Although you said the variance is 120, I suspect you meant to say standard deviation. If that's the case, then
P(970 < x < 1320)
= P((970 - 1250)/120 < (x - 1250)/120 < (1320 - 1250)/120)
≈ P(-2.3333 < z < 0.5833)
= P(z < 0.5833) - P(z < -2.3333)
≈ 0.72012 - 0.009815
≈ 0.7104
If you really did mean variance, then
P(970 < x < 1320)
= P((970 - 1250)/√120 < (x - 1250)/√120 < (1320 - 1250)/√120)
≈ P(-25.5604 < z < 6.3901)
= P(z < 6.3901) - P(z < -25.5604)
≈ 1 - 0
≈ 1
A truck carries 360 crates of avocados to a grocery distribution center. If there are 8640 avocados total, how many avocados are in each crate?
Answer:
There are 24 avocados in each crate.
Step-by-step explanation:
This is a division problem.
8640/360 = 24
There are 24 avocados in each crate.
Partition the circle into 4 equal sections. What unit fraction of the circle’s area does each section represent?
Answer:
1/4
Step-by-step explanation:
If the 4 sections have equal areas, then each section has 1/4 of the original circle's area.
Fresno County, California is the largest agricultural producing county in the country and almonds are an important crop with more than 99,000 acres harvested. Each acre produces about a ton of almonds and sold at a price of $4300 a ton. The Sagardia Brothers grew 600 acres of almonds . How many tons would the brothers sell if they priced the almonds at $4500 a ton?
Answer:
0 ton
Step-by-step explanation:
The question states that 99,000 acres are harvested. This suggest that there are plenty sellers of almonds.The Sagardia Brothers grew 600 acres of almonds. this is a small percentage of the total output of almonds. This suggests that the market for almonds is perfectly competitive.
In this type of market, if the price of a seller is above equilibrium price, zero units of the commodity would be bought. This is because the goods sold are homogenous and buyers can easily purchase from other buyers that sell at the market price
Jamar rolls a 6-sided number cube with the numbers 1 through 6 on it. What is the
probability that he does not roll a prime number?
Answer:
[tex]\frac{1}{2}[/tex]
Step-by-step explanation:
In a 6 sided die, the numbers that are possible to be rolled are
1, 2, 3, 4, 5, and 6.
We know that the numbers 2, 3, and 5 are prime, while 1, 4, and 6 are not.
3 out of the 6 numbers are prime, therefore 3 out of the 6 numbers are not prime.
So the fraction is [tex]\frac{3}{6}[/tex]
This simplifies to [tex]\frac{1}{2}[/tex].
Hope this helped!
Answer:
1/2
Step-by-step explanation:
the prime numbers between 1 and 6 inclusive are: 2, 3, 5 (i.e 3 possible outcomes)
the non prime numbers are : 1, 4 and 6 (i.e 3 possible outcomes)
for each roll, the total number of possible outcomes is 6 (because its a 6-sided die)
P(does not roll a prime number) = P (rolls 1, 4 or 6)
= number of possible non-prime outcomes / total number of outcomes
= 3/6
= 1/2
Determine the equation of the tangent line to the given path at the specified value of t. (sin(7t), cos(7t), 2t9/2); t=1
Answer:
P(t) = {sin7, cos7, 2} + (7cos7, -7sin7, 9)(t-1)
Step-by-step explanation:
The equation of the tangent line to the given path at the specified value of t is expressed as;
P(t) = f(t0) + f'(t0)(t - t0)
f(t0) = (sin(7t), cos(7t), 2t^9/2)
at t0 = 1;
f(t0) = {sin7(1), cos7(1), 2(1)^9/2}
f(t0) = {sin7, cos7, 2}
f'(t0) = (7cos7t, -7sin7t, 9/2{2t^9/2-1}
f'(t0) = (7cos7t, -7sin7t, 9t^7/2}
If t0 = 1
f'(1) = (7cos7(1), -7sin7(1), 9(1)^7/2)
f'(1) =(7cos7, -7sin7, 9)
Substituting the given function into the tangent equation will give:
P(t) = f(t0) + f'(t0)(t - t0)
P(t)= {sin7, cos7, 2} + (7cos7, -7sin7, 9)(t-1)
The final expression gives the equation of the tangent line to the path.
