\), where \(t\) ranges from \(0\) to \(2\pi\) to cover the entire curve. This parameterization represents a helix in three-dimensional space.

We then substitute this parameterization into the integrand to get:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} [(4\cos(t) - 4\sin(t))(4\cos(t)) + (4\cos(t) + 4\sin(t))(4\sin(t))] \cdot (-4\sin(t) + 4\cos(t))dt\)

Simplifying the expression, we have:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} (-16\sin^2(t) + 16\cos^2(t)) \cdot (-4\sin(t) + 4\cos(t))dt\)

Expanding and combining terms, we get:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} (-64\sin^3(t) + 64\cos^3(t))dt\)

Using trigonometric identities to simplify the integrand, we have:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} 64\cos(t)dt\)

Integrating with respect to \(t\), we find:

\(\int_C (x-y)dx + (x+y)dy = 64\sin(t)\Big|_0^{2\pi} = 0\)

Therefore, the value of the line integral along the curve \(C\) is \(0\).

Learn more about Integrals here : brainly.com/question/31744185

#SPJ11

Evaluate the following integral usings drigonomedric subsdidution. ∫ t 2
49−t 2

dt

(4.) What substidution will be the mast helpfol for evaluating this integral? A. +=7secθ B. t=7tanθ c+=7sinθ (B) rewrite the given indegral using this substijution. ∫ t 2
49−t 2

dt

=∫([?)dθ (C) evaluade the indegral. ∫ t 2
49−t 2

dt

=

Answers

To evaluate the integral ∫(t^2)/(49-t^2) dt using trigonometric substitution, the substitution t = 7tanθ (Option B) will be the most helpful.

By substituting t = 7tanθ, we can rewrite the given integral in terms of θ:

∫(t^2)/(49-t^2) dt = ∫((7tanθ)^2)/(49-(7tanθ)^2) * 7sec^2θ dθ.

Simplifying the expression, we have:

∫(49tan^2θ)/(49-49tan^2θ) * 7sec^2θ dθ = ∫(49tan^2θ)/(49sec^2θ) * 7sec^2θ dθ.

The sec^2θ terms cancel out, leaving us with:

∫49tan^2θ dθ.

To evaluate this integral, we can use the trigonometric identity tan^2θ = sec^2θ - 1:

∫49tan^2θ dθ = ∫49(sec^2θ - 1) dθ.

Expanding the integral, we have:

49∫sec^2θ dθ - 49∫dθ.

The integral of sec^2θ is tanθ, and the integral of 1 is θ. Therefore, we have:

49tanθ - 49θ + C,

where C is the constant of integration.

In summary, by making the substitution t = 7tanθ, we rewrite the integral and evaluate it to obtain 49tanθ - 49θ + C.

Learn more about integration here:

brainly.com/question/31744185

#SPJ11

Complete question:

Evaluate the following integral using trigonometric substitution. ∫ t 2

49−t 2dt. What substitution will be the most helpful for evaluating this integral?

(A)A. +=7secθ B. t=7tanθ c+=7sinθ

(B) rewrite the given integral using this substitution. ∫ t 249−t 2dt=∫([?)dθ (C) evaluate the integral. ∫ t 249−t 2dt=

Graph the following equation. 5x - 3y = -15 Use the graphing tool to graph the equation.

Answers

To graph the equation 5x - 3y = -15, we can rearrange it into slope-intercept form

Which is y = mx + b, where m is the slope and b is the y-intercept.

First, let's isolate y:

5x - 3y = -15

-3y = -5x - 15

Divide both sides by -3:

y = (5/3)x + 5

Now we have the equation in slope-intercept form. The slope (m) is 5/3, and the y-intercept (b) is 5.

To graph the equation, we'll plot the y-intercept at (0, 5), and then use the slope to find additional points.

Using the slope of 5/3, we can determine the rise and run. The rise is 5 (since it's the numerator of the slope), and the run is 3 (since it's the denominator).

Starting from the y-intercept (0, 5), we can go up 5 units and then move 3 units to the right to find the next point, which is (3, 10).

Plot these two points on a coordinate plane and draw a straight line passing through them. This line represents the graph of the equation 5x - 3y = -15.

To learn more about graph here:

https://brainly.com/question/30842552

#SPJ4

Let L be the line of intersection between the planes 3x+2y−5z=1 3x−2y+2z=4. (a) Find a vector v parallel to L. v=

Answers

A vector v parallel to the line of intersection of the given planes is {0, 11, -12}. The answer is v = {0, 11, -12}.

The given planes are 3x + 2y − 5z = 1 3x − 2y + 2z = 4. We need to find a vector parallel to the line of intersection of these planes. The line of intersection of the given planes L will be parallel to the two planes, and so its direction vector must be perpendicular to the normal vectors of both the planes. Let N1 and N2 be the normal vectors of the planes respectively.So, N1 = {3, 2, -5} and N2 = {3, -2, 2}.The cross product of these two normal vectors gives the direction vector of the line of intersection of the planes.Thus, v = N1 × N2 = {2(-5) - (-2)(2), -(3(-5) - 2(2)), 3(-2) - 3(2)} = {0, 11, -12}.

To know more about intersection, visit:

https://brainly.com/question/12089275

#SPJ11

Let u=(1−1,91),v=(81,8+1),w=(1+i,0), and k=−i. Evaluate the expressions in parts (a) and (b) to verify that they are equal. (a) u⋅v (b) v⋅u

Answers

Both (a) and (b) have the same answer, which is 61.81.

