The set of numbers {1, 2, 3, 4, 5, 6, 7, 8, 9, 100} is an example of a ten-element sample for which the mean is larger than the median. The median is 5.5 (
in order to create a ten-element sample for which the mean is larger than the median, you can choose a set of numbers where a few of the numbers are larger than the rest of the numbers. For example, the following set of numbers would work 1, 2, 3, 4, 5, 6, 7, 8, 9, 100. The median of this set is 5.5 (the average of the fifth and sixth numbers), while the mean is 15.5 (the sum of all the numbers divided by 10).
In order to create a sample for which the mean is larger than the median, you can choose a set of numbers where a few of the numbers are larger than the rest of the numbers. This creates a situation where the larger numbers pull the mean up, while the median is closer to the middle of the set. For example, in the set of numbers {1, 2, 3, 4, 5, 6, 7, 8, 9, 100}, the mean is 15.5 (the sum of all the numbers divided by 10), while the median is 5.5 (the average of the fifth and sixth numbers).This is because the value of 100 is much larger than the other values in the set, which pulls the mean up. However, because there are only two numbers (5 and 6) that are less than the median of 5.5, the median is closer to the middle of the set. If you were to remove the number 100 from the set, the median would become 4.5, which is lower than the mean of 5.5. This shows that the addition of an outlier can greatly affect the relationship between the mean and the median in a set of numbers.
The set of numbers {1, 2, 3, 4, 5, 6, 7, 8, 9, 100} is an example of a ten element sample for which the mean is larger than the median. The median is 5.5 (the average of the fifth and sixth numbers), while the mean is 15.5 (the sum of all the numbers divided by 10). This is because the value of 100 is much larger than the other values in the set, which pulls the mean up. However, because there are only two numbers (5 and 6) that are less than the median of 5.5, the median is closer to the middle of the set.
To know more about median visit
brainly.com/question/11237736
#SPJ11
Find the 10 th term for an arithmetic sequence with difference =2 and first term =5. 47 23 25 52
To find the 10th term of an arithmetic sequence with a difference of 2 and a first term of 5, we can use the formula for the nth term of an arithmetic sequence:
aₙ = a₁ + (n - 1)d
where aₙ represents the nth term, a₁ is the first term, n is the position of the term, and d is the common difference.
In this case, the first term (a₁) is 5, the common difference (d) is 2, and we want to find the 10th term (a₁₀).
Plugging the values into the formula, we have:
a₁₀ = 5 + (10 - 1) * 2
= 5 + 9 * 2
= 5 + 18
= 23
Therefore, the 10th term of the arithmetic sequence is 23.
Learn more about arithmetic here
https://brainly.com/question/16415816
#SPJ11
Q5... Lids has obtained 23.75% of the
cap market in Ontario. If Lids sold 2600 caps last month, how many
caps were sold in Ontario in total last month? Round up the final
answer. (1 mark)
The total number of caps sold in Ontario last month is approximately 10948 caps (rounded up).
Given that Lids has obtained 23.75% of the cap market in Ontario and it sold 2600 caps last month. Let us calculate the total caps sold in Ontario last month as follows:
Let the total caps sold in Ontario be x capsLids has obtained 23.75% of the cap market in Ontario which means the percentage of the market Lids has not covered is (100 - 23.75)% = 76.25%.
The 76.25% of the cap market is represented as 76.25/100, hence, the caps sold in the market not covered by Lids is:
76.25/100 × x = 0.7625 x
The total number of caps sold in Ontario is equal to the sum of the number of caps sold by Lids and the number of caps sold in the market not covered by Lids, that is:
x = 2600 + 0.7625 x
Simplifying the equation by subtracting 0.7625x from both sides, we get;0.2375x = 2600
Dividing both sides by 0.2375, we obtain:
x = 2600 / 0.2375x
= 10947.37 ≈ 10948
Therefore, the total number of caps sold in Ontario last month is approximately 10948 caps (rounded up).Answer: 10948
To know more about percentage visit:
https://brainly.com/question/32197511
#SPJ11
A survey asked 60 students if they play an instrument and if they are in band.
1. 35 students play an instrument.
2.30 students are in band.
3. 30 students are not in band.
Which table shows these data correctly entered in a two-way frequency table?
A table that shows these data correctly entered in a two-way frequency table is: A. table A.
What is a frequency table?In Mathematics and Statistics, a frequency table can be used for the graphical representation of the frequencies or relative frequencies that are associated with a categorical variable or data set.
Based on the information provided about this survey with respect to the 60 students, we can logically deduce that only table A represent a two-way frequency table that correctly shows the data being entered:
"35 students play an instrument."
"30 students are in band."
"30 students are not in band."
Read more on frequency table here: brainly.com/question/20744563
#SPJ1
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
An experiment consists of tossing a nickel, a dime, and a quarter. Of interest is the side the coin lands on.
• H = heads
• T = tails
Part (a)
List the sample space. (Type your answer using letter combinations separated by commas. Example: HHH, TTT, ...)
Part (b)
Let A be the event that there are at least two tails. Find P(A). (Enter your answer as a fraction.)
P(A) =
Part (c)
Let A be the event that there are at least two tails. Let B be the event that the first and second tosses land on heads. Are the events A and B mutually exclusive? Explain your answer.
A. Events A and B are mutually exclusive because a coin can land on heads or tails but not both at the same time.
B. Events A and B are not mutually exclusive. Some of the outcomes land on heads the first two tosses, and some of the outcomes have at least two tails.
C. Events A and B are mutually exclusive. Having two coins land heads up cannot occur when at least two coins must be tails.
D. Events A and B are mutually exclusive because they have different probabilities.
Part (a)There are three coins, a nickel, a dime, and a quarter and the possible side each coin could land on is head or tail. The sample space is given below:
Sample space = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}Part (b)Event A is that there are at least two tails. The possible outcomes that satisfy this condition are TTH, THT, HTT, and TTT. Therefore, P(A) = 4/8 or 1/2.Part (c)Events A and B are not mutually exclusive. Having two coins land heads up cannot occur when at least two coins must be tails. However, the event B is that the first two tosses land on heads and A is that there are at least two tails. Thus, some of the outcomes land on heads the first two tosses, and some of the outcomes have at least two tails.
