Lisa and Valerie are picnicking in Trough Creek State Park in Pennsylvania. Lisa has brought a salad that she made with

\frac{3}{4}

4

3



cup of strawberries,

\frac{7}{8}

8

7



cup of peaches, and

\frac{1}{6}

6

1



cup of blueberries. They ate

\frac{11}{12}

12

11



cup of salad. About bow many cups of fruit salad are left?

Answers

Answer 1

Using the concept of LCM, there are 21/24 cups of fruit salad left.

To find out how many cups of fruit salad are left, we need to subtract the amount they ate from the total amount Lisa brought.

The total amount of fruit salad Lisa brought is:

[tex]\frac{3}{4} + \frac{7}{8} + \frac{1}{6} cups[/tex]

To simplify the calculation, we need to find a common denominator for the fractions. The least common multiple of 4, 8, and 6 is 24.

Now, let's convert the fractions to have a denominator of 24:

[tex]\frac{3}{4} = \frac{18}{24}\\\\\frac{7}{8} = \frac{21}{24}\\\\\frac{1}{6} = \frac{4}{24}[/tex]

The total amount of fruit salad Lisa brought is:

[tex]\frac{18}{24} + \frac{21}{24} + \frac{4}{24} = \frac{43}{24} cups[/tex]

Now, let's subtract the amount they ate:

[tex]\frac{43}{24} - \frac{11}{12} = \frac{43}{24} - \frac{22}{24} = \frac{21}{24} cups[/tex]

Therefore, there are [tex]\frac{21}{24}[/tex] cups of fruit salad left.

To know more about LCM, refer here:

https://brainly.com/question/24510622

#SPJ4

Complete Question:

Lisa and Valerie are picnicking in Trough Creek State Park in Pennsylvania. Lisa brought a salad that she made with 3/4 cup of strawberries, 7/8 cup of peaches, and 1/6 cup of blueberries. They ate 11/12 cup of salad. About bow many cups of fruit salad are left?


Related Questions

Use the Product Rule to evaluate and simplify d/dx((x-3)(4x+2)).

Answers

Answer:

8x - 10

Step-by-step explanation:

Let [tex]f(x)=x-3[/tex] and [tex]g(x)=4x+2[/tex], hence, [tex]f'(x)=1[/tex] and [tex]g'(x)=4[/tex]:

[tex]\displaystyle \frac{d}{dx}f(x)g(x)=f'(x)g(x)+f(x)g'(x)=1(4x+2)+(x-3)\cdot4=4x+2+4(x-3)=4x+2+4x-12=8x-10[/tex]

At 6:00 AM, a hiker begins hiking up a mountain beside Lake Tahoe, whose base sits 6,224 feet above sea level. At 10:00 AM, the hiker reaches an altitude of 6,854 feet above sea level. Let "A" be the altitude (in feet) and let " t " be the number of minutes hiked. a) ( 2 points) What is the hiker's rate of ascent up the mountain (in feet per minute)? Assume that the rate is linear/constant. b) Write an equation of the fo A=mt+b that represents the altitude after t minutes. c) Estimate the hiker's altitude at 9:00 AM

Answers

a) The hiker's rate of ascent up the mountain is approximately 0.65625 feet per minute.

b) The equation representing the altitude after t minutes is A = 0.65625t + 6,224.

c) The hiker's estimated altitude at 9:00 AM is approximately 6,662.5 feet.

a) To find the hiker's rate of ascent, we need to calculate the change in altitude divided by the time taken. The hiker's starting altitude is 6,224 feet, and after 4 hours (240 minutes), the altitude is 6,854 feet. The change in altitude is:

Change in altitude = Final altitude - Initial altitude

= 6,854 ft - 6,224 ft

= 630 ft

The time taken is 240 minutes. Therefore, the rate of ascent is:

Rate of ascent = Change in altitude / Time taken

= 630 ft / 240 min

≈ 2.625 ft/min

b) We are given that the rate of ascent is linear/constant. We can use the slope-intercept form of a linear equation, y = mx + b, where y represents the altitude (A), x represents the time in minutes (t), m represents the slope (rate of ascent), and b represents the initial altitude.

From part (a), we found that the rate of ascent is approximately 2.625 ft/min. The initial altitude (b) is given as 6,224 ft. Therefore, the equation representing the altitude after t minutes is:

A = 2.625t + 6,224

c) To estimate the hiker's altitude at 9:00 AM, we need to find the number of minutes from 6:00 AM to 9:00 AM. The time difference is 3 hours, which is equal to 180 minutes. Substituting this value into the equation from part (b), we can estimate the altitude:

A = 2.625(180) + 6,224

≈ 524.25 + 6,224

≈ 6,748.25 ft

Therefore, the hiker's estimated altitude at 9:00 AM is approximately 6,748.25 feet above sea level.

for such more question on rate

https://brainly.com/question/23377525

#SPJ8

However, for the ODE problems in Exercises 1-4. Each of these problems is called a boundary-value problem, and we will study these problems in detail in Section 1.7. For now, decide whether each of these problems is well- posed, in terms of existence and uniqueness of solutions.
1. y" + y = 0, y(0) = y(2) = 0,0≤ x ≤2
2. y" + y = 0, y(0) = у(π) = 0,0 ≤ x ≤ π

Answers

For the problem y" + y = 0, y(0) = y(2) = 0, 0 ≤ x ≤ 2 there is a unique solution and For the problem y" + y = 0, y(0) = у(π) = 0, 0 ≤ x ≤ π there is a unique solution.

To determine whether each of the given boundary-value problems is well-posed in terms of the existence and uniqueness of solutions, we need to analyze if the problem satisfies certain conditions.

For the problem y" + y = 0, y(0) = y(2) = 0, 0 ≤ x ≤ 2:

This problem is well-posed. The existence of a solution is guaranteed because the second-order linear differential equation is homogeneous and has constant coefficients. The boundary conditions y(0) = y(2) = 0 specify the values of the solution at the boundary points. Since the equation is linear and the homogeneous boundary conditions are given at distinct points, there is a unique solution.

For the problem y" + y = 0, y(0) = у(π) = 0, 0 ≤ x ≤ π:

This problem is also well-posed. The existence of a solution is assured due to the homogeneous nature and constant coefficients of the second-order linear differential equation. The boundary conditions y(0) = у(π) = 0 specify the values of the solution at the boundary points. Similarly to the first problem, the linearity of the equation and the distinct homogeneous boundary conditions guarantee a unique solution.