Let u = (1 − 1, 91), v = (81, 8 + 1), w = (1 + i, 0), and k = −i. We need to evaluate the expressions in parts (a) and (b) to verify that they are equal.

The dot product (u · v) and (v · u) are equal, whereu = (1 - 1,91) and v = (81,8 + 1)(a) u · v.

We will begin by calculating the dot product of u and v.

Here's how to do it:u · v = (1 − 1, 91) · (81, 8 + 1) = (1)(81) + (-1.91)(8 + 1)u · v = 81 - 19.19u · v = 61.81(b) v · u.

Similarly, we will calculate the dot product of v and u. Here's how to do it:v · u = (81, 8 + 1) · (1 − 1,91) = (81)(1) + (8 + 1)(-1.91)v · u = 81 - 19.19v · u = 61.81Both (a) and (b) have the same answer, which is 61.81. Thus, we have verified that the expressions are equal.

Both (a) and (b) have the same answer, which is 61.81. Hence we can conclude that the expressions are equal.

To know more about dot product visit:

brainly.com/question/23477017

#SPJ11

\( 1+x^{2} y^{2}+z^{2}=\cos (x y z) \)

Answers

The partial derivatives \(\frac{{\partial z}}{{\partial x}}\) and \(\frac{{\partial z}}{{\partial y}}\) can be found using implicit differentiation. The values are \(\frac{{\partial z}}{{\partial x}} = -2xy\) and \(\frac{{\partial z}}{{\partial y}} = -2xz\).

To find \(\frac{{\partial z}}{{\partial x}}\) and \(\frac{{\partial z}}{{\partial y}}\), we can use implicit differentiation. Differentiating both sides of the equation \(Cos(Xyz) = 1 + X^2Y^2 + Z^2\) with respect to \(x\) while treating \(y\) and \(z\) as constants, we obtain \(-Sin(Xyz) \cdot (yz)\frac{{dz}}{{dx}} = 2XY^2\frac{{dx}}{{dx}}\). Simplifying this equation gives \(\frac{{dz}}{{dx}} = -2xy\).

Similarly, differentiating both sides with respect to \(y\) while treating \(x\) and \(z\) as constants, we get \(-Sin(Xyz) \cdot (xz)\frac{{dz}}{{dy}} = 2X^2Y\frac{{dy}}{{dy}}\). Simplifying this equation yields \(\frac{{dz}}{{dy}} = -2xz\).

In conclusion, the partial derivatives of \(z\) with respect to \(x\) and \(y\) are \(\frac{{\partial z}}{{\partial x}} = -2xy\) and \(\frac{{\partial z}}{{\partial y}} = -2xz\) respectively. These values represent the rates of change of \(z\) with respect to \(x\) and \(y\) while holding the other variables constant.

Learn more about derivatives here:

https://brainly.com/question/25324584

#SPJ11

Correct question:

If Cos(Xyz)=1+X^(2)Y^(2)+Z^(2), Find Dz/Dx And Dz/Dy .

Find the measure of each interior angle of each regular polygon.

dodecagon

Answers

The measure of each interior angle of a dodecagon is 150 degrees. It's important to remember that the measure of each interior angle in a regular polygon is the same for all angles.


1. A dodecagon is a polygon with 12 sides.
2. To find the measure of each interior angle, we can use the formula: (n-2) x 180, where n is the number of sides of the polygon.
3. Substituting the value of n as 12 in the formula, we get: (12-2) x 180 = 10 x 180 = 1800 degrees.
4. Since a dodecagon has 12 sides, we divide the total measure of the interior angles (1800 degrees) by the number of sides, giving us: 1800/12 = 150 degrees.
5. Therefore, each interior angle of a dodecagon measures 150 degrees.

To learn more about dodecagon

https://brainly.com/question/10710780

#SPJ11

Use the given conditions to write an equation for the line in point-slope form and slope-intercept form. Slope =−3, passing through (−7,−5) Type the point-slope form of the line: (Simplify your answer. Use integers or fractions for any numbers in the equation.)

Answers

The point-slope form of a line is given by y - y1 = m(x - x1), where (x1, y1) is a point on the line, and m is the slope of the line.

Substituting the values, we get:

y - (-5) = -3(x - (-7))

y + 5 = -3(x + 7)

Simplifying the equation, we get:

y + 5 = -3x - 21

y = -3x - 26

Therefore, the equation of the line in point-slope form is y + 5 = -3(x + 7), and in slope-intercept form is y = -3x - 26.

Learn more about Substituting

brainly.com/question/29383142

#SPJ11



Write an ordered pair that is a solution of each system of inequalities.

x ≥ 2 , 5x + 2y ≤ 9

Answers

One possible ordered pair that is a solution to the system of inequalities is (2, -1/2).

In mathematics, inequalities are mathematical statements that compare the values of two quantities. They express the relationship between numbers or variables and indicate whether one is greater than, less than, or equal to the other.

Inequalities can involve variables as well. For instance, x > 2 means that the variable x is greater than 2, but the specific value of x is not known. In such cases, solving the inequality involves finding the range of values that satisfy the given inequality.

Inequalities are widely used in various fields, including algebra, calculus, optimization, and real-world applications such as economics, physics, and engineering. They provide a way to describe relationships between quantities that are not necessarily equal.

To find an ordered pair that is a solution to the given system of inequalities, we need to find a point that satisfies both inequalities.

First, let's consider the inequality x ≥ 2. This means that x must be equal to or greater than 2. We can choose any value for y that we want.