find the area of the figure pictured below. 3.8ft 8.3ft 7.4ft 3.9ft
The can be divided into two rectangles, one having length [tex]8.3[/tex] and width $3.8$
Another with, dimensions $7.4-3.8=3.6$ and $3.9$
Area of first rectangle=$3.8\times8.3=31.54$
Area of second rectangle =$3.6\times3.9=14.04$
Total area $=31.54+14.04=45.58$ ft²
Answer:
45.58 ft^2
Step-by-step explanation:
We can split the figure into two pieces
We have a tall rectangle that is 3.8 by 8.3
A = 3.8 * 8.3 =31.54 ft^2
We also have a small rectangle on the right
The dimensions are ( 7.4 - 3.8) by 3.9
A = 3.6*3.9 =14.04 ft^2
Add the areas together
31.54+14.04
45.58 ft^2
Which of the following is a geometric sequence? a. 5,-25,125,-625 b.2,4,16,48 c. 13,16,19,22 d. 100,50,0,-50
Answer:
a
Step-by-step explanation:
B isn't a geometric sequence as it's last term doesn't follow the rule
C is an arithmetic sequence
D is an arithmetic sequence too
as part of a group exercise, four students each randomly selected 3 cards with angle measures written on them. The table shows the results.
Answer:
Option (A)
Step-by-step explanation:
As we know sum of interior angles of a triangle = 180°
If the sum of angles written on 3 cards is equal to 180°, will make a triangle.
Total of Alisha's cards = 100° + 90° + 170°
= 360°
Total of Aella's cards = 60° + 25° + 95°
= 180°
Total of Andrew's cards = 35° + 35° + 35°
= 105°
Total of Ah Lam's cards = 90° + 60° + 35°
= 185°
Since total of Aella's cards is 180°, triangle is possible with the angles given on the cards of Aella only.
Therefore, Option (A) will be the answer.
(5, 4)
11-5-2)
16.nat's the slope-intercept form of the equation of the line graphed in this figure?
O A. y = 5/3x + 1
O B.y=-3x + 1
O C. y = 3x + 1
O D.y = -5/3X - 1
Answer:
The answer is B. y=3/5x+1Fourteen boys and 21 girls will be equally divided into groups. Find the greatest number of groups that can be created if no one is left out.
Luke owns a trucking company. For every truck that goes out, Luke must pay the driver $17 per hour of driving and also has an expense of $1.75 per mile driven for gas and maintenance. On one particular day, the driver drove an average of 40 miles per hour and Luke's total expenses for the driver, gas and truck maintenance were $522. Write a system of equations that could be used to determine the number of hours the driver worked and the number of miles the truck drove. Define the variables that you use to write the system.
Answer:
17h+1.75m=522 m=40h
Step-by-step explanation:
Let h= {the number of hours the driver drove}
Let m= the number of miles driven
The driver makes $17 for each hour working, so if the driver worked for hh hours, Luke would have to pay him 17h17h dollars. The cost of gas and maintenance is $1.75 per mile, so for mm miles Luke's costs would be 1.75m1.75m dollars. The total cost of the route 17h+1.75m17h+1.75m equals \$522:$522:
17h+1.75m=522
17h+1.75m=522
Since the driver drove an avearge of 40 miles per hour, if the driver drove hour, he would have driven 40 miles, and if the driver drove hh hours, he would have driven 40h40h miles, therefore mm equals 40h:40h:
m=40h
m=40h
Write System of Equations:
17h+1.75m= 522
m=40h
The truck is going for a run for 6 hours and the system of the equation to solve a further problem related to this is [tex]\rm{Cost}=17x+1.75y[/tex]
The following are the different costs of the truck that Luke must be pay while running a truck:
Luke must pay the driver $17 per hour of driving.A truck has an expense of $1.75 per mile driven for gas and maintenance.Let ' x ' be the total time of driving a truck in hours.
and ' y ' be the total mile distance that is covered by the truck.
Therefore, the system of the equation for the overall running cost for a truck is given below.
[tex]\rm{Cost}=17x+1.75y[/tex]
Now, On one particular day, the driver drove an average of 40 miles per hour, and Luke's total expenses for the driver, gas and truck maintenance were $522.
Thus,
The total distance traveled by truck is 40x.
That is,
[tex]y=40x[/tex]
Substitute the values and solve them further.