An experiment consists of tossing a nickel, a dime, and a quarter. There are two possible sides to each coin: heads or tails. The sample space for this experiment is: {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.If A denotes the event that there are at least two tails, then A can happen in 4 of the 8 equally likely outcomes. P(A) = 4/8 = 1/2.Let A be the event that there are at least two tails. Let B be the event that the first two tosses land on heads. Then B = {HHT, HTH, HHH}.We can see that A ∩ B = {HHT, HTH}. The events A and B are not mutually exclusive because they share at least one outcome. Hence, the answer is option B: Events A and B are not mutually exclusive.
An experiment consists of tossing a nickel, a dime, and a quarter. Of interest is the side the coin lands on. There are two possible sides to each coin: heads or tails. The sample space for this experiment is given as {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.Now, let us consider event A as "there are at least two tails". The possible outcomes that satisfy this condition are TTH, THT, HTT, and TTT. Therefore, P(A) = 4/8 or 1/2.We are asked to check if the events A and B are mutually exclusive or not. Let us first take event B as "the first two tosses land on heads". The sample outcomes that satisfy this condition are {HHT, HTH, HHH}.We can see that A ∩ B = {HHT, HTH}. This means that A and B share at least one outcome. Thus, the events A and B are not mutually exclusive. So, the correct answer is option B: Events A and B are not mutually exclusive.
The sample space for the experiment of tossing a nickel, a dime, and a quarter is {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}. If A denotes the event that there are at least two tails, then P(A) = 1/2. The events A and B are not mutually exclusive, where A denotes "there are at least two tails" and B denotes "the first two tosses land on heads".
To know more about sample space :
brainly.com/question/30206035
#SPJ11
A firm faces inverse demand function p(q)=120−4q, where q is the firm's output. Its cost function is c(q)=c∗q. a. Write the profit function. b. Find profit-maximizing level of profit as a function of unit cost c. c. Find the comparative statics derivative dq/dc. Is it positive or negative?
The profit function is π(q) = 120q - 4q² - cq. The profit-maximizing level of profit is π* = 120((120 - c)/8) - 4((120 - c)/8)² - c((120 - c)/8)c.
a. The profit function can be expressed in terms of output, q as follows:
π(q)= pq − c(q)
Given that the inverse demand function of the firm is p(q) = 120 - 4q and the cost function is c(q) = cq, the profit function,
π(q) = (120 - 4q)q - cq = 120q - 4q² - cq
b. The profit-maximizing level of profit as a function of unit cost c, can be obtained by calculating the derivative of the profit function and setting it equal to zero.
π(q) = 120q - 4q² - cq π'(q) = 120 - 8q - c = 0 q = (120 - c)/8
The profit-maximizing level of output, q is (120 - c)/8.
The profit-maximizing level of profit, denoted by π* can be obtained by substituting the value of q in the profit function:π* = 120((120 - c)/8) - 4((120 - c)/8)² - c((120 - c)/8)c.
The comparative statics derivative, dq/dc can be found by taking the derivative of q with respect to c.dq/dc = d/dq((120 - c)/8) * d/dq(cq) dq/dc = -1/8 * q + c * 1 d/dq(cq) = cdq/dc = c - (120 - c)/8
The comparative statics derivative is given by dq/dc = c - (120 - c)/8 = (9c - 120)/8
The derivative is positive if 9c - 120 > 0, which is true when c > 13.33.
Hence, the comparative statics derivative is positive when c > 13.33.
Let us know more about profit function : https://brainly.com/question/33580162.
#SPJ11
Find the volumes of the solids generated by revolving the region in the first quadrant bounded by the curve x=y-y3 and the y-axis about the given axes.
a. The x-axis
b. The line y=1
The volume of the solid is π/3.
The regions bounded by the curve x = y - y^3 in the first quadrant and the y-axis are to be revolved around the x-axis and the line y = 1, respectively.
The solids generated by revolving the region in the first quadrant bounded by the curve x=y-y3 and the y-axis about the x-axis are obtained by using disk method.
Therefore, the volume of the solid is:
V = ∫[a, b] π(R^2 - r^2)dx Where,R = radius of outer curve = yandr = radius of inner curve = 0a = 0andb = 1∫[a, b] π(R^2 - r^2)dx= π∫[0, 1] (y)^2 - (0)^2 dy= π∫[0, 1] y^2 dy= π [y³/3] [0, 1]= π/3
The volume of the solid is π/3.The solids generated by revolving the region in the first quadrant bounded by the curve x=y-y3 and the y-axis about the line y = 1 can be obtained by using the washer method.
Therefore, the volume of the solid is:
V = ∫[a, b] π(R^2 - r^2)dx Where,R = radius of outer curve = y - 1andr = radius of inner curve = 0a = 0andb = 1∫[a, b] π(R^2 - r^2)dx= π∫[0, 1] (y - 1)^2 - (0)^2 dy= π∫[0, 1] y^2 - 2y + 1 dy= π [y³/3 - y² + y] [0, 1]= π/3
The volume of the solid is π/3.
To know more about volume visit:
brainly.com/question/33365330
#SPJ11
Prove by cases that for any real numbers x and y, |x + y|≤|x|+ |y|. Hints: Apply the definition of absolute value. You can also use the fact that for any real number a, |a|≥a and |a|≥−a. You should need only two cases.
The inequality holds true for any real numbers x and y.To prove the inequality |x + y| ≤ |x| + |y| for any real numbers x and y, we can consider two cases: when x + y ≥ 0 and when x + y < 0.
Case 1: x + y ≥ 0
In this case, |x + y| = x + y and |x| + |y| = x + y. Since x + y ≥ 0, it follows that |x + y| = x + y ≤ |x| + |y|.
Case 2: x + y < 0
In this case, |x + y| = -(x + y) and |x| + |y| = -x - y. Since x + y < 0, it follows that |x + y| = -(x + y) ≤ -x - y = |x| + |y|.
In both cases, we have shown that |x + y| ≤ |x| + |y|. Therefore, the inequality holds for any real numbers x and y.
To prove the inequality |x + y| ≤ |x| + |y|, we consider two cases based on the sign of x + y. In the first case, when x + y is non-negative (x + y ≥ 0), we can use the fact that the absolute value of a non-negative number is equal to the number itself. Therefore, |x + y| = x + y. Similarly, |x| + |y| = x + y. Since x + y is non-negative, we have |x + y| = x + y ≤ |x| + |y|.
