Answer:
a) El remolque desciende 7.4 cm
b) La carga debe ser de 15715.6 N ó 1603.6 kg
Explanation:
Para los cálculos que involucren muelles, se aplica la Ley de Hooke, la cual relaciona el efecto de una Fuerza y el cambio de longitud que esta ejerce, en un resorte de elasticidad dada.
Escrito en fórmula:
[tex]F=-k \cdot \Delta L[/tex]
Donde:
F es la fuerza ejercida
k es la constante elástica del muelle
ΔL es la variación de longitud del muelle
El problema indica que al cargar 2100 kg se ejerce una fuerza de 20580 N
Esto se corrobora con la 2da ley de Newton y asumiendo una aceleración de gravedad de 9.8 [tex]\frac{m}{s^{2} }[/tex]
[tex]F_{1} =m \cdot a\\F_{1}=2100kg \cdot 9.8\frac{m}{s^2}\\F_{1}=20580N[/tex]
Esta fuerza comprime o reduce la longitud del muelle en 5.5 cm. Usando estos datos en la Ley de Hooke, podemos obtener la constante elástica k:
[tex]F=-k \cdot \Delta L\\20580N=-k \cdot (-0.055m)\\\\k=\frac{20580N}{0.055m}\\k= 374181\frac{N}{m}[/tex]
Ahora ya tenemos los datos para resolver las preguntas:
a) Longitud que desciende el remolque si se carga con 28000 NAplicando directamente la formula de la Ley de Hooke:
[tex]F=-k \cdot \Delta L\\\Delta L=\frac{F}{-k} \\\Delta L= \frac{28000N}{-374181\frac{N}{m}} \\\Delta L=-0.074 m = -7.4cm[/tex]
b) Si ha descendido 4,2 cm la cargaEn este caso debemos calcular la fuerza necesaria que haga descender el remolque 4.2cm. Nuevamente utilizando la Ley de Hooke con estos nuevos datos:
[tex]F=-k \cdot \Delta L\\F=-374181\frac{N}{m} \cdot (-0.042m)\\F=15715.6N[/tex]
Si queremos saber la carga en kilogramos:
[tex]F = m \cdot a\\m = \frac{F}{a} \\m = \frac{15715.6N}{9.8\frac{m}{s^2} }\\m= 1603.6 kg[/tex]
what is the KE of a 1.00 kg hammer swinging at 20.0 m/s? 200 Joules
I know the answer I just need help understanding it.
Answer:
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 1250 kg
Velocity (v) = 20.0 m/s.
Kinetic energy (K.E) =?
Kinetic energy is simply defined as energy possed by a body in motion. Mathematically, it is expressed as:
K.E = ½mv²
Where:
K.E is the kinetic energy
m is the mass of the object
v is the velocity of the object.
Thus, we can obtain the kinetic energy of the automobile by using the above formula as illustrated below:
Mass (m) = 1250 kg
Velocity (v) = 20.0 m/s.
Kinetic energy (K.E) =?
K.E = ½mv²
K.E = ½ × 1250 × 20²
K.E = 625 × 400
K.E = 250000 J
Therefore, the kinetic energy of the automobile is 250000 J
Which element most likely interacts with water the same way lithium interacts with water?
Answer:
Is there a multiple choice or select all that apply? I would say Potassium (K) or Sodium (Na)
Explanation:
A person with a mass of 75 kg is accelerated to 3m/s2 how much force applied to him
Answer:
225 NExplanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 75 × 3
We have the final answer as
225 NHope this helps you
A stone dropped from the top of a 80m high building strikes the ground at 40 m/s after falling for 4 seconds. The stone's potential energy with respect to the ground is equal to its kinetic energy
Answer:
A
Explanation:
Given that a stone dropped from the top of a 80m high building strikes the ground at 40 m/s after falling for 4 seconds. The stone's potential energy with respect to the ground is equal to its kinetic energy. (use 9 - 10 m/s)
O at the moment of impact
2 seconds after the stone is released after the stone has fallen 40 m
when the stone is moving at 20 m/s
At the top of the hill, the P.E = mgh
P.E = 10 × 80 × m
P.E = 800m
At the moment of impact, K.E = 1/2mv^2
K.E = 1/2 × 40^2 × m
K.E = 1/2 × 1600 × m
K.E = 800m
Since both P.E and K.E are the same, we can therefore conclude that the stone's potential energy with respect to the ground is equal to its kinetic energy at the moment of impact.
The correct answer is option A.