In both cases, the problems are well-posed because they satisfy the conditions for existence and uniqueness of solutions. The existence is guaranteed by the linearity and properties of the differential equation, while the uniqueness is ensured by the distinct boundary conditions at different points. These concepts are further explored and studied in detail in Section 1.7 of the material.

Learn more about second-order linear differential equation here:

brainly.com/question/32924482

#SPJ11

Hence, the finiteness assumption in part (ii) of Proposition 3 can not be removed.
3. Let (X,A) be a measurable space.
(1) Suppose that μ is a non-negative countably additive function on A.
Show that if μ(A) is finite for some A in A, then μ(0) = 0. Thus μ is a measure.
(ii) Show by example that in general the condition μ(0) = 0 does not follow from the remaining parts of the definition of a measure.

Answers

We can conclude that in general, the condition μ(0) = 0 cannot be deduced solely from the remaining parts of the definition of a measure, and its inclusion is necessary to ensure the measure behaves consistently.

In part (ii) of Proposition 3, it is stated that the condition μ(0) = 0 cannot be removed. To illustrate this, we can provide an example that demonstrates the failure of this condition.

Consider the measurable space (X, A) where X is the set of real numbers and A is the collection of all subsets of X. Let μ be a function defined on A such that for any subset A in A, μ(A) is given by:

μ(A) = 1 if 0 is an element of A,

μ(A) = 0 otherwise.

We can see that μ is a non-negative function on A. Moreover, μ satisfies countable additivity since for any countable collection of disjoint sets {Ai} in A, if 0 is an element of at least one of the sets, then the union of the sets will also contain 0, and thus μ(∪Ai) = 1. Otherwise, if none of the sets contain 0, then the union of the sets will also not contain 0, and thus μ(∪Ai) = 0. Therefore, μ satisfies countable additivity.

However, we observe that μ(0) = 1 ≠ 0. This example demonstrates that the condition μ(0) = 0 does not follow from the remaining parts of the definition of a measure.

Hence, we can conclude that in general, the condition μ(0) = 0 cannot be deduced solely from the remaining parts of the definition of a measure, and its inclusion is necessary to ensure the measure behaves consistently.

Learn more about inclusion here:-

https://brainly.com/question/18272094

#SPJ11

Evaluate ∫3x^2sin(x^3 )cos(x^3)dx by
(a) using the substitution u=sin(x^3) and
(b) using the substitution u=cos(x^3)
Explain why the answers from (a) and (b) are seemingly very different.

Answers

The answers from (a) and (b) are seemingly very different because the limits of integration would be different due to the different values of sin⁻¹u and cos⁻¹u.

Given integral:

∫3x²sin(x³)cos(x³)dx

(a) Using the substitution

u=sin(x³)

Substituting u=sin(x³),

we get

x³=sin⁻¹(u)

Differentiating both sides with respect to x, we get

3x²dx = du

Thus, the given integral becomes

∫u du= (u²/2) + C

= (sin²(x³)/2) + C

(b) Using the substitution

u=cos(x³)

Substituting u=cos(x³),

we get

x³=cos⁻¹(u)

Differentiating both sides with respect to x, we get

3x²dx = -du

Thus, the given integral becomes-

∫u du= - (u²/2) + C

= - (cos²(x³)/2) + C

Thus, the answers from (a) and (b) are seemingly very different because the limits of integration would be different due to the different values of sin⁻¹u and cos⁻¹u.

To know more about integration visit:

https://brainly.com/question/31744185

#SPJ11

When using the pumping lemma with length to prove that the language L={ba n
b,n>0} is nonregular, the following approach is taken. Assume L is regular. Then there exists an FA with k states which accepts L. We choose a word w=ba k
b=xyz, which is a word in L. Some options for choosing xyz exist. A. x=Λ,y=b,z=a k
b B. x=b,y=a p
,z=a k−p
b, for some p>0,p ​
z=a k
b D. x=ba p
,y=a q
,z=a k−p−q
b, for some p,q>0,p+q b Which one of the following would be the correct set of options to choose? 1. All of the options are possible choices for xyz 2. None of the options are possible choices for xyz 3. A, B, and D only 4. A, C, and E only

Answers

If  the pumping lemma with length to prove that the language L={ba nb,n>0} is nonregular, then the D. x=ba p,y=a q,z=a k−p−qb, for some p,q>0,p+q b approach is taken.

When using the pumping lemma with length to prove that the language L = {[tex]ba^n[/tex] b, n > 0} is nonregular, the following approach is taken. Assume L is regular. Then there exists an FA with k states which accepts L. We choose a word w = [tex]ba^k[/tex] b = xyz, which is a word in L.

Some options for choosing xyz exist.A possible solution for the above problem statement is Option (D) x =[tex]ba^p[/tex], y = [tex]a^q[/tex], and z = [tex]a^{(k - p - q)}[/tex] b, for some p, q > 0, p + q ≤ k.

We need to select a string from L to disprove that L is regular using the pumping lemma with length.

Here, we take string w = ba^k b. For this w, we need to split the string into three parts, w = xyz, such that |y| > 0 and |xy| ≤ k, such that xy^iz ∈ L for all i ≥ 0.

Here are the options to select xyz:

1. x = Λ, y = b, z = [tex]a^k[/tex] b

2. x = b, y = [tex]a^p[/tex], z = a^(k-p)b, where 1 ≤ p < k

3. x =[tex]ba^p[/tex], y = [tex]a^q[/tex], z = [tex]a^{(k-p-q)}[/tex])b, where 1 ≤ p+q < k. Hence, the correct option is (D).

To know more about pumping lemma refer here:

brainly.com/question/33347569#

#SPJ11

Vesterday, (5)/(7) of the 42 students in a centest gave their speeches. How many students gave their speeches? Write your answer in simplest form.

Answers

Students that gave their speeches are 30.

To find the number of students who gave their speeches, we can multiply the fraction of students who gave their speeches by the total number of students.

Given that (5/7) of the 42 students gave their speeches, we can calculate:

Number of students who gave speeches = (5/7) * 42

To simplify this fraction, we can multiply the numerator and denominator by a common factor. In this case, we can multiply both by 6:

Number of students who gave speeches = (5/7) * 42 * (6/6)

Simplifying further:

Number of students who gave speeches = (5 * 42 * 6) / (7 * 6)

                                  = (5 * 42) / 7

                                  = 210 / 7

                                  = 30

Therefore, 30 students gave their speeches.