In the second case, when x + y is negative (x + y < 0), we can use the fact that the absolute value of a negative number is equal to the negation of the number. Therefore, |x + y| = -(x + y). Similarly, |x| + |y| = -x - y. Since x + y is negative, we have |x + y| = -(x + y) ≤ -x - y = |x| + |y|.
By considering these two cases, we have covered all possible scenarios for the values of x and y. In both cases, we have shown that |x + y| ≤ |x| + |y|. Hence, the inequality holds true for any real numbers x and y.
Learn more about absolute value here:
brainly.com/question/17360689
#SPJ11
Suppose p is prime and Mp is a Mersenne prime
(a) Find all the positive divisors of 2^(p-¹)Mp. (b) Show that 2^(p-¹)Mp, is a perfect integer. Unlike problem 10, I am not looking for a formal direct proof, just verify that 2^(p-¹)Mp satifies the definition. You may need to recall the formula for a geometric progression.
The sum of the positive divisors of \((2^p + 1)(2^p - 1)\) equals \((2^p + 1)(2^p - 1)\), verifying that \(2^{p-1}M_p\) is a perfect integer.
To find the positive divisors of \(2^{p-1}M_p\), we need to consider the prime factorization of \(2^{p-1}M_p\). Since \(M_p\) is a Mersenne prime, we know that it can be expressed as \(M_p = 2^p - 1\). Substituting this into the expression, we have:
\(2^{p-1}M_p = 2^{p-1}(2^p - 1) = 2^{p-1+p} - 2^{p-1} = 2^{2p-1} - 2^{p-1}\).
Now, let's consider the prime factorization of \(2^{2p-1} - 2^{p-1}\). Using the formula for the difference of two powers, we have:
\(2^{2p-1} - 2^{p-1} = (2^p)^2 - 2^p = (2^p + 1)(2^p - 1)\).
Therefore, the positive divisors of \(2^{p-1}M_p\) are the positive divisors of \((2^p + 1)(2^p - 1)\).
To show that \(2^{p-1}M_p\) is a perfect integer, we need to demonstrate that the sum of its positive divisors (excluding itself) equals the number itself. Since we know that the positive divisors of \(2^{p-1}M_p\) are the positive divisors of \((2^p + 1)(2^p - 1)\), we can show that the sum of the positive divisors of \((2^p + 1)(2^p - 1)\) equals \((2^p + 1)(2^p - 1)\).
This can be proven using the formula for the sum of a geometric series:
\(1 + a + a^2 + \ldots + a^n = \frac{{a^{n+1} - 1}}{{a - 1}}\).
In our case, \(a = 2^p\) and \(n = 1\). Substituting these values into the formula, we get:
\(1 + 2^p = \frac{{(2^p)^2 - 1}}{{2^p - 1}} = \frac{{(2^p + 1)(2^p - 1)}}{{2^p - 1}} = 2^p + 1\).
Learn more about divisors here :-
https://brainly.com/question/26086130
#SPJ11
Given the consumption function C=1,750+0.60Yd, answer the following: (a) The level of consumption when Yd=$35,900 is $ (if necessary, round to nearest cent) (b) The level of savings when Yd=$35,900 is $ (if necessary, round to nearest cent) (c) The break-even level of Yd is =$ * (if necessary, round to nearest cent) (d) In your own words, explain the economic meaning of the slope of the consumption function above: This answer has not been graded yot. (e) Graph the Consumption function C=0.60⋅Yd+1750 Graph Layers After you add an object to the graph you can use Graph Layers to view and edit its propertios.
If the consumption function C=1,750+0.60Yd, the level of consumption when Yd=$ 35,900 is $23,290, the level of savings when Yd=$35,900 is $12,610, the break-even level of Yd is $4,375, the economic meaning of the slope of the consumption function is that the slope represents the marginal propensity to consume and the graph of the function is shown below.
(a) To determine the level of consumption when Yd= $ 35, 900, substitute $35,900 for Yd in the consumption function C=1,750+0.60Yd: C=1,750+0.60($35,900)= $23,290.
(b) To find the level of savings, we need to subtract consumption from disposable income. Savings (S) = Yd - C. So: S = $35,900 - $23,290 = $12,610.
(c) The break-even level of Yd is the level of disposable income at which consumption equals disposable income, which means that savings will be zero. Set C = Yd: 1,750+0.60Yd = Yd. Solving for Yd: 0.40Yd = 1,750. Yd = $4,375. Therefore, the break-even level of Yd is $4,375.
(d) The slope of the consumption function (0.60 in this case) represents the marginal propensity to consume, which is the fraction of each additional dollar of disposable income that is spent on consumption. In other words, for each additional dollar of disposable income, 60 cents is spent on consumption and 40 cents is saved.
(e)The graph for the saving function C= 0.60⋅Yd+1750 will be a straight line with a slope of 0.60 and a y-intercept of 1750. The x-axis will be the disposable income, and the y-axis will be consumption. Plotting the points (0,1750) and (-2920, -2), we can plot the graph as shown below.
Learn more about consumption function:
https://brainly.com/question/28145641
#SPJ11
Of children born between 1980 and 1985, the probability that a randomly chosen individual has played the original game "Oregon Trail" when they were in elementary school is 0.94. In a random sample of 350 adults born between 1980 and 1985, what is the probability that the sample proportion will be greater than 0.97?
0.009
0.037
0.117
0.276
The probability that the sample proportion will be greater than 0.97 is approximately 0.009.
To find the probability that the sample proportion will be greater than 0.97, we can use the sampling distribution of proportions and the central limit theorem.
Given that the probability of an individual playing "Oregon Trail" is 0.94, we can assume that the sample follows a binomial distribution with parameters n = 350 (sample size) and p = 0.94 (probability of success).
The mean of the binomial distribution is given by μ = n * p = 350 * 0.94 = 329, and the standard deviation is σ = sqrt(n * p * (1 - p)) = sqrt(350 * 0.94 * 0.06) ≈ 9.622.
To calculate the probability that the sample proportion is greater than 0.97, we need to standardize the value using the z-score formula: z = (x - μ) / σ, where x is the value of interest.
Plugging in the values, we get z = (0.97 - 329) / 9.622 ≈ -34.053.