Now, let's consider the inequality 5x + 2y ≤ 9. To find a point that satisfies this inequality, we can choose a value for x that is less than or equal to 2 (since x ≥ 2) and solve for y.

Let's choose x = 2. Plugging this into the inequality, we have:

5(2) + 2y ≤ 9
10 + 2y ≤ 9
2y ≤ -1
y ≤ -1/2

So, one possible ordered pair that is a solution to the system of inequalities is (2, -1/2).

To know  more about inequalities visit:

https://brainly.com/question/20383699

#SPJ11

write down a matrix for a shear transformation on r2, and state whether it is a vertical or a horizontal shear.

Answers

A shear transformation in R2 is a linear transformation that displaces points in a shape. It is represented by a 2x2 matrix that captures the effects of the transformation. In the case of vertical shear, the matrix will have a non-zero entry in the (1,2) position, indicating the vertical displacement along the y-axis. For the given matrix | 1 k |, | 0 1 |, where k represents the shearing factor, the presence of a non-zero entry in the (1,2) position confirms a vertical shear. This means that the points in the shape will be shifted vertically while preserving their horizontal positions. In contrast, if the non-zero entry were in the (2,1) position, it would indicate a horizontal shear. Shear transformations are useful in various applications, such as computer graphics and image processing, to deform and distort shapes while maintaining their overall structure.

To learn more about matrix transformation: https://brainly.com/question/28900265

#SPJ11

which three criteria should you consider when prioritizing stakeholders?

Answers

When prioritizing stakeholders, there are various criteria to consider. In general, three of the most important criteria are:

1. Power/Influence: Some stakeholders influence an organization's success more than others. As a result, evaluating how important a stakeholder is to your company's overall success is critical. This is known as power or influence.

2. Legitimacy: Legitimacy refers to how a stakeholder is perceived by others. A stakeholder who is respected, highly regarded, or trusted by other stakeholders is more legitimate than one who is not.

3. Urgency: This criterion assesses how quickly a stakeholder's request should be addressed. Some stakeholders may be able to wait longer than others for a response, while others may require immediate attention.

When determining the priority level of a stakeholder, it is critical to assess the urgency of their request.

#SPJ11

Learn more about prioritizing stakeholders and criteria https://brainly.com/question/32739513

) Irene plans to retire on December 31st, 2019. She has been preparing to retire by making annual deposits, starting on December 31 st, 1979 , of $2350 into an account that pays an effective rate of interest of 8.2%. She has continued this practice every year through December 31 st, 2000 . Her is to have $1.5 million saved up at the time of her retirement. How large should her annual deposits be (from December 31 st, 2001 until December 31 , 2019) so that she can reach her goal? Answer =$

Answers

Irene should make annual deposits of approximately $36,306.12 from December 31st, 2001 until December 31st, 2019 in order to reach her retirement goal of $1.5 million.

To calculate the annual deposits Irene should make from December 31st, 2001 until December 31st, 2019 in order to reach her retirement goal of $1.5 million, we can use the future value of an annuity formula.

The formula to calculate the future value (FV) of an annuity is:

FV = P * [(1 + r)^n - 1] / r

Where:

FV = Future value of the annuity (in this case, $1.5 million)

P = Annual deposit amount

r = Interest rate per period

n = Number of periods (in this case, the number of years from 2001 to 2019, which is 19 years)

Plugging in the values into the formula:

1.5 million = P * [(1 + 0.082)^19 - 1] / 0.082

Now we can solve for P:

P = (1.5 million * 0.082) / [(1 + 0.082)^19 - 1]

Using a calculator or spreadsheet, we can calculate the value of P:

P ≈ $36,306.12

Therefore, Irene should make annual deposits of approximately $36,306.12 from December 31st, 2001 until December 31st, 2019 in order to reach her retirement goal of $1.5 million.

To learn more about approximately visit: brainly.com/question/31695967

#SPJ11

Two numbers are as 3:4, and if 7 be subtracted from each, the
remainder is 2:3. Find the smaller number between the two.

Answers

The smaller number between the two is 3.5, obtained by solving the proportion (3-7) : (4-7) = 2 : 3.

Let's assume the two numbers are 3x and 4x (where x is a common multiplier).

According to the given condition, if we subtract 7 from each number, the remainder is in the ratio 2:3. So, we have the following equation:

(3x - 7)/(4x - 7) = 2/3

To solve this equation, we can cross-multiply:

3(4x - 7) = 2(3x - 7)

Simplifying the equation:

12x - 21 = 6x - 14

Subtracting 6x from both sides:

6x - 21 = -14

Adding 21 to both sides:

6x = 7

Dividing by 6:

x = 7/6

Now, we can substitute the value of x back into one of the original expressions to find the smaller number. Let's use 3x:

Smaller number = 3(7/6) = 21/6 = 3.5

Therefore, the smaller number between the two is 3.5.

Learn more about proportion

brainly.com/question/31548894

#SPJ11

if a = 2, 0, 2 , b = 3, 2, −2 , and c = 0, 2, 4 , show that a ⨯ (b ⨯ c) ≠ (a ⨯ b) ⨯ c. a ⨯ (b ⨯ c) =

Answers

The vectors resulting from the calculations of a ⨯ (b ⨯ c) and (a ⨯ b) ⨯ c do not have the same values. We can conclude that these two vector products are not equal.