When momentum is conserved it is called _____. (multiple choice)
A.) Conservation of Momentum
B.) The Law of Momentum
C.) The Physics of Momentum
D.) The Rules of Momentum
Answer:
Based off the word "conserved" I would say
A. Conservation of Momentum.
Explanation:
Answer:
A.) Conservation of Momentum
The radius of the planet Mercury is 2.43 x 10^6m and its mass
is 3.2 x 10^23 kg. What is the speed of a satellite in orbit
265.000 m above the surface?
[tex]\huge\boxed{Option D}[/tex]
_____________________________________DATA:Radius of Mercury = [tex]R_m[/tex] = [tex]2.43x10^6m[/tex]
Mass of Mercury = [tex]M_m = 3.2x10^{23}m[/tex]
Distance Satellite above the surface of the Mercury = d = 265,000m
Gravitational Constant = [tex]G = 6.67x10^{-11} \frac{N.m^2}{kg^2}[/tex]
_____________________________________SOLUTION:Since the Satellite is orbiting around the Planet Mercury, due to the centripetal force, and Centripetal force is the force that acts towards the center of the circle, Whereas The gravitational force also acts towards the center of the circle thus we can say that Centripetal force is equal or same as centripetal force. So,
[tex]F_g =F_C[/tex]
Fg is Given by,
[tex]F_g = \frac{GM_MM_S}{r^2}[/tex]
Fc is Given by,
[tex]F_c=\frac{M_SV^2}{r}[/tex]
Where,
G is Gravitational Constant
[tex]M_e[/tex] is mass of Planet Mercury
[tex]M_S[/tex] is Mass of Satellite
r(small letter) is the distance between the center of the Planet Mercury and the satellite.
V is velocity of satellite
_____________________________________Now,
[tex]\frac{GM_MM_S}{r^2} =\frac{M_SV^2}{r}[/tex]
[tex]V = \sqrt\frac{GM_M}{r}[/tex]
r can also be written as,
[tex]V = \sqrt\frac{GM_M}{R_M +d}[/tex]
Substitute the variables,
[tex]V = \sqrt{\frac{(6.67x10^{-11})x(3.2x10^{23})}{2695000}[/tex]
Simplify the equation,
V = 2814 [tex]\frac{m}{s}[/tex]
Approximately,
V = 2800 [tex]\frac{m}{s}[/tex]
_____________________________________Best Regards,'Borz'The most important characteristic in designing the soundproof room is to create walls that
Answer:
make sound bounce off walls
Answer:
Explanation:
Walls that absorb the sound and dont just bounce or reflect the sound straight back. Like how video makers have foam walls with ridges on their walls.
A car of mass 1500 kg starting from rest can reach a speed of 20
m/s within 10 seconds. Calculate the accelerating force of the car
engine.
Explanation:
F=MA
F=1500 * 2
F=3000N
Please help! Will mark brainliest!
Answer:
im pretty sure its d
Explanation:
Could somebody please explain the Coriolis effect? Thank you! (also the subject is physical science but that wasn't an option so I just put physics)
Answer:
The Coriolis Effect makes things appear to move in a curve around our planet, like, for example, a plane. This is also due to the fact that our Earth is round, so nothing really moves in a straight line. It is "an effect whereby a mass moving in a rotating system experiences a force (the Coriolis force ) acting perpendicular to the direction of motion and to the axis of rotation."
Explanation:
A book that weighs 5 N sits on a table. What force does the table apply to the book?
Answer:
E =F.d =[1/2]mv^2
mad = [1/2]mv^2
d= v^2/2a ,v=u+at , v^2 = [at]^2 since u=0
So d = at^2/2
F = ma= 20a= 50 , a=5/2 and t=2
so d = [5/2][2^2]/2=5
Explanation:
Every action has an equal and opposite reaction. It is an action-reaction principle. Therefore the table exerts a force of 5 N on the book in order to be in stable condition.
What is Newton's third law of motion?Newton's third law of motion state that every action has an equal and opposite reaction. It is an action-reaction principle. It stated that the force always exists in a pair.
Therefore the table exerts a force of 5 N on the book in order to be in stable condition.
The given data in the problem is ;
W is the weight of the book sits on table = 5N
N is the normal force on the book
From the equilibrium equation ;
Weight -Normal force on the book =0
Weight =Normal force on the book
The normal force on the book =5N
Hence the table exerts a force of 5 N on the book in order to be in stable condition.
To learn more about Newton's third law of motion refer to the link;
https://brainly.com/question/1077877
I need a little help with this
Answer:
truck 1 has the most velocity
Explanation:
Because it weights less which means it faster and yea
Engine 1 produces twice the power of engine 2.
If it takes engine 1 the time T to do the work W, how long does it take engine 2 to do the same work?
Express your answer in terms of some of all of the variables T and W.
