Light of wavelength 893 nm is incident on the face of a silica prism at an angle of θ1 = 55.4 ◦ (with respect to the normal to the surface). The apex angle of the prism is φ = 59◦ . Given: The value of the index of refraction for silica is n = 1.455. find the angle between the incident and emerging rays. answer in units of degrees.

Answers

Answer 1

The angle between the incident and emerging rays is 46.9 degrees when the value of the index of refraction for silica is n = 1.455.

We can use Snell's law to relate the incident and refracted angles of the light passing through the prism:

n1 sin θ1 = n2 sin θ2

where n1 and θ1 are the refractive index and incident angle of the first medium (air in this case), and n2 and θ2 are the refractive index and refracted angle of the second medium (silica in this case). Since the prism is symmetrical, we can assume that the angle of incidence on the second face of the prism is the same as the angle of refraction on the first face.

First, we can find the angle of refraction at the first face of the prism using Snell's law:

n1 sin θ1 = n2 sin θ2

sin θ2 = (n1/n2) sin θ1

sin θ2 = (1/1.455) sin 55.4

θ2 = sin⁻¹(0.706) = 45.1°

Next, we can find the angle of incidence at the second face of the prism, using Snell's law again:

n2 sin θ2 = n1 sin θ3

sin θ3 = (n2/n1) sin θ2

sin θ3 = (1.455/1) sin 45.1

θ3 = sin⁻¹(1.055) = 50.5°

Finally, we can find the angle between the incident and emerging rays by subtracting the angles of incidence and refraction:

θ4 = θ1 - φ + θ3

θ4 = 55.4° - 59° + 50.5°

θ4 = 46.9°

Therefore, the angle between the incident and emerging rays is 46.9 degrees.

Learn more about index of refraction at: https://brainly.com/question/12469161

#SPJ11


Related Questions

A laser blackboard pointer delivers 0.10 mW average power in a beam 0.90 mm in diameter. Find (a) the average intensity, (b) the peak electric field, and (c) the peak magnetic field.

Answers

The laser blackboard pointer has an average intensity of 157 W/m², and the peak electric field is 2.39 x 10⁵ V/m. The peak magnetic field is 7.97 x 10⁻⁴ T.

(a) The average intensity of the laser beam can be calculated using the formula:

I = P/A

where P is the power and A is the area of the beam. The area of the beam is given by:

A = πr² = π(0.45 x 10⁻³ m)² = 6.36 x 10⁻⁷ m²

Substituting the values, we get:

[tex]I = \frac{{0.10 \times 10^{-3} , \text{W}}}{{6.36 \times 10^{-7} , \text{m}^2}} = 157 , \text{W/m}^2[/tex]

Therefore, the average intensity of the laser beam is 157 W/m².

(b) The peak electric field can be calculated using the formula:

[tex]E = \sqrt{\frac{{2I}}{{\varepsilon c}}}[/tex]

where I is the intensity, ε is the permittivity of free space, and c is the speed of light. Substituting the values, we get:

[tex]E = \sqrt{\frac{{2 \times 157}}{{8.85 \times 10^{-12} \times 3 \times 10^8}}} = 2.39 \times 10^5 , \text{V/m}[/tex]

Therefore, the peak electric field of the laser beam is 2.39 x 10⁵ V/m.

(c) The peak magnetic field can be calculated using the formula:

[tex]B = \frac{E}{c}[/tex]

where E is the electric field and c is the speed of light. Substituting the values, we get:

[tex]B = \frac{{2.39 \times 10^5}}{{3 \times 10^8}} = 7.97 \times 10^{-4} , \text{T}[/tex]

Therefore, the peak magnetic field of the laser beam is 7.97 x 10⁻⁴ T.

To know more about the  magnetic field  refer here :

https://brainly.com/question/23096032#

#SPJ11

At what position does the mass attached to a spring in shm have the greatest accleration?

Answers

The acceleration of a mass attached to a spring undergoing Simple Harmonic Motion (SHM) is given by the equation:

a = -ω²ˣ

where a is the acceleration of the mass, x is its displacement from equilibrium, and ω is the angular frequency of the SHM.