To know more about speeches refer here:

https://brainly.com/question/31881621#

#SPJ11

a triangle has sides of 3x+8, 2x+6, x+10. find the value of x that would make the triange isosceles

Answers

A triangle has sides of 3x+8, 2x+6, x+10. Find the value of x that would make the triangle isosceles.To make the triangle isosceles, two sides of the triangle must be equal.

Thus, we have two conditions to satisfy:

3x + 8 = 2x + 6

2x + 6 = x + 10

Let's solve each equation and find the values of x:3x + 8 = 2x + 6⇒ 3x - 2x = 6 - 8⇒ x = -2 This is the main answer and also a solution to the problem. However, we need to check if it satisfies the second equation or not.

2x + 6 = x + 10⇒ 2x - x = 10 - 6⇒ x = 4 .

Now, we have two values of x: x = -2

x = 4.

However, we can't take x = -2 as a solution because a negative value of x would mean that the length of a side of the triangle would be negative. So, the only solution is x = 4.The value of x that would make the triangle isosceles is x = 4.

To know more about triangle visit:

https://brainly.com/question/2773823

#SPJ11

The median weight of a boy whose age is between 0 and 36 months can be approximated by the function w(t)=8.65+1.25t−0.0046t ^2 +0.000749t^3 ,where t is measured in months and w is measured in pounds. Use this approximation to find the following for a boy with median weight in parts a) through c) below. a) The rate of change of weight with respect to time. w ′
(t)=

Answers

Therefore, the rate of change of weight with respect to time is [tex]w'(t) = 1.25 - 0.0092t + 0.002247t^2.[/tex]

To find the rate of change of weight with respect to time, we need to differentiate the function w(t) with respect to t. Differentiating each term of the function, we get:

[tex]w'(t) = d/dt (8.65) + d/dt (1.25t) - d/dt (0.0046t^2) + d/dt (0.000749t^3)[/tex]

The derivative of a constant term is zero, so the first term, d/dt (8.65), becomes 0.

The derivative of 1.25t with respect to t is simply 1.25.

The derivative of [tex]-0.0046t^2[/tex] with respect to t is -0.0092t.

The derivative of [tex]0.000749t^3[/tex] with respect to t is [tex]0.002247t^2.[/tex]

Putting it all together, we have:

[tex]w'(t) = 1.25 - 0.0092t + 0.002247t^2[/tex]

To know more about rate of change,

https://brainly.com/question/30338132

#SPJ11

In the equation Ci i

+1=(ai i

bi i

)+(ai i

+b i

)⋅Ci i

, the generate term is (ai.bi) (ai+bi) (a i

+b i

)⋅C i

None of the above

Answers

In the equation Ci+1 = (ai bi) + (ai+bi)⋅Ci, the term (ai bi)⋅(ai+bi) is the generate term.

In the equation Ci+1 = (ai bi) + (ai+bi)⋅Ci, the term (ai bi)⋅(ai+bi) is not the generate term.

Let's break down the equation to understand its components:

Ci+1 represents the value of the i+1-th term.

(ai bi) is the propagate term, which is the result of multiplying the values ai and bi.

(ai+bi)⋅Ci is the generate term, where Ci represents the value of the i-th term. The generate term is multiplied by (ai+bi) to generate the next term Ci+1.

Therefore, in the given equation, the term (ai+bi)⋅Ci is the generate term, not (ai bi)⋅(ai+bi).

Learn more about equation from

https://brainly.com/question/29174899

#SPJ11

Justin has $1200 in his savings account after the first month. The savings account pays no interest. He deposits an additional $60 each month thereafter. Which function (s) model the scenario?

Answers

Since the savings account pays no interest, we only need to use the linear function given above to model the scenario.

Given that Justin has $1200 in his savings account after the first month and deposits an additional $60 each month thereafter. We have to determine which function (s) model the scenario.The initial amount in Justin's account after the first month is $1200.

Depositing an additional $60 each month thereafter means that Justin's savings account increases by $60 every month.Therefore, the amount in Justin's account after n months is given by:

$$\text{Amount after n months} = 1200 + 60n$$

This is a linear function with a slope of 60, indicating that the amount in Justin's account increases by $60 every month.If the savings account had an interest rate, we would need to use a different function to model the scenario.

For example, if the account had a fixed annual interest rate, the amount in Justin's account after n years would be given by the compound interest formula:

$$\text{Amount after n years} = 1200(1+r)^n$$

where r is the annual interest rate as a decimal and n is the number of years.

However, since the savings account pays no interest, we only need to use the linear function given above to model the scenario.

For more such questions on linear function, click on:

https://brainly.com/question/2248255

#SPJ8


An
English Composition course has 60 students: 15 Humanities majors,
20 Engineering majors, and 25 History majors. If a student is
chosen at random, what is the probability that the student is a
Human
An English Composition course has 60 students: 15 Humanities majors, 20 Engineering majors, and 25 History majors. If a student is chosen at random, what is the probability that the student is a Human

Answers

If a student is chosen at random, the probability that the student is a Human is 0.25 or 25%.

Probability is the branch of mathematics that handles how likely an event is to happen. Probability is a simple method of quantifying the randomness of events. It refers to the likelihood of an event occurring. It may range from 0 (impossible) to 1 (certain). For instance, if the probability of rain is 0.4, this implies that there is a 40 percent chance of rain.

The probability of a random student from the English Composition course being a Humanities major can be found using the formula:

Probability of an event happening = the number of ways the event can occur / the total number of outcomes of the event

The total number of students is 60.

The number of Humanities students is 15.

Therefore, the probability of a student being a Humanities major is:

P(Humanities) = 15 / 60 = 0.25

The probability of the student being a Humanities major is 0.25 or 25%.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

A process is currently producing a part with the following specifications: LSL = 8 and USL 26 inches. What should be the standard deviation (sigma) of the process (in inch) in order to to achieve a +-

Answers

The standard deviation of the process should be 3 inches in order to achieve a process capability of ±1 inch.

To achieve a process capability of ±1 inch, we need to calculate the process capability index (Cpk) and use it to determine the required standard deviation (sigma) of the process.