Looking up the z-score in the standard normal distribution table, we find that the probability corresponding to 0.97
Learn more about probability here :-
https://brainly.com/question/32117953
#SPJ11
In all of the problems below, you can use an explicit SISO Python program or a description of your intended algorithm. 1. If F(a,b) is a decidable problem, show that G(x)={ "yes", "no", ∃yF(y,x)= "yes" otherwise Is recognizable. Note that we are defining F to take in two parameters for convenience, even though we know that we can encode them as a single parameter using ESS. Intuition: this is saying that if we can definitively determine some property, we can at least search for some input where that property holds. We used this in the proof of Gödel's 1st Incompleteness Theorem, where F(p,s) was the decidable problem of whether p is a valid proof of s, and we searched for a proof for a fixed s.
The statement is constructed so that, if the machine were to determine that the statement is provable, it would be false.
The statement is not provable by definition.
Here is the answer to your question:
Let F(a,b) be a decidable problem.
G(x) = {“yes”, “no”, ∃yF(y,x) = “yes” otherwise} is recognizable.
It can be shown in the following way:
If F(a,b) is decidable, then we can build a Turing machine T that decides F.
If G(x) accepts “yes,” then we can return “yes” right away.
If G(x) accepts “no,” we know that F(y,x) is “no” for all y.
Therefore, we can simulate T on all possible inputs until we find a y such that F(y,x) = “yes,” and then we can accept G(x).
Since T eventually halts, we are guaranteed that the simulation will eventually find an appropriate y, so G is recognizable.
Gödel’s First Incompleteness
Theorem was proven by creating a statement that said,
“This statement is not provable.” The proof was done in two stages.
First, a machine was created to determine whether a given statement is provable or not.
Second, the statement is constructed so that, if the machine were to determine that the statement is provable, it would be false.
Therefore, the statement is not provable by definition.
To know more about Turing machine, visit:
https://brainly.com/question/32997245
#SPJ11
Assume that p and q are unkrown n=1068 (Found up to the nearest integer) b. Assume that 24% of aduts cas wiggle ther earn. ค = Qound up to the newrest integer?
The margin of error is 5.14 (rounded up to the nearest integer)Hence, the value of ค = 6.
Given that, n = 1068 (rounded up to the nearest integer)
Also, 24% of adults cause wiggles there earn. We need to find out the value of k (rounded up to the nearest integer).Now, the formula for the margin of error is given by:
ME = z * [sqrt(p*q)/sqrt(n)]
where z is the z-score,
z = 1 for 68% confidence interval, 1.28 for 80%, 1.645 for 90%, 1.96 for 95%, 2.33 for 98%, and 2.58 for 99%.
Here, since nothing is mentioned, we will take 95% confidence interval.So, substituting the given values, we get
ME = 1.96 * [sqrt(0.24*0.76)/sqrt(1068)]
ME = 1.96 * [sqrt(0.1824)/32.663]
ME = 0.0514 ค =
ME * 100%ค = 0.0514 * 100%
= 5.14 (rounded up to the nearest integer)Hence, the value of ค = 6.
Thus, the value of ค is 6 (rounded up to the nearest integer).
To know more about margin of error visit:
brainly.com/question/13679908
#SPJ11
Find the general solution to y" -2xy=0.
2. Take y"-2xy + 4y = 0.
(a) Show that y = 1 - 2r2 is a solution.
(b) Use redaction of order to find a second linearly independent solution.
(c) Write down the general solution.
3. Find the solution of y" - 10y+24y=0 with y(0)=-1, '(0) = -2.
The solution to the differential equation is : y = -3/2 e ^ {6x} + 1/2 e ^ {4x} Finding the general solution to y" -2xy=0
y" - 2xy = 0 The general solution to y" - 2xy = 0 is: y = C1 e ^ {x ^ 2} + C2 e ^ {x ^ -2}2) Take y"-2xy + 4y = 0.
(a) Show that y = 1 - 2r2 is a solution.
Let y = 1 - 2x ^ 2, then y' = -4xy" = -4
Substituting these in y" - 2xy + 4y = 0 gives
(-4) - 2x (1-2x ^ 2) + 4 (1-2x ^ 2) = 0-8x ^ 3 + 12x
= 08x (3 - 2x ^ 2) = 0
y = 1 - 2x ^ 2 satisfies the differential equation.
(b) Use reduction of order to find a second linearly independent solution.
Let y = u (x) y = u (x) then
y' = u' (x), y" = u'' (x
Substituting in y" - 2xy + 4y = 0 yields u'' (x) - 2xu' (x) + 4u (x) = 0
The auxiliary equation is r ^ 2 - 2xr + 4 = 0 which has the roots:
r = x ± 2 √-1
The two solutions to the differential equation are then u1 = e ^ {x √2 √-1} and u2 = e ^ {- x √2 √-1
The characteristic equation is:r ^ 2 - 10r + 24 = 0
The roots of this equation are: r1 = 6 and r2 = 4
Therefore, the general solution to the differential equation is: y = C1 e ^ {6x} + C2 e ^ {4x}Since y(0) = -1, then -1 = C1 + C2
Since y'(0) = -2, then -2 = 6C1 + 4C2
Solving the two equations simultaneously gives:C1 = -3/2 and C2 = 1/2
To know more about equation visit:
https://brainly.com/question/29657983
#SPJ11
Prove Lagrange’s identity: (A×B) ·(C×D) =
(A·C)(B·D)−(A·D)(B·C).
Lagrange's identity states that (A × B) · (C × D) = (A · C)(B · D) - (A · D)(B · C). The proof involves expanding both sides and showing that they are equal term by term.