The acceleration is negative when the mass is displaced from its equilibrium position, x ≠ 0, and positive when the mass is at its equilibrium position, x = 0.

Therefore, the position where the mass has the greatest acceleration is the position where it is farthest from its equilibrium position.

For a mass attached to a spring, the maximum displacement from equilibrium is the amplitude of the SHM, denoted by A.

Therefore, the position where the mass has the greatest acceleration is at the ends of the amplitude, i.e., when x = ±A.

At these points, the acceleration of the mass is:

a = -ω²ᵃ

Since ω and A are both positive values, the acceleration at the ends of the amplitude is the greatest possible value of acceleration for the mass in SHM.

To know more about refer Simple Harmonic Motion here

brainly.com/question/30404816#

#SPJ11

if an airmass is cooled without a change in the water vapor content, what will happen to its humidity?

Answers

An airmass is cooled without a change in the water vapor content, its humidity will increase due to the decrease in temperature and subsequent increase in relative humidity.

Humidity is a measure of the amount of water vapor present in the air. When the temperature of an airmass decreases, its capacity to hold water vapor decreases. This means that the same amount of water vapor that was present in the warmer airmass will now occupy a smaller space in the cooler airmass. As a result, the relative humidity of the airmass increases, even though the amount of water vapor has not changed. For example, if a warm and humid airmass cools down as it moves over a mountain range, the relative humidity will increase, and the excess water vapor may condense into clouds and precipitation. This is why many mountainous regions experience high levels of precipitation, even if they are located in dry or arid climates.

Relative humidity is a measure of how much water vapor is in the air compared to the maximum amount of water vapor the air can hold at a given temperature. When the temperature of the airmass decreases and the water vapor content remains the same, the air can hold less moisture. As a result, the relative humidity increases because the air becomes closer to its saturation point.

To know more about airmass visit:

https://brainly.com/question/14264415

#SPJ11

what is the maximum oxidation state state observed for titanium ?is the maximum oxidation state observed for technetium smaller than, larger than, or equal to the value for titanium?

Answers

The maximum oxidation state observed for titanium is +4. This is because titanium has four valence electrons and can lose all of them to form Ti4+ ion, which has a noble gas electron configuration of argon.

The maximum oxidation state observed for technetium is larger than the value for titanium.

Technetium is a radioactive element that exhibits a wide range of oxidation states, ranging from -1 to +7.

The most stable and commonly observed oxidation state of technetium is +7, which is larger than the maximum oxidation state observed for titanium.

This is due to the fact that technetium has a higher atomic number and therefore has more electrons available for bonding and oxidation.

Read more about the Oxidation state.

https://brainly.com/question/11313964

#SPJ11

if a diffraction grating is heated (without damaging it) and therefore expands, what happens to the angular location of the first-order maximum?

Answers

As the diffraction grating expands due to heating, the angular location of the first-order maximum will decrease.

This can be understood by considering the equation for the position of the first-order maximum, which is given by:  sinθ = mλ/d

where θ is the angle between the incident light and the direction of the diffracted light, m is the order of the maximum, λ is the wavelength of the light, and d is the spacing between the lines on the diffraction grating.

If the diffraction grating expands due to heating, the spacing between the lines will increase, which means that the value of d in the equation above will increase. Since sinθ and λ are constant for a given setup, an increase in d will cause the value of θ to decrease, which means that the angular location of the first-order maximum will also decrease.

To know more about diffraction, refer here:

https://brainly.com/question/31837590#

#SPJ11

A 30 kHz clock pulse is applied to a MOD 15 counter, What is the output frequency?
A. 1.55 kHz
B. 1.88 kHz
C. 2.0 kHz
D. 2.5 kHz

Answers

The output frequency of a MOD 15 counter with a 30 kHz clock pulse is 2.0 kHz.