To evaluate a ⨯ (b ⨯ c), we can use the vector triple product. Let's calculate it step by step:

a = (2, 0, 2)

b = (3, 2, -2)

c = (0, 2, 4)

First, calculate b ⨯ c:

b ⨯ c = (2 * (-2) - 2 * 4, -2 * 0 - 3 * 4, 3 * 2 - 2 * 0)

= (-8, -12, 6)

Next, calculate a ⨯ (b ⨯ c):

a ⨯ (b ⨯ c) = (0 * 6 - 2 * (-12), 2 * (-8) - 2 * 6, 2 * (-12) - 0 * (-8))

= (24, -28, -24)

Therefore, a ⨯ (b ⨯ c) = (24, -28, -24).

Now, let's calculate (a ⨯ b) ⨯ c:

a ⨯ b = (0 * (-2) - 2 * 2, 2 * 3 - 2 * (-2), 2 * 2 - 0 * 3)

= (-4, 10, 4)

(a ⨯ b) ⨯ c = (-4 * 4 - 4 * 2, 4 * 0 - (-4) * 2, (-4) * 2 - 10 * 0)

= (-24, 8, -8)

Therefore, (a ⨯ b) ⨯ c = (-24, 8, -8).

In conclusion, a ⨯ (b ⨯ c) = (24, -28, -24), while (a ⨯ b) ⨯ c = (-24, 8, -8). Hence, a ⨯ (b ⨯ c) is not equal to (a ⨯ b) ⨯ c.

For more question on vectors visit:

https://brainly.com/question/15519257

#SPJ8

Note the correct and the complete question is

Q- If a = 2, 0, 2, b = 3, 2, −2, and c = 0, 2, 4, show that a ⨯ (b ⨯ c) ≠ (a ⨯ b) ⨯ c.

Letf : {0,112 {0,1}}.f(x) = x0. 1) What is the range of the function? 2) Is f one-to-one? Justify your answer. 3) Is f onto? Justify your answer. 4) Isf a bijection? Justify your answer. Letf : Z → Z where f(x) = x2 + 12. Let g: Z → Z where g(x) = x + 13. = gof(1) = fºg(-3) = = g • f(x) = o fog(x) =

Answers

The range of the function f is {0, 1}. No, f is not one-to-one since different inputs can yield the same output.

For the function f: {0, 1} → {0, 1}, where f(x) = x^0, we can analyze its properties:

The range of the function f is {0, 1}, as the function outputs either 0 or 1 for any input in the domain.The function f is not one-to-one because different inputs can yield the same output. Since x^0 is always 1 for any non-zero value of x, both 0 and 1 in the domain map to 1 in the range.The function f is onto because every element in the range {0, 1} has a corresponding input in the domain. Both 0 and 1 are covered by the function.The function f is not a bijection since it is not one-to-one. A bijection requires a function to be both one-to-one and onto. In this case, since different inputs map to the same output, f does not satisfy the one-to-one condition and is therefore not a bijection.

Regarding the second part of your question (f: Z → Z and g: Z → Z), the expressions "gof(1)" and "fºg(-3)" are not provided, so further analysis or calculation is needed to determine their values.

To learn more about “domain” refer to the https://brainly.com/question/26098895

#SPJ11

What is the equation for g, which is f(x) = 2x2 + 3x − 1 reflected across the y-axis?



A. G(x) = 2x2 + 3x − 1


B. G(x) = −2x2 − 3x + 1


C. G(x) = 2x2 − 3x − 1


D. G(x) = −2x2 − 3x − 1

Answers

[tex]G(x)=f(-x)\\\\G(x)=2(-x)^2+3(-x)-1\\\\G(x)=\boxed{2x^2-3x-1}[/tex]

the hypotenuse of a right triangle is long. the longer leg is longer than the shorter leg. find the side lengths of the triangle.

Answers

The side lengths of the triangle are:

Longer side= 36m, shorter side= 27m and hypotenuse=45m

Here, we have,

Let x be the longer leg of the triangle

According to the problem, the shorter leg of the triangle is 9 shorter than the longer leg, so the length of the shorter leg is x - 9

The hypotenuse is 9 longer than the longer leg, so the length of the hypotenuse is x + 9

We know that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides. So we can use the Pythagorean theorem:

(x + 9)² = x² + (x - 9)²

Expanding and simplifying the equation:

x² + 18x + 81 = x² + x² - 18x + 81

x²-36x=0

x=0 or, x=36

Since, x=0 is not possible in this case, we consider x=36 as the solution.

Thus, x=36, x-9=27 and x+9=45.

Read more about right angle triangles:

brainly.com/question/12381687

#SPJ4

if sin(x) = 1 3 and sec(y) = 5 4 , where x and y lie between 0 and 2 , evaluate the expression. cos(2y)

Answers

if sin(x) = 1 3 and sec(y) = 5 4 , where x and y lie between 0 and 2 , then cos(2y) is  17/25.

To evaluate the expression cos(2y), we need to find the value of y and then substitute it into the expression. Given that sec(y) = 5/4, we can use the identity sec^2(y) = 1 + tan^2(y) to find tan(y).

sec^2(y) = 1 + tan^2(y)

(5/4)^2 = 1 + tan^2(y)

25/16 = 1 + tan^2(y)

tan^2(y) = 25/16 - 1

tan^2(y) = 9/16

Taking the square root of both sides, we get:

tan(y) = ±√(9/16)

tan(y) = ±3/4

Since y lies between 0 and 2, we can determine the value of y based on the quadrant in which sec(y) = 5/4 is positive. In the first quadrant, both sine and cosine are positive, so we take the positive value of tan(y):

tan(y) = 3/4

Using the Pythagorean identity tan^2(y) = sin^2(y) / cos^2(y), we can solve for cos(y):