The formula for Cpk is:

Cpk = min((USL - μ)/(3σ), (μ - LSL)/(3σ))

where μ is the mean of the process.

Since the target value is at the center of the specification limits, the mean of the process should be (USL + LSL)/2 = (26 + 8)/2 = 17 inches.

Substituting the given values into the formula for Cpk, we get:

1 = min((26 - 17)/(3σ), (17 - 8)/(3σ))

Simplifying the right-hand side of the equation, we get:

1 = min(3/σ, 3/σ)

Since the minimum of two equal values is the value itself, we can simplify further to:

1 = 3/σ

Solving for sigma, we get:

σ = 3

Therefore, the standard deviation of the process should be 3 inches in order to achieve a process capability of ±1 inch.

Learn more about "standard deviation" : https://brainly.com/question/475676

#SPJ11

a. The product of any three consecutive integers is divisible by \( 6 . \) (3 marks)

Answers

The statement is true. The product of any three consecutive integers is divisible by 6.

To prove this, we can consider three consecutive integers as \( n-1, n, \) and \( n+1, \) where \( n \) is an integer.

We can express these integers as follows:

\( n-1 = n-2+1 \)

\( n = n \)

\( n+1 = n+1 \)

Now, let's calculate their product:

\( (n-2+1) \times n \times (n+1) \)

Expanding this expression, we get:

\( (n-2)n(n+1) \)

From the properties of multiplication, we know that the order of multiplication does not affect the product. Therefore, we can rearrange the terms to simplify the expression:

\( n(n-2)(n+1) \)

Now, let's analyze the factors:

- One of the integers is divisible by 2 (either \( n \) or \( n-2 \)) since consecutive integers alternate between even and odd.

- One of the integers is divisible by 3 (either \( n \) or \( n+1 \)) since consecutive integers leave a remainder of 0, 1, or 2 when divided by 3.

Therefore, the product \( n(n-2)(n+1) \) contains factors of both 2 and 3, making it divisible by 6.

Hence, we have proven that the product of any three consecutive integers is divisible by 6.

Learn more about consecutive integers here:

brainly.com/question/841485

#SPJ11

Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (4,0,−3),(1,5,3), and (5,3,0). The volume of the parallelepiped is (Type an integer or a decimal.)

Answers

The triple product (and therefore the volume of the parallelepiped) is:$-9 + 0 + 15 = 6$, the volume of the parallelepiped is 6 cubic units.

A parallelepiped is a three-dimensional shape with six faces, each of which is a parallelogram.

We can calculate the volume of a parallelepiped by taking the triple product of its three adjacent edges.

The triple product is the determinant of a 3x3 matrix where the columns are the three edges of the parallelepiped in order.

Let's use this method to find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (4,0,−3), (1,5,3), and (5,3,0).

From the origin to (4,0,-3)

We can find this edge by subtracting the coordinates of the origin from the coordinates of (4,0,-3):

[tex]$\begin{pmatrix}4\\0\\-3\end{pmatrix} - \begin{pmatrix}0\\0\\0\end{pmatrix} = \begin{pmatrix}4\\0\\-3\end{pmatrix}$[/tex]

Tthe origin to (1,5,3)We can find this edge by subtracting the coordinates of the origin from the coordinates of (1,5,3):

[tex]$\begin{pmatrix}1\\5\\3\end{pmatrix} - \begin{pmatrix}0\\0\\0\end{pmatrix} = \begin{pmatrix}1\\5\\3\end{pmatrix}$[/tex]

The origin to (5,3,0)We can find this edge by subtracting the coordinates of the origin from the coordinates of (5,3,0):

[tex]$\begin{pmatrix}5\\3\\0\end{pmatrix} - \begin{pmatrix}0\\0\\0\end{pmatrix} = \begin{pmatrix}5\\3\\0\end{pmatrix}$[/tex]

Now we'll take the triple product of these edges. We'll start by writing the matrix whose determinant we need to calculate:

[tex]$\begin{vmatrix}4 & 1 & 5\\0 & 5 & 3\\-3 & 3 & 0\end{vmatrix}$[/tex]

We can expand this determinant along the first row to get:

[tex]$\begin{vmatrix}5 & 3\\3 & 0\end{vmatrix} - 4\begin{vmatrix}0 & 3\\-3 & 0\end{vmatrix} + \begin{vmatrix}0 & 5\\-3 & 3\end{vmatrix}$[/tex]

Evaluating these determinants gives:

[tex]\begin{vmatrix}5 & 3\\3 & 0\end{vmatrix} = -9$ $\begin{vmatrix}0 & 3\\-3 & 0\end{vmatrix} = 0$ $\begin{vmatrix}0 & 5\\-3 & 3\end{vmatrix} = 15$[/tex]

For more related questions on triple product:

https://brainly.com/question/29842757

#SPJ8

Suppose we have one red, one blue, and one yellow box. In the red box we have 3 apples and 5 oranges, in the blue box we have 4 apples and 4 oranges, and in the yellow box we have 3 apples and 1 orange. Now suppose we randomly selected one of the boxes and picked a fruit. If the picked fruit is an apple, what is the probability that it was picked from the yellow box?
Note that the chances of picking the red, blue, and yellow boxes are 50%, 30%, and 20% respectively and the selection chance for any of the pieces from a box is equal for all the pieces in that box. Please show your work in your report
b)Consider the following dataset.
outlook = overcast, rain , rain , rain , overcast ,sunny , rain , sunny, rain, rain
humidity = high , high , normal , normal , normal , high , normal ,normal , high , high
play = yes yes yes no yes no yes yes no no
1.Using naive Bayes, estimate the probability of Yes if the outlook is Rain and the humidity is Normal.
2.What is the true probability of Yes in a random choice of one of the three cases where the outlook is Rain and the humidity is Normal?

Answers

The true probability of Yes in a random choice of one of the three cases is 2/3 or approximately 0.6667.

Suppose we have one red, one blue, and one yellow box. In the red box we have 3 apples and 5 oranges, in the blue box we have 4 apples and 4 oranges, and in the yellow box we have 3 apples and 1 orange. If we have randomly selected one of the boxes and picked a fruit, the probability that it was picked from the yellow box if the picked fruit is an apple can be calculated as follows:

Let A be the event that an apple was picked and B be the event that the fruit was picked from the yellow box.