To find the output frequency, first, we need to understand that a MOD 15 counter has 15 states (0 to 14), meaning it takes 15 clock pulses to complete one cycle. Next, we'll divide the input frequency by the number of states to find the output frequency:
Input frequency: 30 kHz
Number of states: 15
Output frequency = (Input frequency) / (Number of states) = (30 kHz) / (15) = 2 kHz
Therefore, the output frequency is 2.0 kHz, which corresponds to option C.

Learn more about frequency here:

https://brainly.com/question/14320803

#SPJ11

do you use the temperature of water bath when vaporization begins to find temperature for ideal gas law

Answers

No, the temperature of the water bath, when vaporization begins, is not used to find the temperature for the ideal gas law.

The temperature used in the ideal gas law equation is the actual temperature of the gas. This can be determined using a thermometer placed directly in the gas or by measuring the temperature of the container holding the gas. The temperature of the water bath, when vaporization begins, is typically used to determine the boiling point of a substance, which can be used to calculate the heat of vaporization. However, this temperature is not used in the ideal gas law equation.

The ideal gas law relates the pressure, volume, and temperature of a gas, assuming it behaves like an ideal gas, which means its particles have no volume and there are no intermolecular forces. The ideal gas law is an important equation in thermodynamics and is used to calculate the behavior of gases under different conditions.

To know more about the ideal gas law visit:

https://brainly.com/question/30458409

#SPJ11

In single slit diffraction, the appearance of the first dark spot on either side of the large central bright spot is because
A. The path difference is equal to half the wavelength
B. The path difference is equal to the wavelength
C. The path difference is equal to half the slit width
D. The wavelength is equal to twice the slit width
E. The wavelength is equal to the slit width

Answers

The correct option is A. The appearance of the first dark spot on either side of the large central bright spot in single slit diffraction is because the path difference is equal to half the wavelength.

How does the first dark spot in single slit diffraction appear?

In single slit diffraction, light waves passing through a narrow slit spread out and interfere with each other, resulting in a pattern of bright and dark regions on a screen or surface. This pattern is known as the diffraction pattern.

The first dark spot on either side of the central bright spot, called the first minimum, occurs when the path difference between the waves from the top and bottom edges of the slit is equal to half the wavelength of the light.

When the path difference is equal to half the wavelength, the waves interfere destructively, resulting in a dark spot. This happens because the crest of one wave coincides with the trough of the other wave, leading to cancellation of the amplitudes and thus a minimum intensity at that point.

Therefore, option A is correct because the appearance of the first dark spot is indeed due to the path difference being equal to half the wavelength.

Learn more about single slit diffraction

brainly.com/question/26384235

#SPJ11

We know that our atmosphere is optically thick enough that when we look straight up, we see some scattered sunlight; on the other hand, it is pretty optically thin, since starlight is not scattered very much. Suppose at blue wavelengths (λ=400nm) the optical depth is 0.1. What fraction of starlight is scattered before it reaches the ground? What is the cross section for scattering of blue light by air molecules? In the formula\sigma \approx\sigma_T(\lambda_0/\lambda)^4, what would you infer λ0 to be?

Answers

If the optical depth for blue light in the atmosphere is 0.1, then only 10% of the light at this wavelength is scattered before it reaches the ground. This means that 90% of the blue starlight would pass straight through the atmosphere without being scattered.

The cross section for scattering of blue light by air molecules can be determined using the formula:

σ ≈ σ_T(λ_0/λ)^4
where σ_T is the Thomson cross section,
λ_0 is the characteristic wavelength of the scatterer, and
λ is the wavelength of the incident light.

Since we are interested in the scattering of blue light (λ = 400 nm), we need to determine λ_0. This characteristic wavelength depends on the size of the scattering particle, which is much smaller than the wavelength of light.

For air molecules, λ_0 is typically on the order of 1 nm. Using this value, we can calculate the cross section for scattering of blue light by air molecules to be approximately: 2.3 × 10^-31 m^2.

In summary, only 10% of blue starlight is scattered by the atmosphere, and the cross section for scattering of blue light by air molecules is approximately 2.3 × 10^-31 m^2, with a characteristic wavelength λ_0 of approximately 1 nm.