(3/4)^2 = sin^2(y) / cos^2(y)

9/16 = sin^2(y) / cos^2(y)

9cos^2(y) = 16sin^2(y)

9cos^2(y) = 16(1 - cos^2(y))

9cos^2(y) = 16 - 16cos^2(y)

25cos^2(y) = 16

cos^2(y) = 16/25

cos(y) = ±4/5

Since x lies between 0 and 2, we can determine the value of x based on the quadrant in which sin(x) = 1/3 is positive. In the first quadrant, both sine and cosine are positive, so we take the positive value of cos(x):

cos(x) = 4/5

Now, to evaluate cos(2y), we substitute the value of cos(y) into the double-angle formula:

cos(2y) = cos^2(y) - sin^2(y)

cos(2y) = (4/5)^2 - (1/3)^2

cos(2y) = 16/25 - 1/9

cos(2y) = (144 - 25)/225

cos(2y) = 119/225

cos(2y) = 17/25

Therefore, the value of cos(2y) is 17/25.

You can learn more about quadrant at

https://brainly.com/question/28587485

#SPJ11

2. Find the area of the region bounded by \( f(x)=3-x^{2} \) and \( g(x)=2 x \).

Answers

To find the area of the region bounded by the curves \(f(x) = 3 - x^2\) and \(g(x) = 2x\), we determine the points of intersection between two curves and integrate the difference between the functions over that interval.

To find the points of intersection, we set \(f(x) = g(x)\) and solve for \(x\):

\[3 - x^2 = 2x\]

Rearranging the equation, we get:

\[x^2 + 2x - 3 = 0\]

Factoring the quadratic equation, we have:

\[(x + 3)(x - 1) = 0\]

So, the two curves intersect at \(x = -3\) and \(x = 1\).

To calculate the area, we integrate the difference between the functions over the interval from \(x = -3\) to \(x = 1\):

\[A = \int_{-3}^{1} (g(x) - f(x)) \, dx\]

Substituting the given functions, we have:

\[A = \int_{-3}^{1} (2x - (3 - x^2)) \, dx\]

Simplifying the expression and integrating, we find the area of the region bounded by the curves \(f(x)\) and \(g(x)\).

Learn more about points of intersection here:

brainly.com/question/29188411

#SPJ11

the state of california has a mean annual rainfall of 22 inches, whereas the state of new york has a mean annual rainfall of 42 inches. assume that the standard deviation for both states is 4 inches. a sample of 30 years of rainfall for california and a sample of 45 years of rainfall for new york has been taken. if required, round your answer to three decimal places.

Answers

There is evidence to suggest that the mean annual rainfall for the state of California and the state of New York is different.

The state of California has a mean annual rainfall of 22 inches, whereas the state of New York has a mean annual rainfall of 42 inches. Assume that the standard deviation for both states is 4 inches. A sample of 30 years of rainfall for California and a sample of 45 years of rainfall for New York have been taken. If required, round your answer to three decimal places.

The value of the z-statistic for the difference between the two population means is -9.6150.

The critical value of z at 0.01 level of significance is 2.3263.

The p-value for the hypothesis test is p = 0.000.

As the absolute value of the calculated z-statistic (9.6150) is greater than the absolute value of the critical value of z (2.3263), we can reject the null hypothesis and conclude that the difference in mean annual rainfall for the two states is statistically significant at the 0.01 level of significance (or with 99% confidence).

Therefore, there is evidence to suggest that the mean annual rainfall for the state of California and the state of New York is different.

Learn more about critical value visit:

brainly.com/question/32607910

#SPJ11

show that any vector field of the form f(x,y,z)=f(y,z)i g(x,z)j h(x,y)k is incompressible

Answers

Vector fields, of the form f(x,y,z) = f(y,z)i + g(x,z)j + h(x,y)k, are incompressible.

In vector calculus, an incompressible vector field is one whose divergence is equal to zero.

Given a vector field

F = f(x,y,z)i + g(x,y,z)j + h(x,y,z)k,

the divergence is defined as the scalar function

div F = ∂f/∂x + ∂g/∂y + ∂h/∂z

where ∂f/∂x, ∂g/∂y, and ∂h/∂z are the partial derivatives of the components of the vector field with respect to their respective variables.

A vector field is incompressible if and only if its divergence is zero.

The question asks us to show that any vector field of form f(x,y,z) = f(y,z)i + g(x,z)j + h(x,y)k is incompressible.

Let's apply the definition of the divergence to this vector field:

div F = ∂f/∂x + ∂g/∂y + ∂h/∂z

We need to compute the partial derivatives of the components of the vector field with respect to their respective variables.

∂f/∂x = 0 (since f does not depend on x)

∂g/∂y = 0 (since g does not depend on y)

∂h/∂z = 0 (since h does not depend on z)

Therefore, div F = 0, which means that the given vector field is incompressible.

In conclusion, we have shown that any vector field of form f(x,y,z) = f(y,z)i + g(x,z)j + h(x,y)k is incompressible. We did this by computing the divergence of the vector field and seeing that it is equal to zero. This implies that the vector field is incompressible, as per the definition of incompressibility.