[tex]522=17x+1.75y\\522=17x+1.75 \times 40x\\522=17x+70x\\522=87x\\x=6[/tex]
Thus, the truck is going for a run for 6 hours and the system of the equation to solve the further problems related to this is [tex]\rm{Cost}=17x+1.75y[/tex]
To know more about variables, please refer to the link:
https://brainly.com/question/14393109
How do i do this equation
-3(-2y-4)-5y-2=
Answer:
Step-by-step explanation: distribute -3 to the parenthesis (-2y-4) to eliminate the parenthesis. you’ll be left with 6y +12 -5y-2. From there you combine like terms. do 6y-5y= 1y or just y and 12-2 = 10. your answer would be 10
solve for x. Solve for x solve for x solve for x
Answer:
x=29
Does the answer help you?
Answer:
x=29
Step-by-step explanation:
Calculate how much 10% acid solution and how much pure acid must be mixed to end up with exactly 12 liters of 30% acid solution. Rounding to the nearest hundredth of a liter, you'll need ___ liters of the pure acid.
Answer:
2.67 liters
Step-by-step explanation:
Let "a" represent the number of liters of pure acid needed to make the desired solution. Then the amount of acid in the mix is ...
(100%)x +(10%)(12 -x) = (30%)(12)
(90%)x = 12(20%) . . . . . subtract (10%)(12)
x = 12(2/9) . . . . . divide by 90%
x = 2 2/3 . . . liters
You'll need 2.67 liters of the pure acid.
A box contains 40 identical discs which are either red or white if probably picking a red disc is 1/4. Calculate the number of;
1. White disc.
2. red disc that should be added such that the probability of picking a red disc will be 1/4
Which rule describes this transformation? (Zoom in to see it clearly)
Answer:
(x,y) -> (x+6, y-3)
Step-by-step explanation:
I followed c and it translated like the last ans choice.
What is the slope of the line shown below?
A. -13/6
B. 6/13
C. 13/6
D. -6/13
-
Answer:
13/6
Step-by-step explanation:
We can use the slope formula
m = ( y2-y1)/(x2-x1)
= (6 - -7)/(1 - -5)
= ( 6+7)/ (1+ 5)
= 13/6
These box plots show daily low temperatures for a sample of days in two different towns.
A
---------------------------------------------------------
Answer: I just took the test and it is D
The rationalisation factor of 2 + √3 is
step by step for BRAINLIST
Answer:
rationalising factor wud be
2 - root3
as on multiying both and applying identity we end up
2^2 - (root3)^2
4 - 3 = 1
we got a rational number so rationalisng factor is
2 - root3
Use the graph of f to estimate the local maximum and local minimum. Local maximum: (0,1); local minimum: three pi over two, negative 1 and negative pi, negative 1 Local maximum: (0,0) and approx (0,1); local minimum: negative three pi over two, negative 1 Local maximum: (0,0); local minimum: three pi over two, negative 1 Local maximum: (0,1); local minimum: approx. (0,0) and three pi over two, negative 1
Answer:
The answer is A.
Step-by-step explanation:
Local maximums are whenever the graph reaches it's highest y value.
Local minimums are whenever the graph reaches it's lowest y value.
From the graph, we can see that the maximum y-value the graph reaches is y=1. And this happens when x=0.
This only happens once (from the graph shown). Thus, the local maximum would be:
[tex](0,1)[/tex]
The minimum values we can see from the graph is at y=-1. This happens twice from the graph, once at -π and again at 3π/2.
Thus, the local minimums are:
[tex](-\pi,-1), (3\pi/2,-1)[/tex]
The net of a triangular prism is shown below. What is the surface area of the prism? A. 128 cm^2 B. 152 cm^2 C. 176 cm^2 D. 304 cm^2
Answer:
B. 152 cm²
Step-by-step explanation:
To find the surface area using a net, do this:
Take apart the figure. We see that there are three rectangles and two triangles. Find the area of each ([tex]A=l*w[/tex]) and then add the values together:
The first rectangle on the left is the same as the one on the right.
[tex]5*8=40[/tex]
Two measures are 40 cm².
The middle rectangle is:
[tex]6*8=48[/tex]
48 cm²
The formula for the area of a triangle is [tex]A=\frac{1}{2}*b*h[/tex]:
[tex]A=\frac{1}{2}*6*4\\\\A=\frac{1*6*4}{2}\\\\A=\frac{24}{2}\\\\ A=12[/tex]
The area of the two triangles is 12 cm².
Now add the values:
[tex]40+40+48+12+12=152[/tex]
The area of the figure is 152 cm².