T2=________________
Answer:
[tex]T_2=\frac{T}{2}[/tex]
Explanation:
Given that engine 1 produces twice the power of engine 2.
Let [tex]P_1[/tex] and [tex]P_2[/tex] be the power of engine 1 and engine2.
So, the power of the engine 2,
[tex]P_2 = 2P_1\cdots(i)[/tex]
As, Work = Power x time,
So, the work, W, done by an engine 1:
[tex]W=P_1\timesT\cdots(ii)[/tex]
The work, W, done by an engine 2:
[tex]W_2=P_2\times T_2\cdots(iii)[/tex]
If the work done by both the engines are the same, then
[tex]W_2=W[/tex]
[tex]\Rightarrow P_2\times T_2=P_1\timesT[/tex] [from (ii) nd (iii)]
[tex]\Rightarrow 2P_1\times T_2=P_1\timesT[/tex] [by using (i)]
[tex]\Rightarrow 2 T_2=T \\\\\Rightarrow T_2=\frac{T}{2}[/tex]
Hence, [tex]T_2=\frac{T}{2}.[/tex]
The time taken for engine 2 to do the same amount of work is given by:
T₂ = 2TLet the power of the 1st engine be P₁
Let the power of the 2nd engine be P₂
Power = Work / timeFrom the question given above,
Engine 1 produces twice the power of engine 2.
Thus,
P₁ = 2P₂
P₂ = ½P₁
Next, we shall determine the power used by engine 1 to do the work in time T.Work = W
Time (T₁) = T
Power (P₁) =?Power = Work / time
[tex]P_{1} = \frac{W}{T}\\\\[/tex]Finally, we shall determine the time taken for engine 2 to do the same work.Work = W
Power of engine 1 (P₁) = [tex]\frac{W}{T}\\\\[/tex]
Power of engine 2 (P₂) = ½P₁
Power of engine 2 (P₂) = [tex]\frac{1}{2} (\frac{W}{T}) = \frac{W}{2T}[/tex]
Time (T₂) =?[tex]Power = \frac{Work}{time} \\\\ P_{2} = \frac{W}{T_{2}} \\\\\frac{W}{2T} = \frac{W}{T_{2}} \\\\\frac{1}{2T} = \frac{1}{T_{2}}\\\\[/tex]
Invert
T₂ = 2TTherefore, the time taken for engine 2 to do the same amount of work is: T₂ = 2T
Learn more: https://brainly.com/question/21822614
A car travels 14 km due west, then does a
U-turn, and travels 43 km due west.
I. What total distance has the car
traveled?
II.
What is the total displacement of the
car?
III. If the entire trip took 3.20 hours.
determine the average speed of the
car. Give
your answer in both
km hour, and m s. (show
conversion)
IV. If the entire trip took 2.50 hours.
determine the average velocity of
the car. Give your answer in both
km h, and mph (show conversion)
Explanation:
It is given that,
A car travels 14 km due west, then does a U-turn and travels 43 km due east (when it takes U-turn, it will change direction from west to east)
i. Total distance = total path covered
= 14 km + 43 km
= 57 km
ii. Let east is positive and west is negative.
Displacement = final position-initial position
= 43-14
= 29 km
iii. If time taken in the entire trip = 3.2 hours
Average speed = distance/time
[tex]s=\dfrac{57\ km}{3.2\ h}\\\\=17.81\ km/h[/tex]
1 km/h = 0.2777 m/s
17.81 km/h = 4.94 m/s
iv. If time taken in the entire trip = 2.5 hours
Average velocity = displacement/time
[tex]v=\dfrac{29\ km}{2.5\ h}\\\\=11.6\ km/h[/tex]
1 km/h = 0.621 mph
11.6 km/h = 7.2 mph
Henc, this is the required solution.
What two things does force depend on
Question 4 of 10
Which option is a good blackbody radiator?
O A. A lightbulb
O B. A balloon
O C. A person
O D. A mirror
SUBM
Answer:
A lightbulb
Explanation:
Answer:
Lightbulb
Explanation: got it right
a motorbike can travel 1000 meters in 10 minutes calculate how car it can travel in 1 sec.
Answer:
1.67meter
Explanation:
if it can travel 1000 meters in 10 minutes, 10 minutes are 600 secs (10×60), 1000÷600 is 1.67
Answer:
HI
Explanation:
Nore ordered an ice cream cone.
Answer:
okay
Explanation:
okay
Answer:
Cool
Explanation:
What distance does a biker travel if he rides at a constant speed or 22 m/s for 45 seconds?
Answer:
it would be 990 m.
Explanation:
22 m/s x 45 seconds.
plzzzz help me this is due today. only need help with these two questions and the element is oxygen.