Probability that an apple was picked: P(A)= (1/2)(3/8) + (3/10)(4/8) + (1/5)(3/4) = 0.425

Probability that the fruit was picked from the yellow box: P(B) = 1/5

Probability that an apple was picked from the yellow box: P(A and B) = (1/5)(3/4) = 0.15

Therefore, the probability that the picked fruit was an apple if it was picked from the yellow box is

P(B|A) = P(A and B) / P(A) = 0.15 / 0.425 ≈ 0.3529

Consider the following dataset:

outlook = overcast, rain , rain , rain , overcast ,sunny , rain , sunny, rain, rain

humidity = high , high , normal , normal , normal , high , normal ,normal , high , high

play = yes yes yes no yes no yes yes no no

Using naive Bayes, estimate the probability of Yes if the outlook is Rain and the humidity is Normal.

P(Yes | Rain, Normal) = P(Rain, Normal | Yes) P(Yes) / P(Rain, Normal)

P(Yes) = 7/10

P(Rain, Normal) = P(Rain, Normal | Yes)

P(Yes) + P(Rain, Normal | No) P(No)= (3/7 × 7/10) + (2/3 × 3/10) = 27/70

P(Rain, Normal | Yes) = (2/5) × (3/7) / (27/70) ≈ 0.2857

P(Yes | Rain, Normal) = 0.2857 × (7/10) / (27/70) ≈ 0.6667

What is the true probability of Yes in a random choice of one of the three cases where the outlook is Rain and the humidity is Normal?

In the three cases where the outlook is Rain and the humidity is Normal, the play variable is Yes in 2 of them.

Therefore, the true probability of Yes in a random choice of one of the three cases is 2/3 or approximately 0.6667.

Learn more about probability visit:

brainly.com/question/31828911

#SPJ11

pick 1
On a table are three coins-two fair nickels and one unfair nickel for which Pr (H)=3 / 4 . An experiment consists of randomly selecting one coin from the tabie and flipping it one time, noting wh

Answers

The required probability is 0.25, which means that there is a 25% chance of getting a tail on the given coin.

Firstly, we will identify the sample space of the given experiment. The sample space is defined as the set of all possible outcomes of the experiment. Here, the experiment consists of randomly selecting one coin from the table and flipping it one time, noting whether it is a head or a tail. Therefore, the sample space for the given experiment is S = {H, T}.

The given probability states that the probability of obtaining a head on the unfair nickel is Pr(H) = 3/4. As the given coin is unfair, it means that the probability of obtaining a tail on this coin is

Pr(T) = 1 - Pr(H) = 1 - 3/4 = 1/4.

Hence, the probability of obtaining a tail on the given coin is 1/4 or 0.25.

Therefore, the required probability is 0.25, which means that there is a 25% chance of getting a tail on the given coin.

Know more about  probability here,

https://brainly.com/question/31828911

#SPJ11

All questions in Part A are worth 10 marks each.
Q. Evaluate the statement: "The following is a valid probability weighting function."
0 if 1 if p=0 p=1 0.6 if 0

Answers

Therefore, the statement that the given function is a valid probability weighting function is false.

To evaluate the statement, let's examine the given probability weighting function:

0 if 1 if p = 0

p = 1

0.6 if 0

This probability weighting function is not valid because it does not satisfy the properties of a valid probability weighting function. In a valid probability weighting function, the assigned weights should satisfy the following conditions:

The weights should be non-negative: In the given function, the weight of 0.6 violates this condition since it is a negative weight.

The sum of the weights should be equal to 1: The given function does not provide weights for all possible values of p, and the weights assigned (0, 1, and 0.6) do not sum up to 1.

Learn more about function here

https://brainly.com/question/30721594

#SPJ11

(2) [5{pt}] (a) (\sim 2.1 .8{a}) Let x, y be rational numbers. Prove that x y, x-y are rational numbers. (Hint: Start by writing x=\frac{m}{n}, y=\frac{k}{l}

Answers

If x and y are rational numbers, then the product xy and the difference x-y are also rational numbers.

To prove that the product xy and the difference x-y of two rational numbers x and y are also rational numbers, we can start by expressing x and y as fractions.

Let x = m/n and

y = k/l, where m, n, k, and l are integers and n and l are non-zero.

Product of xy:

The product of xy is given by:

xy = (m/n) * (k/l)

= (mk) / (nl)

Since mk and nl are both integers and nl is non-zero, the product xy can be expressed as a fraction of two integers, making it a rational number.

Difference of x-y:

The difference of x-y is given by:

x - y = (m/n) - (k/l)

= (ml - nk) / (nl)

Since ml - nk and nl are both integers and nl is non-zero, the difference x-y can be expressed as a fraction of two integers, making it a rational number.

Therefore, we have shown that both the product xy and the difference x-y of two rational numbers x and y are rational numbers.

If x and y are rational numbers, then the product xy and the difference x-y are also rational numbers.

To know more about Rational Numbers, visit

brainly.com/question/12088221

#SPJ11

There are three sick dogs at the veterinarian's office. The vet equally divided 512 bottles of medicine to the dogs. How much medicine did he give to each sick dog?

Answers

Answer:

ok so its 170(if there's a decimal 170.6)

Step-by-step explanation:

basically, just divide three and 512. Hope this helps

A square garden is 10 feet long. A square walkway 3 feet wide goes all the way around the garden. How many feet of fence is needed to go around the walkway?

Answers

As a geometric shape, a square is a quadrilateral with four equal sides and four equal angles of 90 degrees each. 64 feet of fence is needed to go around the walkway.

To calculate the number of fences needed to go around the walkway, we need to determine the dimensions of the larger square formed by the outer edge of the walkway.

The original square garden is 10 feet long on each side. Since the walkway goes all the way around the garden, it adds an extra 3 feet to each side of the garden.

To find the length of the sides of the larger square, we add the extra 3 feet to both sides of the original square. This gives us 10 feet + 3 feet + 3 feet = 16 feet on each side.

Now that we know the length of the sides of the larger square, we can calculate the total length of the fence needed to go around the walkway.

Since there are four sides to the square, we multiply the length of one side by 4. This gives us 16 feet × 4 = 64 feet.

Therefore, 64 feet of fence is needed to go around the walkway.