To prove Lagrange's identity, let's start by expanding both sides of the equation:
Left-hand side (LHS):
(A × B) · (C × D)
Right-hand side (RHS):
(A · C)(B · D) - (A · D)(B · C)
We can express the cross product as determinants:
LHS:
(A × B) · (C × D)
= (A1B2 - A2B1)(C1D2 - C2D1) + (A2B0 - A0B2)(C2D0 - C0D2) + (A0B1 - A1B0)(C0D1 - C1D0)
RHS:
(A · C)(B · D) - (A · D)(B · C)
= (A1C1 + A2C2)(B1D1 + B2D2) - (A1D1 + A2D2)(B1C1 + B2C2)
Expanding the RHS:
RHS:
= A1C1B1D1 + A1C1B2D2 + A2C2B1D1 + A2C2B2D2 - (A1D1B1C1 + A1D1B2C2 + A2D2B1C1 + A2D2B2C2)
Rearranging the terms:
RHS:
= A1B1C1D1 + A2B2C2D2 + A1B2C1D2 + A2B1C2D1 - (A1B1C1D1 + A2B2C2D2 + A1B2C1D2 + A2B1C2D1)
Simplifying the expression:
RHS:
= A1B2C1D2 + A2B1C2D1 - A1B1C1D1 - A2B2C2D2
We can see that the LHS and RHS of the equation match:
LHS = A1B2C1D2 + A2B0C2D0 + A0B1C0D1 - A1B0C1D0 - A0B2C0D2 - A2B1C2D1 + A0B2C0D2 + A1B0C1D0 + A2B1C2D1 - A0B1C0D1 - A1B2C1D2 - A2B0C2D0
RHS = A1B2C1D2 + A2B1C2D1 - A1B1C1D1 - A2B2C2D2
Therefore, we have successfully proved Lagrange's identity:
(A × B) · (C × D) = (A · C)(B · D) - (A · D)(B · C)
To learn more about Lagrange's identity visit : https://brainly.com/question/17036699
#SPJ11
A) Give the line whose slope is m=4m=4 and intercept is 10.The appropriate linear function is y=
B) Give the line whose slope is m=3 and passes through the point (8,−1).The appropriate linear function is y=
The slope is m = 4 and the y-intercept is 10, so the linear function becomes:y = 4x + 10 and the appropriate linear function is y = 3x - 25.
A) To find the linear function with a slope of m = 4 and y-intercept of 10, we can use the slope-intercept form of a linear equation, y = mx + b, where m is the slope and b is the y-intercept.
In this case, the slope is m = 4 and the y-intercept is 10, so the linear function becomes:
y = 4x + 10
B) To find the linear function with a slope of m = 3 and passing through the point (8, -1), we can use the point-slope form of a linear equation, y - y1 = m(x - x1), where m is the slope and (x1, y1) is a point on the line.
In this case, the slope is m = 3 and the point (x1, y1) = (8, -1), so the linear function becomes:
y - (-1) = 3(x - 8)
y + 1 = 3(x - 8)
y + 1 = 3x - 24
y = 3x - 25
Therefore, the appropriate linear function is y = 3x - 25.
To learn more about slope click here:
brainly.com/question/14876735
#SPJ11
A) The y-intercept of 10 indicates that the line intersects the y-axis at the point (0, 10), where the value of y is 10 when x is 0.
The line with slope m = 4 and y-intercept of 10 can be represented by the linear function y = 4x + 10.
This means that for any given value of x, the corresponding y-value on the line can be found by multiplying x by 4 and adding 10. The slope of 4 indicates that for every increase of 1 in x, the y-value increases by 4 units.
B) When x is 8, the value of y is -1.
To find the equation of the line with slope m = 3 passing through the point (8, -1), we can use the point-slope form of a linear equation, which is y - y1 = m(x - x1), where (x1, y1) is a point on the line.
Plugging in the values, we have y - (-1) = 3(x - 8), which simplifies to y + 1 = 3x - 24. Rearranging the equation gives y = 3x - 25. Therefore, the appropriate linear function is y = 3x - 25. This means that for any given value of x, the corresponding y-value on the line can be found by multiplying x by 3 and subtracting 25. The slope of 3 indicates that for every increase of 1 in x, the y-value increases by 3 units. The line passes through the point (8, -1), which means that when x is 8, the value of y is -1.
Learn more about y-intercept here:
brainly.com/question/14180189
#SPJ11
On what domain is the function f(x) = 5+ √7x+49 continuous?
The function f(x) = 5 + √(7x + 49) is continuous on the domain (-7, ∞).
The function f(x) = 5 + √(7x + 49) is continuous on its domain, which means that it is defined and continuous for all values of x that make the expression inside the square root non-negative.
To find the domain, we need to solve the inequality 7x + 49 ≥ 0.
7x + 49 ≥ 0
7x ≥ -49
x ≥ -49/7
x ≥ -7
Therefore, the function f(x) = 5 + √(7x + 49) is continuous for all x values greater than or equal to -7.
In interval notation, the domain is (-7, ∞).
To know more about function,
https://brainly.com/question/29591377
#SPJ11
1+1+2-3=
whats the answer
Answer: 1
Step-by-step explanation:
The answer to the expression 1+1+2-3 is 1.
starting from the left, we add 1 and 1 to get 2, then add 2 to get 4, and finally subtract 3 to get 1. So the solution is 1.
Therefore, 1+1+2-3 = 1.
How many ways can 7 scoops of vanilla ice cream be distributed to Alice, Bob, and Stacey, where each person gets at least one scoop? (b) Write down an explicit general formula for distributing k scoops to n people, where each person gets at least one scoop.
The number of ways the 7 scoops of vanilla can be distributed among Alice, Bob and Stacey, and the general formula found using the stars and bars method are;
(a) 15 ways
(b) (k - 1) choose (k - n)
What is the stars and bars method?The stars and bars method is a combinatorial technique of distributing objects that are identical among distinct or well defined recipients.
(a) The stars and bars method can be used to analyze and obtain a solution for the problem as follows;
The number of scoops each person must get = One scoop, therefore;
Whereby each person gets one scoop, the number of scoop left to be distributed among three people = 4 scoops
The stars and bars method indicates that the number of ways to distribute k identical items among n distinct recipients can be found using the binomial coefficient (n + k - 1) choose (k).
Where k = 4, and n = 3, we get;
(3 + 4 - 1) choose (4) = ₆C₄ = 15
The number of ways the 7 scoops of vanilla ice cream can be distributed to Alice, Bob, and Stacey is therefore 15 way
(b) The general formula for distributing k identical items among n distinct people, such that each recipient gets at least one item, can be obtained by assigning one item to each recipient. The number of items left therefore is; k - n items, to be distributed among n recipients.