To know more about partial derivatives visit:

brainly.com/question/28750217

#SPJ11

Show whether \( f(x)=\frac{x^{2}-x}{x^{2}-1} \) is a continuous function or not on all the real numbers \( \Re ? \)

Answers

The function [tex]\( f(x) = \frac{x^2 - x}{x^2 - 1} \)[/tex] is not continuous on all real numbers [tex]\( \mathbb{R} \)[/tex] due to a removable discontinuity at[tex]\( x = 1 \)[/tex] and an essential discontinuity at[tex]\( x = -1 \).[/tex]

To determine the continuity of the function, we need to check if it is continuous at every point in its domain, which is all real numbers except[tex]( x = 1 \) and \( x = -1 \)[/tex] since these values would make the denominator zero.

a) At [tex]\( x = 1 \):[/tex]

If we evaluate[tex]\( f(1) \),[/tex]we get:

[tex]\( f(1) = \frac{1^2 - 1}{1^2 - 1} = \frac{0}{0} \)[/tex]

This indicates a removable discontinuity at[tex]\( x = 1 \),[/tex] where the function is undefined. However, we can simplify the function to[tex]\( f(x) = 1 \) for \( x[/tex]  filling in the discontinuity and making it continuous.

b) [tex]At \( x = -1 \):[/tex]

If we evaluate[tex]\( f(-1) \),[/tex]we get:

[tex]\( f(-1) = \frac{(-1)^2 - (-1)}{(-1)^2 - 1} = \frac{2}{0} \)[/tex]

This indicates an essential discontinuity at[tex]\( x = -1 \),[/tex] where the function approaches positive or negative infinity as [tex]\( x \)[/tex] approaches -1.

Therefore, the function[tex]\( f(x) = \frac{x^2 - x}{x^2 - 1} \)[/tex] is not continuous on all real numbers[tex]\( \mathbb{R} \)[/tex] due to the removable discontinuity at [tex]\( x = 1 \)[/tex] and the essential discontinuity at [tex]\( x = -1 \).[/tex]

Learn more about real numbers here:

https://brainly.com/question/31715634

#SPJ11

Solve the logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expression. 9 ln(2x) = 36 Rewrite the given equation without logarithms. Do not solve for x. Solve the equation. What is the exact solution? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is (Type an exact answer in simplified form. Use integers or fractions for any numbers in the expression.) B. There are infinitely many solutions. C. There is no solution. What is the decimal approximation to the solution? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is (Type an integer or decimal rounded to two decimal places as needed.) B. There are infinitely many solutions. C. There is no solution.

Answers

Given equation is: 9 \ln(2x) = 36, Domain: (0, ∞). We have to rewrite the given equation without logarithms.

Do not solve for x. Let's take a look at the steps to solve the logarithmic equation:

Step 1:First, divide both sides of the equation by 9. \frac{9 \ln(2x)}{9}=\frac{36}{9} \ln(2x)=4

Step 2: Rewrite the equation in exponential form. e^{(\ln(2x))}=e^4 2x=e^4.

Step 3: Solve for \frac{2x}{2}=\frac{e^4}{2}x=\frac{e^4}{2}x=\frac{54.598}{2}x=27.299. We have found the exact solution. So the correct option is:A.

The solution set is \left\{27.299\right\}The given equation is: 9 \ln(2x) = 36. The domain of the logarithmic function is (0, ∞). First, we divide both sides of the equation by 9. This gives us:\frac{9 \ln(2x)}{9}=\frac{36}{9}\ln(2x)=4Now, let's write the equation in exponential form. We have: e^{(\ln(2x))}=e^4. Now solve for x. We get:2x=e^4\frac{2x}{2}=\frac{e^4}{2}x=\frac{e^4}{2}x=\frac{54.598}{2}x=27.299. We have found the exact solution. So the correct option is:A.

The solution set is \left\{27.299\right\}The decimal approximation of the solution is 27.30 (rounded to two decimal places).Therefore, the solution set is \left\{27.299\right\}and the decimal approximation is 27.30. Given equation is 9 \ln(2x) = 36. The domain of the logarithmic function is (0, ∞). After rewriting the equation in exponential form, we get x=\frac{e^4}{2}. The exact solution is \left\{27.299\right\} and the decimal approximation is 27.30.

To know more about logarithms visit:

brainly.com/question/30226560

#SPJ11

Suppose that \( f(3)=4 \) and \( f^{\prime}(3)=-5 \). Find \( h^{\prime}(3) \). Round your answer to two decimal places. (a) \( h(x)=\left(3 f(x)-5 e^{x / 9}\right)^{2} \) \( h^{\prime}(3)= \) (b) \(

Answers

The value of h'(3) is - 158.44

To find h'(3), we need to differentiate the function h(x) = (3f(x) - 5e⁽ˣ/⁹⁾)² with respect to x and evaluate it at x = 3.

Given:

h(x) = (3f(x) - 5e⁽ˣ/⁹⁾)²

Let's differentiate h(x) using the chain rule and the power rule:

h'(x) = 2(3f(x) - 5e⁽ˣ/⁹⁾)(3f'(x) - (5/9)e⁽ˣ/⁹⁾)

Now we substitute x = 3 and use the given information f(3) = 4 and f'(3) = -5:

h'(3) = 2(3f(3) - 5e⁽¹/⁹⁾)(3f'(3) - (5/9)e⁽¹/⁹⁾)

      = 2(3(4) - 5∛e)(3(-5) - (5/9)∛e)

      = 2(12 - 5∛e)(-15 - (5/9)∛e)

To obtain a numerical approximation, we can evaluate this expression using a calculator or software. Rounded to two decimal places, h'(3) is approximately:

Therefore, h'(3) ≈ - 158.44

Learn more about Function here

https://brainly.com/question/32584845

#SPJ4

Complete question is below

Suppose that f(3)=4 and f'(3)=-5. Find h'(3). Round your answer to two decimal places. (a)h(x)=(3 f(x)-5 e⁽ˣ/⁹⁾)²

h'(3) =

consider the following equation of a quadric surface. x=1-y^2-z^2 a. find the intercepts with the three coordinate axes, if they exist.