To know more about the word original square, visit:

https://brainly.com/question/19210653

#SPJ11

Please explain step by step thank you
Calculate the cause-specific mortality rate for heart disease in 2019 - Total world population July 1, 2021, = 7.87 billion - Total world population July 1, 2020, = 7.753 billion - Total w

Answers

Calculate the cause-specific mortality rate for heart disease in 2019 using population data from July 2020 and July 2021.

Obtain the total world population on July 1, 2021, which is 7.87 billion, and the total world population on July 1, 2020, which is 7.753 billion.

Determine the change in population from 2020 to 2021 by subtracting the population in 2020 from the population in 2021. The change in population is 7.87 billion - 7.753 billion = 0.117 billion (or 117 million).Collect data on the number of deaths due to heart disease in 2019. This data should specify the number of deaths worldwide caused by heart disease during that year.Divide the number of deaths due to heart disease in 2019 by the change in population during that period. For example, if there were 2 million deaths due to heart disease in 2019, the cause-specific mortality rate would be 2 million / 0.117 billion = 17.1 deaths per million people.The result represents the cause-specific mortality rate for heart disease in 2019, expressed as the number of deaths per million people.

To learn more about “mortality rate” refer to the https://brainly.com/question/26105007

#SPJ11

We can expand the O,Ω,Θ notation to the case of two 1
parameters, n and m, that can grow independently at different rates. For example if g:N 2
→R +
then O(g(n,m))={f(n,m)∣(∃c,n 0
,m 0
>0)(∀n≥n 0
,m≥m 0
)[f(n,m)≤cg(n,m)]} Give similar definitions for Ω(g(n,m)) and Θ(g(n,m)). (Note: The easy answer for Θ is fine.)

Answers

Ω(g(n, m)) is defined as the set of all functions that are greater than or equal to c times g(n, m) for all n ≥ n0 and m ≥ m0, where c, n0, and m0 are positive constants. Given that the function is g : N2→ R+, let's first define O(g(n,m)), Ω(g(n,m)), and Θ(g(n,m)) below:

O(g(n, m)) ={f(n, m)| (∃ c, n0, m0 > 0) (∀n ≥ n0, m ≥ m0) [f(n, m) ≤ cg(n, m)]}

Ω(g(n, m)) ={f(n, m)| (∃ c, n0, m0 > 0) (∀n ≥ n0, m ≥ m0) [f(n, m) ≥ cg(n, m)]}

Θ(g(n, m)) = {f(n, m)| O(g(n, m)) and Ω(g(n, m))}

Thus, Ω(g(n, m)) is defined as the set of all functions that are greater than or equal to c times g(n, m) for all n ≥ n0 and m ≥ m0, where c, n0, and m0 are positive constants.

Learn more about functions: https://brainly.com/question/29633660

#SPJ11

Find the annual percentage rate compounded continuously to the nearest tenth of a percent for which $20 would grow to $40 for each of the following time periods. a. 5 years b. 10 years c. 30 years d. 50 years a. The sum of $20 would grow to $40 in 5 years, it the antual rate is approximatedy (Do not round until the final anower. Then round to one decimal place as needed.)

Answers

To determine the annual percentage rate (APR) compounded continuously for which $20 would grow to $40 over different time periods, we can use the formula for continuous compound interest. For a 5-year period, the approximate APR can be calculated as [value] percent (rounded to one decimal place).

The formula for continuous compound interest is A = P * e^(rt), where A is the final amount, P is the principal (initial amount), e is the base of the natural logarithm, r is the annual interest rate (as a decimal), and t is the time period in years.

In the given scenario, we have A = $40 and P = $20 for a 5-year period. By substituting these values into the continuous compound interest formula, we obtain $40 = $20 * e^(5r). To solve for the annual interest rate (r), we isolate it by dividing both sides of the equation by $20 and then taking the natural logarithm of both sides. This yields ln(2) = 5r, where ln denotes the natural logarithm.

Next, we divide both sides by 5 to isolate r, resulting in ln(2)/5 = r. Using a calculator to evaluate this expression, we find the value of r, which represents the annual interest rate.

Finally, to express the APR as a percentage, we multiply r by 100. The calculated value rounded to one decimal place will give us the approximate APR compounded continuously for the 5-year period.

To know more about annual percentage rate refer here:

https://brainly.com/question/28347040

#SPJ11

Determine the standard equation of the ellipse using the given information. Center at (6,4); focus at (6,9), ellipse passes through the point (9,4) The equation of the ellipse in standard form is

Answers

The equation of the ellipse which has its center at (6,4); focus at (6,9), and passes through the point (9,4), in standard form is (x−6)²/16+(y−4)²/9=1.

Given:

Center at (6,4);

focus at (6,9),

and the ellipse passes through the point (9,4)

To determine the standard equation of the ellipse, we can use the standard formula as follows;

For an ellipse with center (h, k), semi-major axis of length a and semi-minor axis of length b, the standard form of the equation is:

(x−h)²/a²+(y−k)²/b²=1

Where (h, k) is the center of the ellipse

To find the equation of the ellipse in standard form, we need to find the values of h, k, a, and b

The center of the ellipse is given as (h,k)=(6,4)

Since the foci are (6,9) and the center is (6,4), we know that the distance from the center to the foci is given by c = 5 (distance formula)

The point (9, 4) lies on the ellipse

Therefore, we can write the equation as follows:

(x−6)²/a²+(y−4)²/b²=1

Since the focus is at (6,9), we know that c = 5 which is also given by the distance between (6, 9) and (6, 4)

Thus, using the formula, we get:

(c²=a²−b²)b²=a²−c²b²=a²−5²b²=a²−25

Substituting these values in the equation of the ellipse we obtained earlier, we get:

(x−6)²/a²+(y−4)²/(a²−25)=1

Now, we need to use the point (9, 4) that the ellipse passes through to find the value of a²

Substituting (9,4) into the equation, we get:

(9−6)²/a²+(4−4)²/(a²−25)=1

Simplifying and solving for a², we get

a²=16a=4

Substituting these values into the equation of the ellipse, we get:

(x−6)²/16+(y−4)²/9=1

Thus, the equation of the ellipse in standard form is (x−6)²/16+(y−4)²/9=1

To know more about ellipse refer here:

https://brainly.com/question/9448628

#SPJ11

Find the position function x(t) of a moving particle with the given acceleration a(t), initial position x_0 =x(0), and inisital velocity c_0 = v(0)
a(t)=6(t+2)^2 , v(0)=-1 , x(0)=1

Answers

The position function of the moving particle is x(t) = ½(t + 2)⁴ - 9t - 7.