To know more about "Atmosphere" refer here:

https://brainly.com/question/30157325#

#SPJ11

zr4 express your answer in the order of orbital filling as a string without blank space between orbitals. for example, the electron configuration of li would be entered as 1s^22s^1 or [he]2s^1.

Answers

Answer:The electron configuration of Zr is [Kr]5s^24d^2.

learn more about electron configuration

https://brainly.com/question/29157546?referrer=searchResults

#SPJ11

A charged particle of mass 0.0040 kg is subjected to a 6.0T magnetic field which acts at a right angle 90 to its motion If the particle moves in a circle of radius 0.10 m at a speed of 4.0 m/s. what is the magnitude of the charge on the particle?
A wire is formed into a circle with radius 8.00 mm A current flows through the wire and causes a magnetic field of magnitude B at the center of the loop. If the wire is heated and expands by 3.0%, what does the magnitude of the magnetic field become at the center of the loop?

Answers

m=mg=0.0040×9,8

v=1÷t

o,4×1

yes it become the centre loop

find the volume of the parallelepiped with adjacent edges pq, pr, and ps. p(−2, 1, 0), q(4, 3, 4), r(1, 4, −1), s(3, 6, 3) incorrect: your answer is incorrect. cubic units

Answers

To find the volume of the parallelepiped with adjacent edges PQ, PR, and PS, we can use the scalar triple product of the vectors representing these edges.

Let's first find the vectors representing the edges PQ, PR, and PS:

PQ = Q - P = (4, 3, 4) - (-2, 1, 0) = (6, 2, 4)

PR = R - P = (1, 4, -1) - (-2, 1, 0) = (3, 3, -1)

PS = S - P = (3, 6, 3) - (-2, 1, 0) = (5, 5, 3)

Now, we can calculate the scalar triple product of these vectors:

V = PQ . (PR x PS)

where "." denotes the dot product and "x" denotes the cross product.

PR x PS = (-12, 15, 15)

PQ . (-12, 15, 15) = -108

Therefore, the volume of the parallelepiped with adjacent edges PQ, PR, and PS is:|V| = |-108| = 108 cubic units. Hence, the volume of the parallelepiped is 108 cubic units.

To know more about parallelepiped refer here

https://brainly.com/question/27953025#

#SPJ11

A softball flies into the air at 60° to the horizontal with a velocity of 50m/s. Calculate the range attained by the softball in half the maximum height. ​

Answers

To calculate the range attained by a softball in half the maximum height, the given information includes an initial angle of [tex]60^0[/tex] to the horizontal and an initial velocity of 50m/s.

The range of a projectile can be determined using the formula:

Range =[tex](2 * velocity^2 * sin\theta* cos\theta ) / g[/tex]

Where velocity is the initial velocity, θ is the launch angle, and g is the acceleration due to gravity (approximately 9.8m/s^2). In this case, the launch angle is 60° and the initial velocity is 50m/s.

To find the maximum height, we can use the formula:

Maximum Height =[tex](velocity^2 * sin^2\theta) / (2 * g)[/tex]

By dividing the maximum height by 2, we can obtain the desired height.

Using the given values, we can calculate the range attained by substituting the appropriate values into the formula. The answer will provide the horizontal distance covered by the softball at half the maximum height.

Learn more about initial velocity here:

https://brainly.com/question/28395671

#SPJ11

An electron is accelerated through some potential difference to a final kinetic energy of 1.95 MeV. Using special relativity, determine the ratio of the electron\'s speed v to the speed of light c. What value would you obtain for this ratio if instead you used the classical expression for kinetic energy?

Answers

If an electron is accelerated through some potential difference to a final kinetic energy of 1.95 MeV;the ratio of  speed to the speed of light is approximately 0.729.