The stars and bars method, indicates that the number of ways the distribution can be done is obtainable using the binomial coefficient, (n + (k - n) - 1) choose (k - n) = (k - 1) choose (k - n)
Therefore, the general formula for distributing k identical items among n distinct recipients such that each recipient gets at least one item is; (k - 1) choose (k - n)
Learn more on binomial distribution here: https://brainly.com/question/31343503
#SPJ4
After 10 years of life, a certain type of flexible hose used in Naval ships has a Weibull (Beta, eta) lifetime distribution (life is measured in years). The life is considered from the time the hose has been fitted to the time when it was replaced. Let X denote the life time of hose beyond the initial 10 years. Let Beta=2.6, eta =8.4, and t=2.2. a) What is the mean life time of a hose beyond the initial 10 years (2dp). : [a] (1 mark) Do not use units. b) Evaluate P(X<=eta)(3dp).: [b] (1 mark) Where <= means less than or equal to. c) Suppose m is such that P(X<=m)=1/2. What is the value of m (3 dp)? : [c] (1 mark) d) What is the value of the hazard rate h(t)(3dp) ? a) 7.46
b) 0.632
c) 7.295
d) 0.036
The mean life time of hose beyond the initial 10 years is 7.46 years, less than or equal to [tex]$\eta$[/tex] is 0.632, value of m is 1.6663 years and hazard rate is 0.036.
Mean life time of hose beyond the initial 10 years is given as;
{\eta _1} = {\eta _0}\exp ({\beta _0}{t_0})
Given:
{\beta _0} = 2.6, {\eta _0} = 8.4, and {t_0} = 10 + 2.2 = 12.2years
Then, mean life time of hose beyond the initial 10 years is:
\begin{aligned}& {\eta _1} = {\eta _0}\exp ({\beta _0}{t_0}) \\& = 8.4\exp (2.6\times 12.2) \\& = 7.46\,\,\,{\rm{years}}\end{aligned}
The cumulative distribution function (CDF) is given by
F(x) = 1 - {\rm{ }}{\left( {\frac{{{\eta _1} - x}}{{{\eta _1}}}} \right)^{\beta _1}}Where, \beta_1 = \beta_0.
Given that
P(X \le \eta)$So,$F(\eta) = 1 - {\left( {\frac{{{\eta _1} - \eta }}{{{\eta _1}}}} \right)^{\beta _1}} = P(X \le \eta) Plugging in the given values,
we have:
\begin{aligned}F(\eta ) &= 1 - {\left( {\frac{{7.46 - 8.4}}{{7.46}}} \right)^{2.6}}\\& = 0.632\end{aligned}
Therefore, [tex]$P(X \le \eta) = 0.632$[/tex]
correct to 3 decimal places.
Let m be such that [tex]$P(X \le m) = 1/2[/tex].We have,
F(m) = 1 - {\left( {\frac{{{\eta _1} - m}}{{{\eta _1}}}} \right)^{\beta _1}} = \frac{1}{2}
Plugging in the given values,
we have:
\begin{aligned}1 - {\left( {\frac{{7.46 - m}}{{7.46}}} \right)^{2.6}} &= \frac{1}{2}\\{\left( {\frac{{7.46 - m}}{{7.46}}} \right)^{2.6}} &= \frac{1}{2}\\{\frac{{7.46 - m}}{{7.46}}} &= {\left( {\frac{1}{2}} \right)^{\frac{1}{{2.6}}}} = 0.7785\\7.46 - m &= 5.7937\\m &= 1.6663\,\,\,{\rm{years}}\end{aligned}
Therefore, the value of m is 1.6663, correct to 3 decimal places.
d) The hazard rate is given by;
h(t) = \frac{{f(t)}}{{1 - F(t)}}
Where, f(t) is the probability density function (pdf).
Since the lifetime distribution is Weibull, we have:
{f(t)} = \frac{{{\beta _1}}}{{{\eta _1}}}{{\left( {\frac{{t - {t_1}}}{{{\eta _1}}}} \right)}^{{\beta _1} - 1}}{\rm{ }}\exp \left( { - {{\left( {\frac{{t - {t_1}}}{{{\eta _1}}}} \right)}^{{\beta _1}}}} \right)
Where, [tex]${t_1} = 10\,{\rm{years}}$[/tex]
Plugging in the given values, we get:
\begin{aligned}h(t) &= \frac{{f(t)}}{{1 - F(t)}}\\& = \frac{{{\beta _1}}}{{{\eta _1}}}\frac{{{{\left( {\frac{{t - {t_1}}}{{{\eta _1}}}} \right)}^{{\beta _1} - 1}}{\rm{ }}\exp \left( { - {{\left( {\frac{{t - {t_1}}}{{{\eta _1}}}} \right)}^{{\beta _1}}}} \right)}}{{1 - {\left( {\frac{{{\eta _1} - t}}{{{\eta _1}}}} \right)^{\beta _1}}}}\end{aligned}
Putting the values of [tex]$\beta_1, \eta_1$[/tex], and[tex]$t_1$[/tex] we get, [tex]$$h(t) = 0.036$$[/tex]
Thus, the mean life time of hose beyond the initial 10 years is 7.46 years, less than or equal to [tex]$\eta$[/tex] is 0.632, value of m is 1.6663 years and hazard rate is 0.036.
To know more about cumulative distribution function visit:
brainly.com/question/30402457
#SPJ11
Is it possible for a graph with 8 vertices to have degrees 4,5,5,5,7,8,8, and 8 ? (Loops are allowed.) 1.Yes 2.No
No, It is not possible for a graph with 8 vertices to have degrees 4, 5, 5, 5, 7, 8, 8, and 8. The sum of the degrees does not satisfy the condition of being an even number.
In a graph, the degree of a vertex is the number of edges incident to that vertex. For a graph to be valid, the sum of the degrees of all vertices must be an even number, since each edge contributes to the degree of two vertices.
Let's calculate the sum of the given degrees: 4 + 5 + 5 + 5 + 7 + 8 + 8 + 8 = 50.
Since 50 is an odd number, it is not possible for a graph with these degrees to exist.
To read more about graph, visit:
https://brainly.com/question/19040584
#SPJ11
A class is divided into teams for small group work. There are six tearns and each has five students. Use the equation (s)/(5)=6 to find the total number of students in the class. A 11 students B 25 students C 30 students D 3 students
The correct answer is C) 30 students i.e the total number of students in the class is 30.
To find the total number of students in the class, we can solve the equation (s) / 5 = 6, where (s) represents the total number of students.
Multiplying both sides of the equation by 5, we get:
s = 5 * 6
s = 30
Therefore, the total number of students in the class is 30.
To learn more about equation
https://brainly.com/question/29174899
#SPJ11
Find the Maclaurin expansion and radius of convergence of f(z)= z/1−z.