Answers

The intercepts of the quadric surface x = 1 - y^2 - z^2 with the coordinate axes are:

x-axis intercepts: none

y-axis intercepts: (0, 1, 0) and (0, -1, 0)

z-axis intercepts: (0, 0, 1) and (0, 0, -1)

To find the intercepts of the quadric surface x = 1 - y^2 - z^2 with the three coordinate axes, we need to set each of the variables to zero and solve for the remaining variable.

When x = 0, the equation becomes:

0 = 1 - y^2 - z^2

Simplifying the equation, we get:

y^2 + z^2 = 1

This is the equation of a circle with radius 1 centered at the origin in the yz-plane. Therefore, the x-axis intercepts do not exist.

When y = 0, the equation becomes:

x = 1 - z^2

Solving for z, we get:

z^2 = 1 - x

Taking the square root of both sides, we get:

[tex]z = + \sqrt{1-x} , - \sqrt{1-x}[/tex]

This gives us two z-axis intercepts, one at (0, 0, 1) and the other at (0, 0, -1).

When z = 0, the equation becomes:

x = 1 - y^2

Solving for y, we get:

y^2 = 1 - x

Taking the square root of both sides, we get:

[tex]y = +\sqrt{(1 - x)} , - \sqrt{(1 - x)}[/tex]

This gives us two y-axis intercepts, one at (0, 1, 0) and the other at (0, -1, 0).

Therefore, the intercepts of the quadric surface x = 1 - y^2 - z^2 with the coordinate axes are:

x-axis intercepts: none

y-axis intercepts: (0, 1, 0) and (0, -1, 0)

z-axis intercepts: (0, 0, 1) and (0, 0, -1)

Learn more about " intercepts of the quadric surface" : https://brainly.com/question/24363347

#SPJ11

Determine the number of real number roots to the equation y = 2x^2 − x + 10 a. Infinite real number roots b. Two distinct real number roots c. One distinct real number root d. No real number root

Answers

The number of real number roots to the equation y = 2x² - x + 10 is no real number root. The answer is option (d).

To find the number of real number roots, follow these steps:

To determine the number of real number roots, we have to find the discriminant of the quadratic equation, discriminant = b² - 4ac, where a, b, and c are the coefficients of the equation y = ax² + bx + c So, for y= 2x² - x + 10, a = 2, b = -1 and c = 10. Substituting these values in the formula for discriminant we get discriminant= b² - 4ac = (-1)² - 4(2)(10) = 1 - 80 = -79 < 0.Since the value of the discriminant is negative, the quadratic equation has no real roots.

Hence, the correct option is (d) No real number root.

Learn more about discriminant:

brainly.com/question/2507588

#SPJ11

Find the surface area of f(x,y)=2x ^3/2 +4y^ 3/2
over the rectangle R=[0,4]×[0,3]. Write the integral that you use, and then use a calculator/computer to evaluate it.

Answers

We find the surface area of f(x, y) over the rectangle R to be approximately 32.62 square units.

To find the surface area of the function f(x, y) = 2x^(3/2) + 4y^(3/2) over the rectangle R = [0, 4] × [0, 3], we can use the formula for surface area integration.

The integral to evaluate is the double integral of √(1 + (df/dx)^2 + (df/dy)^2) over the rectangle R, where df/dx and df/dy are the partial derivatives of f with respect to x and y, respectively. Evaluating this integral requires the use of a calculator or computer.

The surface area of the function f(x, y) over the rectangle R can be calculated using the double integral:

Surface Area = ∫∫R √(1 + (df/dx)^2 + (df/dy)^2) dA,

where dA represents the differential area element over the rectangle R.

In this case, f(x, y) = 2x^(3/2) + 4y^(3/2), so we need to calculate the partial derivatives: df/dx and df/dy.

Taking the partial derivative of f with respect to x, we get df/dx = 3√x/√2.

Taking the partial derivative of f with respect to y, we get df/dy = 6√y/√2.

Now, we can substitute these derivatives into the surface area integral and integrate over the rectangle R = [0, 4] × [0, 3].

Using a calculator or computer to evaluate this integral, we find the surface area of f(x, y) over the rectangle R to be approximately 32.62 square units.

learn more about surface area here:

brainly.com/question/29298005

#SPJ11

Lizzie cuts of 43 congruent paper squares. she arranges all of them on a table to create a single large rectangle. how many different rectangles could lizzie have made? (two rectangles are considered the same if one can be rotated to look like the other.)

Answers

Lizzie could have made 1 rectangle using 43 congruent paper squares, as the factors of 43 are prime and cannot form a rectangle. Combining pairs of factors yields 43, allowing for rotation.

To determine the number of different rectangles that Lizzie could have made, we need to consider the factors of the total number of squares she has, which is 43. The factors of 43 are 1 and 43, since it is a prime number. However, these factors cannot form a rectangle, as they are both prime numbers.

Since we cannot form a rectangle using the prime factors, we need to consider the factors of the next smallest number, which is 42. The factors of 42 are 1, 2, 3, 6, 7, 14, 21, and 42.

Now, we need to find pairs of factors that multiply to give us 43. The pairs of factors are (1, 43) and (43, 1). However, since the problem states that two rectangles are considered the same if one can be rotated to look like the other, these pairs of factors will be counted as one rectangle.

Therefore, Lizzie could have made 1 rectangle using the 43 congruent paper squares.