To find the ratio of the electron's speed v to the speed of light c, we can use the formula for relativistic kinetic energy:
K = (γ - 1)mc²
where K is the kinetic energy, γ is the Lorentz factor given by γ = (1 - v²/c²)-1/2, m is the electron's rest mass, and c is the speed of light.
Given that the final kinetic energy is 1.95 MeV, we can convert this to joules using the conversion factor 1 MeV = 1.602 × 10⁻¹³ J. Thus,
K = 1.95 MeV × 1.602 × 10⁻¹³ J/MeV = 3.121 × 10⁻¹³ J
The rest mass of an electron is m = 9.109 × 10⁻³¹ kg, and the potential difference is not given, so we cannot determine the electron's initial kinetic energy. However, we can solve for the ratio of v/c by rearranging the equation for γ:
γ = (1 - v²/c²)-1/2
v²/c² = 1 - (1/γ)²
v/c = (1 - (1/γ)²)½
Substituting the values we have, we get:
v/c = (1 - (3.121 × 10⁻¹³ J/(9.109 × 10⁻³¹ kg × c²))²)½
v/c = 0.999999995
Thus, the ratio of the electron's speed to the speed of light is approximately 0.999999995.
If we were to use the classical expression for kinetic energy instead, we would get:
K = ½mv²
Setting this equal to the final kinetic energy of 1.95 MeV and solving for v, we get:
v = (2K/m)½
v = (2 × 1.95 MeV × 1.602 × 10⁻¹³ J/MeV/9.109 × 10⁻³¹ kg)½
v = 2.187 × 10⁸ m/s
The ratio of this speed to the speed of light is approximately 0.729. This is significantly different from the relativistic result we obtained earlier, indicating that classical mechanics cannot fully account for the behavior of particles at high speeds.

To learn more about kinetic energy https://brainly.com/question/8101588

#SPJ11

Agent burt engle is chasing some more "bad" dudes and dudettes, when he notices his fuel gauge is running close to empty. he is approaching a hill (that makes an incline of 30 degrees with the horizontal) whose height is 49 m when suddenly, while travelling at 32 m/s, the car stalls on him. he desperately tries to re-start the car, only to fail miserably. if the average resistance force is 300 n, and the car has a mass of 800 kg, will agent burt engle make it to the crest of the hill (or will he have to call agent 001 for some back up)?

Answers

Agent burt engle is chasing some more "bad" dudes and dudettes, when he notices his fuel gauge is running close to empty. he is approaching a hill (that makes an incline of 30 degrees with the horizontal) whose height is 49 m when suddenly, while travelling at 32 m/s, the car stalls on him.

To determine whether Agent Burt Engle will make it to the crest of the hill or not, we need to consider the forces acting on the car and the work done.

First, let’s calculate the gravitational potential energy (PE) of the car at the base of the hill:

PE = m * g * h

PE = 800 kg * 9.8 m/s² * 49 m

PE = 384,160 J

Now, let’s calculate the work done by the resistance force as the car moves up the hill:

Work = force * distance

The force acting against the car’s motion is the resistance force, which is given as 300 N. The distance traveled up the hill is the height of the hill, which is 49 m.

Work = 300 N * 49 m

Work = 14,700 J

Comparing the work done by the resistance force to the initial potential energy, we can determine if the car will make it to the crest of the hill:

If Work < PE, the car will make it to the crest of the hill.

If Work ≥ PE, the car will not make it to the crest of the hill.

In this case, 14,700 J ≥ 384,160 J, which means the work done by the resistance force is greater than the initial potential energy of the car. Therefore, Agent Burt Engle will not make it to the crest of the hill and will have to call for backup.

Learn more about gravitational potential energy here:

https://brainly.com/question/21258610

#SPJ11

The researchers want to use narrow-spectrum LEDs to make their lamp more efficient. Assuming that the energy of a photon absorbed by porfirmer is transferred without loss to oxygen, what wavelength of light should the researchers select? (Note: Planck's constant is 6. 626 x 10-34 J∙s)A. 1000 nm B. 1250 nm C. 2500 nm D. 3000 nm

Answers

The researchers should select a wavelength of light around 2500 nm (option C) to make their lamp more efficient.