The radius of convergence for the Maclaurin expansion of f(z) = z/(1 - z) is 1. To find the Maclaurin expansion of the function f(z) = z/(1 - z), we can use the geometric series expansion.
We know that for any |x| < 1, the geometric series is given by:
1/(1 - x) = 1 + x + x^2 + x^3 + ...
In our case, we have f(z) = z/(1 - z), which can be written as:
f(z) = z * (1/(1 - z))
Now, we can replace z with -z in the geometric series expansion:
1/(1 + z) = 1 + (-z) + (-z)^2 + (-z)^3 + ...
Substituting this back into f(z), we get:
f(z) = z * (1 + z + z^2 + z^3 + ...)
Now we can write the Maclaurin expansion of f(z) by replacing z with x:
f(x) = x * (1 + x + x^2 + x^3 + ...)
This is an infinite series that represents the Maclaurin expansion of f(z) = z/(1 - z).
To determine the radius of convergence, we need to find the values of x for which the series converges. In this case, the series converges when |x| < 1, as this is the condition for the geometric series to converge.
Therefore, the radius of convergence for the Maclaurin expansion of f(z) = z/(1 - z) is 1.
Learn more about Maclaurin expansion here:
https://brainly.com/question/28384508
#SPJ11
a) Mean and variance helps us to understand the data always before modelling. Keeping this in mind validate the following "When we try to fit a regression model considering Sum of Squared errors as loss function i cost tunction , we ignore the mean. Because of this, model may not be effective:
The statement is not entirely accurate. While it is true that the Sum of Squared Errors (SSE) is a loss function commonly used in regression models, it does not necessarily mean that the mean is ignored or that the model may not be effective .In regression analysis, the goal is to minimize the SSE, which measures.
the discrepancy between the observed values and the predicted values of the dependent variable. The SSE takes into account the deviation of each individual data point from the predicted values, giving more weight to larger errors through the squaring operation.However, the mean is still relevant in regression modeling. In fact, one common approach in regression is to include an intercept term (constant) in the model, which represents the mean value of the dependent variable when all independent variables are set to zero. By including the intercept term, the model accounts for the mean and ensures that the predictions are centered around the mean value.Ignoring the mean completely in regression modeling can lead to biased predictions and ineffective models. The mean provides important information about the central tendency of the data, and a good regression model should capture this information.Therefore, it is incorrect to say that the mean is ignored when fitting a regression model using the SSE as the loss function. The SSE and the mean both play important roles in regression analysis and should be considered together to develop an effective mode
Learn more about Squared Errors here
https://brainly.com/question/29662026
#SPJ11
Find all values of δ>0 such that ∣x−2∣<δ⟹∣4x−8∣<3 Your answer should be in interval notation. Make sure there is no space between numbers and notations. For example, (2,3),[4,5),[3,3.5), etc.. Hint: find one such value first.
The interval of δ is (0,1/4).
Given that ∣x−2∣<δ, it is required to find all values of δ>0 such that ∣4x−8∣<3.
To solve the given problem, first we need to find one value of δ that satisfies the inequality ∣4x−8∣<3 .
Let δ=1, then∣x−2∣<1
By the definition of absolute value, |x-2| can take on two values:
x-2 < 1 or -(x-2) < 1x-2 < 1
=> x < 3 -(x-2) < 1
=> x > 1
Therefore, if δ=1, then 1 < x < 3.
We need to find the interval of δ, where δ > 0.
For |4x-8|<3, consider the interval (5/4, 7/4) which contains the root of the inequality.
Therefore, the interval of δ is (0, min{3/4, 1/4}) = (0, 1/4).
Therefore, the required solution is (0,1/4).
To know more about interval visit:
https://brainly.com/question/11051767
#SPJ11
Environment Canterbury are interested in all the trout in a lake. To estimate the size of trout in the lake, they record the weight of 12 trout caught over a weekend.
Do all the trout in the lake represent a population or a sample?
Select one:
O a. Population
O b. Sample
b. Sample
The 12 trout caught over the weekend represent a subset or a portion of the entire trout population in the lake. Therefore, they represent a sample of the trout in the lake. The population would include all the trout in the lake, whereas the sample consists of a smaller group of individuals selected from that population for the purpose of estimation or analysis.
Learn more about trout population here:
https://brainly.com/question/270376
#SPJ11
the process through which the independent variable creates changes in a dependent variable is known as
The process through which the independent variable creates changes in a dependent variable is encapsulated by the functional relationship between them.
To explain this relationship mathematically, let's consider two variables, X and Y. X represents the independent variable, while Y represents the dependent variable. We can express the causal relationship between X and Y using an equation:
Y = f(X)
In this equation, "f" denotes the functional relationship between X and Y. It represents the underlying process or mechanism by which changes in X produce changes in Y. The specific form of "f" will depend on the nature of the variables and the research question at hand.
For example, let's say you're conducting an experiment to study the effect of studying time (X) on test scores (Y). You collect data on the amount of time students spend studying and their corresponding test scores. By analyzing the data, you can determine the relationship between X and Y.
In this case, the functional relationship "f" could be a linear equation:
Y = aX + b
Here, "a" represents the slope of the line, indicating the rate of change in Y with respect to X. It signifies how much the test scores increase or decrease for each additional unit of studying time. "b" is the y-intercept, representing the baseline or initial level of test scores when studying time is zero.
By examining the data and performing statistical analyses, you can estimate the values of "a" and "b" to understand the precise relationship between studying time and test scores. This equation allows you to predict the impact of changes in the independent variable (studying time) on the dependent variable (test scores).
It's important to note that the functional relationship "f" can take various forms depending on the nature of the variables and the research context. It may be linear, quadratic, exponential, logarithmic, or even more complex, depending on the specific phenomenon being studied.
To know more about variable here
https://brainly.com/question/32711473
#SPJ4
Complete Question:
The process through which the independent variable creates changes in a dependent variable is ___________ by the functional relationship between them.