Given data,

Acceleration of the particle a(t) = 6(t + 2)²

Initial position

x(0) = x₀

= 1

Initial velocity

v(0) = v₀

= -1

We know that acceleration is the second derivative of position function, i.e., a(t) = x''(t)

Integrating both sides w.r.t t, we get

x'(t) = ∫a(t) dt

=> x'(t) = ∫6(t + 2)²dt

= 2(t + 2)³ + C₁

Putting the value of initial velocity

v₀ = -1x'(0) = v₀

=> 2(0 + 2)³ + C₁ = -1

=> C₁ = -1 - 8

= -9

Now, we havex'(t) = 2(t + 2)³ - 9 Integrating both sides w.r.t t, we get

x(t) = ∫x'(t) dt

=> x(t) = ∫(2(t + 2)³ - 9) dt

=> x(t) = ½(t + 2)⁴ - 9t + C₂

Putting the value of initial position

x₀ = 1x(0) = x₀

=> ½(0 + 2)⁴ - 9(0) + C₂ = 1

=> C₂ = 1 - ½(2)⁴

=> C₂ = -7

Final position function x(t) = ½(t + 2)⁴ - 9t - 7

Know more about the position function

https://brainly.com/question/29295368

#SPJ11

may not convert these predicates to variables (no ∀x∈D,p→q - use the same words that are already in the statement): ∀n∈Z, if n 2
−2n−15>0, then n>5 or n<−3. A. State the negation of the given statement. B. State the contraposition of the given statement. C. State the converse of the given statement. D. State the inverse of the given statement. E. Which statements in A.-D. are logically equivalent? You may give the name(s) or letter(s) of the statements.

Answers

A predicate is a statement or a proposition that contains variables and becomes a proposition when specific values are assigned to those variables. Variables, on the other hand, are symbols that represent unspecified or arbitrary elements within a statement or equation. They are placeholders that can take on different values.

Given, For all n in Z, if n2 - 2n - 15 > 0, then n > 5 or n < -3. We are required to answer the following: State the negation of the given statement. State the contraposition of the given statement. State the converse of the given statement. State the inverse of the given statement. Which statements in A.-D. are logically equivalent? Negation of the given statement:∃ n ∈ Z, n2 - 2n - 15 ≤ 0 and n > 5 or n < -3

Contrapositive of the given statement: For all n in Z, if n ≤ 5 and n ≥ -3, then n2 - 2n - 15 ≤ 0 Converse of the given statement: For all n in Z, if n > 5 or n < -3, then n2 - 2n - 15 > 0 Inverse of the given statement: For all n in Z, if n2 - 2n - 15 ≤ 0, then n ≤ 5 or n ≥ -3. From the given statements, we can conclude that the contrapositive and inverse statements are logically equivalent. Therefore, statements B and D are logically equivalent.

For similar logical reasoning problems visit:

https://brainly.com/question/30659571

#SPJ11

You choose to invest your $3,360 income tax refund check (rather than spend it) in an account earning 6% compounded annually. How much will the account be worth in 30 years? (Use the Table provided.) Note: Round your answer to the nearest cent.

Answers

The account will be worth $14,974.48 in 30 years.

Compound interest is interest that is added to the principal amount of a loan or deposit, and then interest is added to that new sum, resulting in the accumulation of interest on top of interest.

In other words, compound interest is the interest earned on both the principal sum and the previously accrued interest.

Simple interest, on the other hand, is the interest charged or earned only on the original principal amount. The interest does not change over time, and it is always calculated as a percentage of the principal.

This is distinct from compound interest, in which the interest rate changes as the amount on which interest is charged changes. Therefore, $3,360 invested at 6% compounded annually for 30 years would result in an account worth $14,974.48.

Know more about Compound interest, here:

https://brainly.com/question/14295570

#SPJ11

a/an _______ variable is one that has numerical values and still makes sense when you average the data values.

Answers

An interval variable is one that has numerical values and still makes sense when you average the data values. This type of variable is used in statistics and data analysis to measure continuous data, such as temperature, time, or weight.

Interval variables are based on a scale that has equal distances between each value, meaning that the difference between any two values is consistent throughout the scale.

Interval variables can be used to create meaningful averages or means. The arithmetic mean is a common method used to calculate the average of interval variables. For example, if a researcher is studying the temperature of a city over a month, they can use interval variables to represent the temperature readings. By averaging the temperature readings, the researcher can calculate the mean temperature for the month.

In summary, interval variables are essential in statistics and data analysis because they can be used to measure continuous data and create meaningful averages. They are based on a scale with equal distances between each value and are commonly used in research studies.

Know more about interval variable here:

https://brainly.com/question/30364592

#SPJ11

Use synthetic division to find the result when 4x^(4)-9x^(3)+14x^(2)-12x-1 is divided by x-1. If there is a remainder, express the Fesult in the form q(x)+(r(x))/(b(x)).

Answers

A synthetic division to find the result q(x) + (r(x))/(b(x)) the result is 4x³ - 5x² + 9x - 3 - 4/(x - 1)

To perform synthetic division, to set up the polynomial and the divisor in the correct format.

Given polynomial: 4x² - 9x³ + 14x² - 12x - 1

Divisor: x - 1

To set up the synthetic division, the coefficients of the polynomial in descending order of powers of x, including zero coefficients if any term is missing.

Coefficients: 4, -9, 14, -12, -1 (Note that the coefficient of x^3 is -9, not 0)

Next,  the synthetic division tableau:

The numbers in the row beneath the line represent the coefficients of the quotient polynomial. The last number, -4, is the remainder.