:Done
prove that is here
[tex]1 - cos {2}a \div 1 - sin a{2} = tan {2} a[/tex]
[tex]\\ \sf\longmapsto \dfrac{1-cos2A}{1-sin2A}[/tex]
LHS[tex]\boxed{\sf \dfrac{cosA}{sinA}=cotA}[/tex]
[tex]\\ \sf\longmapsto \dfrac{1-cos2A}{1-sin2A}[/tex]
[tex]\\ \sf\longmapsto 1-cot2A[/tex]
[tex]\\ \sf\longmapsto 1-\dfrac{1}{tan2A}[/tex]
[tex]\\ \sf\longmapsto \dfrac{tan2A-1}{tan2A}[/tex]
[tex]\\ \sf\longmapsto tan2A[/tex]
The circumference of a circle is 40.8 centimeters.
What is the area of the circle, rounded to the nearest tenth? Use 3.14 for ft. Enter the answer in the box.
Answer:
132.54cm²
Step-by-step explanation:
We can use the formula [ C²/4π ] to solve.
= 40.8²/4π
= 1,664.64/12.56
≈ 132.54cm²
Best of Luck!
plzzzzzzzzz someone help
Answer: 4
Step-by-step explanation:
Since this inequality gives us a list, we want to choose the greatest number shown because x≤?. Because x has to be less than or equal to a number, it makes the most sense to put the greatest number there. In the list, 4 is the greatest number.
200,000=2x10 to the power of 6
False.
2x10^6 you move the decimal point 6 places to the right. ( add 6 zeros after the 2)
2x 10^6 = 2,000,000
what is the least number to be added to 1500 to make it a perfect square?
Answer:
21
Step-by-step explanation:
√1500 = 38.7
Round to nearest whole number
≈39
39²-1500
= 1521 - 1500
= 21
Reduce 20/60 to its lowest common denominator
Answer:
it is 1/4
Step-by-step explanation:
20/60=10/30=1/3
Answer:
20/60=1/3
Step-by-step explanation:
20/60
HCF=20,
20*1=20, 20*3=60
1/3
or,
Remove the zeros,
2/6
Divide by 2 on both,
1/3
or divide by any common factor on both and keep dividing until u cant no more
20/60=1/3
evaluate the expression 4x^2-6x+7 if x = 5
Answer:
77
Step-by-step explanation:
4x^2-6x+7
Let x = 5
4* 5^2-6*5+7
4 * 25 -30 +7
100-30+7
7-+7
77
A paint machine dispenses dye into paint cans to create different shades of paint. The amount of dye dispensed into a can is known to have a normal distribution with a mean of 5 milliliters (ml) and a standard deviation of 0.4 ml. Answer the following questions based on this information. Find the dye amount that represents the 9th percentile of the distribution.
Answer:
4.464 ml
Step-by-step explanation:
Given that:
mean (μ) = 5 mm, standard deviation (σ) = 0.4 ml
The z score is a score in statistics used to determine by how many standard deviation the raw score is above or below the mean. If the z score is positive then the raw score is above the mean and if the z score is negative then the raw score is below the mean It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
From the normal distribution table, the 9th percentile (0.09) corresponds to a z score of -1.34
[tex]z=\frac{x-\mu}{\sigma}\\\\-1.34=\frac{x-5}{0.4}\\\\x-5=-0.536\\\\x=5-0.536\\\\x=4.464[/tex]
The dye amount that represents the 9th percentile of the distribution is 4.464 ml
HELPPPPP ASP PLZZZZZ
Answer:
[tex](f-g)(x)[/tex]
[tex]f(x)-g(x)[/tex]
[tex]x^{2} -6x-27-x+9[/tex]
[tex]x^{2} -7x-18[/tex]
----------------------
[tex](f*g)(x)[/tex]
[tex]=f(x)g(x)[/tex]
[tex](x^{2} -6x-27)(x-9)[/tex]
[tex]=x^{3} -15x^{2}+27x+243[/tex]
----------------------
[tex]\frac{f}{g} (x)[/tex]
[tex]\frac{x^{2} -6x-27}{x-9}[/tex]
[tex]\frac{(x-9)(x+3)}{x-9}[/tex]
[tex]x+3[/tex]
-----------------------
[tex](f+g)(x)[/tex]
[tex]f(x)+g(x)[/tex]
[tex]=x^{2} -6x-27+x-9[/tex]
[tex]=x^{2} -5x-36[/tex]
------------------------
OAmalOHopeO
------------------------