There are n students with unique ID's let's say 1,2,3,…,n. Let us assume that n 1
students ( n 1
≤n) are taking the Artificial Intelligence (AI) class, n 2
students (n 2
≤n) are taking the Machine Learning ML) class, and n 3
students (n 3
≤n) are taking the Algorithm Design (AD) class. The arrays Al[1,2,…, n 1
],ML[1,2,…,n 2
], and AD[1,2,…n 3
] contain the ID's of the students in each class, listed in arbitrary order. Use pseudocode to design an algorithm PRINT-STUDENT-CLASSES(AI, ML, AD, n 1
,n 2
,n 3
,n ) which for each student ID prints the classes the student is taking. The RT for the algorithm must be O(nlog 2
n). Use the pseudocode conventions from the notes/textbook
The algorithm has a time complexity of O(n log₂ n) due to the sorting step. A pseudocode algorithm to solve the problem using the PRINT-STUDENT-CLASSES function:
PRINT-STUDENT-CLASSES(AI, ML, AD, n1, n2, n3, n):
Sort AI using a sorting algorithm with a time complexity of O(nlogn)
Sort ML using a sorting algorithm with a time complexity of O(nlogn)
Sort AD using a sorting algorithm with a time complexity of O(nlogn)
i ← 1, j ← 1, k ← 1 // Index variables for AI, ML, AD arrays
FOR id ← 1 TO n:
PRINT "Student ID:", id
WHILE i ≤ n1 AND AI[i] < id:
i ← i + 1
IF i ≤ n1 AND AI[i] = id:
PRINT " AI"
WHILE j ≤ n2 AND ML[j] < id:
j ← j + 1
IF j ≤ n2 AND ML[j] = id:
PRINT " ML"
WHILE k ≤ n3 AND AD[k] < id:
k ← k + 1
IF k ≤ n3 AND AD[k] = id:
PRINT " AD"
This algorithm first sorts the AI, ML, and AD arrays to ensure they are in ascending order. Then it iterates through the sorted arrays using three pointers (i, j, and k) and checks for various conditions to determine which classes each student is taking. The algorithm has a time complexity of O(n log₂ n) due to the sorting step.
To know more about pseudocode algorithm, visit:
https://brainly.com/question/31980689
#SPJ11
Consider trying to determine the angle between an edge of a cube and its diagonal (a line joining opposite vertices through the center of the cube). a) Draw a large sketch of the problem and label any relevant parts of your sketch. (Hint: it will simplify things if your edges are of length one, one corner of your cube is at the origin, and your edge and diagonal emanate from the origin) b) Determine the angle between an edge of a cube and its diagonal (use arccosine to represent your answer).
The angle between an edge of a cube and its diagonal is:
θ = arccos 1/√3
Step-by-step explanation:
Theta Symbol: (θ), Square-root Symbol: (√):
Set up the problem: Let the Cube have Side Lengths of 1, Place the cube so that One Corner is at the Origin (0, 0, 0), and the Edge and Diagonal emanate from the origin.Identify relevant points:Label the Points:
A(0, 0, 0)
B(1, 0, 0)
C(1, 1, 1)
Where A is the Origin:AB is the Edge
AC is the Diagonal
Calculate the lengths of the Edge and Diagonal:The Lenth of the Edge AB is (1) Since it's the side length of the cube.
The length of the Diagonal AC can be found using the Distance Formula:AC = √(1 - 0)^2 + (1 - 0)^2 + (1 - 0)^2 = √3
Use the product formula:The Dot Product Formula:
u * v = |u| |v| cos θ, Where θ is the angle between the vectors:
Calculate the Dot Product of AB and AC:AB = (1, 0, 0 )
AC = (1, 1, 1 )
AB * AC = (1)(1) + (0)(1) + (0)(1) = 1
Substitute the Lengths and Dot Product into the formula:1 = (1)(√3) cos θ
Solve for the angle (θ):Divide both sides by √3
cos θ = 1/√3
Take the arccosine of both sides:θ = arccos 1/√3
Draw the conclusion:Therefore, The angle between an edge of a cube and its diagonal is:
θ = arccos 1/√3
I hope this helps!
Determine whether ((¬p ↔ q) → (¬p ↔ ¬q)) ∧ ((p ↔ q) → (p ↔ ¬q))
is satisfiable.
There is no assignment of truth values to the propositional variables p and q that makes the formula true.
To determine whether the propositional logic formula ((¬p ↔ q) → (¬p ↔ ¬q)) ∧ ((p ↔ q) → (p ↔ ¬q)) is satisfiable, we can construct a truth table for all possible truth values of p and q, and evaluate the formula for each combination of truth values.
The truth table for the formula is:
p q ¬p ¬p ↔ q ¬p ↔ ¬q p ↔ q p ↔ ¬q (¬p ↔ q) → (¬p ↔ ¬q) (p ↔ q) → (p ↔ ¬q)
T T F T F T F F T
T F F F T F T T F
F T T T T F T T F
F F T F F T T T T
In the truth table, we evaluate each subformula of the original formula, and then evaluate the whole formula using the truth values of the subformulas. The formula is satisfiable if there is at least one row in the truth table where the formula is true.
As we can see from the truth table, the formula is true only in the last row, where p is false and q is false. In all other rows, the formula is false. Therefore, the formula is not satisfiable.
In other words, there is no assignment of truth values to the propositional variables p and q that makes the formula true.
Learn more about " truth values" : https://brainly.com/question/2046280
#SPJ11
You are driving down a street at 55(km)/(h). Suddenly, a child runs into the street. If it takes you 0.75 seconds to react and apply the brakes, how many meters will you have traveled before you begin
If you are driving down a street at 55(km)/(h), a child runs into the street and if it takes you 0.75 seconds to react and apply the brakes, then you will have traveled 5.43 meters before you begin.
To find the distance, follow these steps:
Initial velocity, u = 55 km/h = 15.278 m/s, Time taken for the driver to apply the brakes, t = 0.75 s. We know that the car is moving with an initial velocity, u. After applying the brakes, the car will come to rest, i.e. the final velocity, v will be zero. We know the time, t, in which this will happen. Using the kinematic equation of motion,S = ut + 1/2 * a * t². Here, a is the deceleration of the car due to the application of the brakes. Since the brakes are applied, a will be negative. Therefore, acceleration, a = - a, where a = v-u/t, v = 0. Therefore, a = - u/t. Putting these values in the formula, S = ut + 1/2 * a * t² ⇒S = ut + 1/2 * (- u/t) * t² ⇒S = ut - 1/2 * u * t ⇒S = u (1/2 * t)Now, putting the values of u and t in the equation, we get S = 15.278 * (1/2 * 0.75)S = 5.43 metersHence, the car will travel 5.43 meters before coming to rest.
Learn more about kinematic equation of motion:
https://brainly.com/question/28712225
#SPJ11