How do protons, neutrons, and electrons differ in terms of their electrical charges and locations within the atom?
Describe the four fundamental forces. Which of these forces are involved in chemical bonding?
Answer: thanks for the point
Explanation:
What wavelength would a ripple in water have if the frequency is 1.8 Hz and a
wave speed of 825 m/s?
Explanation:
825m/s / 1.8Hz = 458.33m
λ=v/f
λ-wavelength
v-speed
f-frequency
λ=825/1.8=458.33m
A girl pushes a wagon at constant velocity. If the
momentum of the wagon is 50 kg*m/s at a
velocity of 2 m/s, the mass of the wagon is what
A rose plant inherited two alleles for white flower petals.
Which conclusion is best supported by the given information?
Answer:
a
Explanation:
Answer:
A or each parent had at least one allele for white pedals
Explanation:
Do machines create less work? Example: pulley system
Answer:
Technically, no the work of building machines is hard but in the long run, Yes they are easier after they're built.
Explanation:
What is the work energy transfer equation?
Answer:
The equation used to calculate the work done is: work done = force × distance. W = F × d. This is when: work done (W) is measured in joules (J)
Answer:
The equation used to calculate the work done is: work done = force × distance. W = F × d. This is when: work done (W) is measured in joules (J)
Explanation:
The net work done on a particle equals the change in the particle's kinetic energy:
Jenny puts a book on her desk. Jenny’s book has an area of 200 cm2.It exerts a pressure of 0.05 N/cm2 on the desk. What is the weight of the book? *
it takes 5100 N of force to accelerate a ford mustang 3 m/s2 what is the mass of the car
Answer:
1700 kg
Explanation:
The mass of the ford mustang car be 1700 kg.
What is mass?In physics, mass is a quantitative measurement of inertia, a basic characteristic of all matter. It essentially refers to a body of matter's resistance to changing its speed or location in response to the application of a force.
The change caused by an applied force is smaller the more mass a body has. The kilograms serves as the unit of mass in the International System of Units (SI).
Given parameters:
Force applied on the ford mustang car: F = 5100 N.
Acceleration of the ford mustang car: a = 3 m/s^2.
So, The mass of the ford mustang car be = force/acceleration
= 5100/3 kg.
= 1700 kg.
Hence, the mass of the ford mustang car be 1700 kg.
Learn more about mass here:
https://brainly.com/question/19694949
#SPJ2
An example of a poor coping mechanism is ?
Answer: A bad, maladaptive, unhealthy or destructive coping mechanism is one where the behavior does not resolve the problem in the long-term and may actually increase the harm. Unhealthy coping strategies may feel like they are having the desired effect in the short term.
Explanation: Yes, it was from google...
A box is sitting stationary on a long level ramp on level ground. The coefficient of static friction is (1.0). One end of the ramp is slowly lifted higher and higher. What is the angle of the ramp with respect to the ground when the box begins slidig?
Answer:
45 degrees
Explanation:
Given that the coefficient of friction, [tex]\mu=1.0[/tex]
Let the angle of the ramp be [tex]\theta[/tex].
The gravitational force acting downward [tex]=mg[/tex]
The normal reaction by the ramp on the box, [tex]N=mg\cos\theta[/tex]
So, the maximum frictional force that can act on the box, [tex]f= \mu N[/tex]
The force along with the plane in the direction of sliding, [tex]F = mg\sin\theta[/tex]
When the box begins sliding, the F must have to overcome the frictional force,f.
So, F=f
[tex]mg\sin\theta=\mu N \\\\mg\sin\theta=\mu mg\cos\theta \\\\\frac {\sin\theta}{\cos\theta}=\mu \\\\\tan\theta=\mu \\\\\theta=\tan^{-1}\mu \\\\[/tex]
Putting the value of \mu, we have
[tex]\theta=\tan^{-1}1[/tex]
[tex]\theta=45[/tex] degrees.
Hence, the angle of the ramp with respect to the ground when the box begins sliding is 45 degrees.
deducing the acceleration = deduce the gradient of velocity-time graphs
true or false?
Answer:
True
Explanation:
Understanding the relationship between change in velocity with time will explain to you how the object is accelerating or decelerating. This means acceleration is a ratio calculated from the change in velocity of an object and change in time. In a velocity time graph, the y-axis represents the velocity and the x-axis represents the time.
The slope of the graph m = Δ y-axis values/Δ x-axis values
m= Δvelocity / Δ time
m= Δ v / Δ t ------this the definition of acceleration so;
a= Δ v / Δ t
Conclusion : The slope/gradient of a velocity -time graph is acceleration.