To know more about rectangle Visit:

https://brainly.com/question/28993977

#SPJ11

Other Questions
According to ________, leaders need to make clear how followers can achieve organizational goals, take care of problems that prevent followers from achieving goals, and then find more and varied rewards to motivate followers who achieve those goals. french company cannes sa signs an agreement with a company in gabon to allow them to make and sell products designed by cannes. in this case, the products are sold only in gabon and do not carry the cannes brand name. this type of arrangement is called Let a, b, p = [0, 27). The following two identities are given as cos(a + B) = cosa cos-sina sin, cosq+sin = 1, Hint: sin o= (b) Prove that 0=cos (a) Prove the equations in (3.2) ONLY by the identities given in (3.1). cos(a-B) = cosa cos+sina sin, sin(a-B)=sina cos-cosa sin. I sin (a-B)=cos os (4- (a p)) = cos((-a) + p). cosa= 1+cos 2a 2 (c) Calculate cos(7/12) and sin (7/12) obtained in (3.2). (3.1) sin a (3.2) (3.3) 1-cos 2a 2 (3.4) respectively based on the results If a softball is hit with an upward velocity of 96 feet per second when t=0, from a height of 7 feet. (a) Find the function that models the height of the ball as a function of time. (b) Find the maximum height of the ball. (a) The function that models the height of the ball as a function of time is y= (Type an expression using t as the variable. Do not factor.) (b) The maximum height of the ball is feet. Margot Inc. issues bonds with a stated rate of 5%; the company's market interest rate is 6%. The bonds will issue at: good day, can someone give a detailed explanation, thank you(b) Explain how a pn-junction is designed as a coherent light emitter. Derive an equation which gives a condition for the generation of coherent light from the pn-junction. 10 marks ) Suppose that a random variable X represents the output of a civil engineering process and that X is uniformly distributed. The PDF of X is equal to 1 for any positive x smaller than or equal to 2, and it is 0 otherwise. If you take a random sample of 12 observations, what is the approximate probability distribution of X 10? (You need to find the m Consider a gas consisting of identical non-interacting particles. The quantum states of a single particle are labeled by the index r. Let the energy of a particle in state r be &r. Let n, be the number of particles in quantum state r. The partition function of the gas is thus Z -={p*}"C) where the first sum is over all allowable values of the ns, and the second is over all single particle quantum states. Here, B = 1/(k T), where I is the absolute temperature. Demonstrate that 10. question 10 deploying a model into production represents the end of the iterative process that includes feedback, model refinement, and redeployment. discuss your plan for completing your clinical hours. what specific skills or goals would you like to accomplish during this clinical rotation? how do you plan to use evidence to support your clinical decisions? Iron59 is used to study iron metabolism in the spleen. Its halflife is 44 days. How many days would it take a 28. 0 g sample of iron59 to decay to 7. 00 g? Why do you think some travelers are turning to these types of lodging sites over a more traditional hotel? what aspects do average hotels have that are not available through rental sites such as these? what are some scenarios where you feel that the use of a lodging rental site would be a better option for travelers? what are some scenarios in which you feel the use of a hotel would be a better option? discuss which types of hotels you feel are being hurt or are in the biggest competition with rental sites such as those you explored? why do you think that is? do you think rental sites such as these will one day take the place of all hotels? why or why not? it has recently been brought up that these types of online lodging rentals should be taxed with the same hotel tax that traditional hotels are taxed with. do some additional research on this. what is hotel tax? do you think putting a hotel tax on places such as these would be fair? why or why not? Find a plane containing the point (3,6,4) and the line r (t)=+t maple syrup is begin pumped into a cone shpaed vat in a factory at a rate of six cuic feet per minute. the cone has a radius of 20 feet and a height of 30 feet. how fast is the maple syrup level increaseing when the syrup is 5 feet deep? The equity beta of a levered firm will always be Blank______ the equity beta of an otherwise identical all-equity firm. Multiple choice question. less than the same as greater than After a \( 80 \% \) reduction, you purchase a new television on sale for \( \$ 184 \). What was the original price of the television? Round your solution to the nearest cent. \( \$ \) Find an equation of the line in the slope-intercept form that satisfies the given conditions. Through (9,7) and (8,9) An ammonia condenser uses a shell-and-tube heat exchanger. Ammonia enters the shell (in its saturated vapour state) at 60C, and the overall heat transfer coefficient, U, is 1000 W/m2K. If the inlet and exit water temperatures are 20C and 40C, respectively, and the heat exchanger effectiveness is 60%, determine the area required for a heat transfer of 300 kW. By how much would the heat transfer decrease if the water flow rate was reduced by 50% while keeping the heat exchanger area and U the same? Use Cp,water 4.179 kJ/kgk and Tables QA6-1 and QA6-2 (see below) to obtain your solution. Evaluate 3 s 29ds5using the trapezoidal rule and Simpson's rule. Determine i. the value of the integral directly. ii. the trapezoidal rule estimate for n=4. iii. an upper bound for E T. iv. the upper bound for E T as a percentage of the integral's true value. v. the Simpson's rule estimate for n=4. vi. an upper bound for E S. vii. the upper bound for E S as a percentage of the integral's true value. a store notices that a particular item in stock is never sold. this item could potentially make the store $7,142 daily, so the store manager begins an advertising campaign. on day 10 of the campaign, the store makes $1,295 in sales of this item. assume the increase in sales follows the pattern of newton's law of cooling (heating). how many days of campaigning will it take for the store to make at least $5,810 from a single day of sales of this item?