Therefore, the result of dividing 4x² - 9x³ + 14x² - 12x - 1 by x - 1 is:

Quotient: 4x³- 5x²+ 9x - 3

Remainder: -4

To know more about  synthetic here

https://brainly.com/question/31673428

#SPJ4

Other Questions
ava Program help needed(i) Define methods to find the square of a number and cube of a number. the number must be passed to the method from the calling statement and computed result must be returned to the calling module(ii) Define a main() method to call above square and cube methods For each of the following subsets of a given vector space, determine if the subsetWis a subspace ofV. a)W={(x 1,x 2,x 3,x 4)R 4x 1+2x 33x 4=0}V=R 4b)W={BA 33B=0}V=A 33c)W={p(x)P 3p(x)=a 3x 3+a 2x 2+a 1x}V=P 3d)W={BA 22B=[ a0bd]}V=A 22 You are a risk-averse mean-variance investor with a risk aversion parameter A = 4. You are currently holding a portfolio with a mean return of 9% and return volatility of 15%. What average return would you need to be offered to be willing to accept a portfolio with a 25% standard deviation?Group of answer choices9.0%15.0%25.0%17.0% Before overy fight, the pilok must verify that the total weight of the load is less than the maximum allowable load for the aircraft. The aircrait can carry 41 passergera, and a fight has fuel and boggage that allows for a total passenger load of 6.929 b. The pilot sees that the plane is full and all passengers are men. The aircraft wil be overloaded it the mean weight of the passengers is greater than 41/6,929lb=169lb. What is the probability that the aircraft is overloaded? Should the plict lake any action to correct for an overioaded aircraft? Assume that weights of men are normally distributed with a mean of 174,9 ib and a standard deviation of 35.6. The probabily is approximately (Round to four decimal places as needed.) Consider an AK model of endogenous growth. If the aggregate production function is given by Y=1.5 K and the depreciation rate is 17.5% : a. What is the minimum savings rate such that this economy will experience growth in the long run? b. Discuss the pros and cons of pushing a high saving rate in this economy. A friend offers you a free ticket to a concert, which you decide to attend. The concert takes 4 hours and costs you $15 for transportation. If you had not attended the concert, you would have worked at your part-time job earning $15 per hour. What is the true cost of you attending the concert? I used to work Nine hours a day minus one which is for lunch so in reality I work eight hours a dayso my question is now that I'm part time meaning I go to school from 8 AM to 12 PM and my lunch break which is one entirely hour free from 12 to 1 PMhow many hours do I really work in a day is it ?five hours or four hours?? the federal bureau of investigation and the text defines mass murder as the killing of ____ or more people at a single location. question 5: if a person does not have the normal use of mental or physical faculties because they have been drinking alcohol, they would legally be considered: * why does grim say that max is lucky? question 12 options: he won a hundred dollars he doesn't have to go to school in the fall he lives with gram and grim most people never have a good friend like kevin What is the empirical foula of a compound composed of 36.9 g of potassium (K) and 7.55 g of oxygen (O)? Insert subscript as needed. question 12. (10 pts) Propose full synthetic routes for the following synthesis. include all intermediates needed and provide reagents for the steps of your syntheses. (reminder, your synthesis will go in the opposite direction of the retrosynthesis arrows.) The human resources department of a consulting firm gives a standard creativity test to a randomly selected group of new hires every year. This year, 75 new hires took the test and scored a mean of 112.8 points with a standard deviation of 15.8. Last year, 95 new hires took the test and scored a mean of 117.2 points with a standard deviation of 19. Assume that the population standard deviations of the test scores of all new hires in the current year and the test scores of all new hires last year can be estimated by the sample standard deviations, as the samples used were quite large. Construct a 95% confidence interval for -, the difference between the mean test score of new hires from the current year and the mean test score of new hires from last year. Then find the lower limit and upper limit of the 95% confidence interval.Carry your intermediate computations to at least three decimal places. Round your answers to at least two decimal places. (If necessary, consult a list of formulas.) Suppose that the wages competitive frms must pay to their workers increase. Which of the following statements is TRUE? The firms' marginal costs will rise The market supply curve will shift left and price will rise In the iong run firms will be making zero economic profits All of the above are true A machine cost birr 10,000 and has a carrying amount of birr 8,000. For tax purposes, depreciation of birr 3,000 has already been deducted in the current and prior periods and the remaining cost will be deductible in future periods, either as depreciation or through a deduction on disposal. Revenue generated by using the machine is taxable, any gain on disposal of the machine will be taxable and any loss on disposal will be deductible for tax purposes. What is the tax base of the asset? the food and nutrition industries have capitalized on the importance of protein as a large component of a healthy diet. however, the evidence for wide-ranging benefits of plant-based diets is expanding and gaining momentum. are the concerns associated with a plant-based diet (namely amino acid deficiency and availability) valid, and can they be mitigated? provide clear examples of how a plant-based diet might introduce nutritional challenges. also clearly provide the rationale behind specific techniques for implementing these diets safely. beware: a lot of the information out there will be contradictory, as this is a complex argument that fuels several lucrative industries. seek and verify several sources before responding. The hypotenuse of a right triangle measures 7 cm and one of its legs measures 2 cm. Find the measure of the other leg. If necessary ,round to the nearest teeth Farmland County Bank offers to lend money to Gino, the owner of Home Hardware Store, at 15 percent interest. Before Gino accepts, a state statute is enacted prohibiting loans at rates greater than 12 percent. Gino and the bank havea. a contract for a loan at 15 percent interest.b. a contract for a loan at 12 percent interest.c. a contract for a loan at 0 percent interest.d. no contract for a loan. Write a program that reads two times in military format ( hhmm ) from the user and prints the number of hours and minutes between the two times. If the first time is later than the second time, assume the second time is the next day. Remember to take care of invalid user inputs, that is, your program should not crash because of invalid user input. Hint: take advantage of the printTimeDifference method you wrote in Assignment 1 . You can either update that method so it will do the input validation or do the validation before calling the method. Examples These are just examples. You can have a different design as long as it's reasonable. For example, you can ask the user to enter 2 times in one line, separated by a comma; or you can have different print out messages for invalid input; or you can ask the user to re-enter instead of terminating the program; etc. User input is italic and in color. - Example 1 Please enter the first time: 0900 Please enter the second time: 1730 8 hour(s) 30 minute(s) - Example 2 (invalid input) Please enter the first time: haha Invalid input! Program terminated! Superior Divere bomowed morwy by mong $3. 0. 000 of % bonde payable 08. 8 Requirements 1. How much cash did Superior receive when it woed the bonds payable? 2. How much must Superior pay back at maturity? 3. How much cash interest wil Superior pay each six month? CH Requirement 1. How much cash did Superior recere when it ansved the bonds payablu? Superior received when the bonds payable were inced Requirement 2. How much must Superior pay back at matunity? At matunity, Superior must pay backs Requirement 3. How much cash interest wil Superior pay each sic months? Superior will pay interest of each sex months