The efficiency of the lamp can be maximized by selecting a wavelength of light that matches the absorption peak of the porphyrin molecule. The energy of a photon is given by E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength of light.

In this case, the researchers want the energy of the photon to be transferred without loss to oxygen, which means the energy of the photon should match the energy required for the oxygen to react. Since the energy of a photon is directly proportional to its wavelength, a longer wavelength (around 2500 nm) corresponds to lower energy, which is closer to the energy required for oxygen to react. Therefore, the researchers should select a wavelength of around 2500 nm (option C) for maximum efficiency.

Learn more about speed here:

https://brainly.com/question/28224010

#SPJ11

Problem 2.13 Consider a lattice with N spin-1 atoms with magnetic moment u. Each atom can be in one of three spin states, Sz = -1,0, +1. Let n_l, no, and n, denote the respective number of atoms in each of those spin states. Find the entropy and the configuration which maximizes the total entropy. What is the maximum entropy? (Assume that no magnetic field is present, so all atoms have the same energy. Also assume that atoms on different lattice sites cannot be exchanged, so they are distinguishable.)

Answers

The maximum entropy can be found by substituting the values of n_l, no, and n that maximize W into the formula for S.

The magnetic moment is a measure of the strength of a magnet, and in this problem, we are considering a lattice with N spin-1 atoms, each with magnetic moment u. The atoms can be in one of three spin states, Sz = -1,0, +1. Let n_l, no, and n, denote the respective number of atoms in each of those spin states. We need to find the entropy and the configuration that maximizes the total entropy, as well as the maximum entropy.
To find the entropy, we can use the formula S = k_B ln W, where k_B is the Boltzmann constant and W is the number of ways in which the atoms can be arranged in their respective spin states. Since the atoms are distinguishable, we can use the formula for distinguishable particles, which is W = N!/n_l! no! n!.
To find the configuration that maximizes the total entropy, we need to find the values of n_l, no, and n that maximize W. This can be done by taking the partial derivatives of ln W with respect to each of the variables and setting them to zero. Solving these equations gives the values of n_l, no, and n that maximize W, and therefore the entropy.
The maximum entropy can then be found by substituting these values into the formula for S.
In summary, to solve this problem, we need to calculate the entropy using the formula S = k_B ln W, where W is the number of ways in which the atoms can be arranged in their respective spin states. We also need to find the configuration that maximizes the total entropy, which can be done by taking partial derivatives of ln W with respect to each of the variables and setting them to zero. Finally, the maximum entropy can be found by substituting the values of n_l, no, and n that maximize W into the formula for S.

To know more about entropy visit :

https://brainly.com/question/17278266

#SPJ11

when a 3.0-f capacitor is connected to a generator whose rms output is 29 v, the current in the circuit is observed to be 0.40 a. what is the frequency of the source? hz

Answers

The frequency of the source is approximately 0.77 Hz.

To determine the frequency of the source, we can use the formula for capacitive reactance (Xc) and Ohm's law.
The formula for capacitive reactance is:
Xc = 1 / (2 * π * f * C)
Where Xc is the capacitive reactance, f is the frequency, and C is the capacitance.
Ohm's law states:
Vrms = Irms * Xc
Where Vrms is the root mean square voltage, and Irms is the root mean square current.
From the given information, we have:
C = 3.0 F
Vrms = 29 V
Irms = 0.40 A
We can rearrange Ohm's law to find Xc:
Xc = Vrms / Irms
Xc = 29 V / 0.40 A
Xc ≈ 72.5 Ω
Now we can use the capacitive reactance formula to find the frequency:
72.5 Ω = 1 / (2 * π * f * 3.0 F)
Rearranging the equation to solve for f:
f = 1 / (2 * π * 3.0 F * 72.5 Ω)
f ≈ 0.77 Hz

To know more about frequency visit :-

https://brainly.com/question/30783512

#SPJ11

An L-C circuit has an inductance of 0.420 H and a capacitance of 0.280 nF . During the current oscillations, the maximum current in the inductor is 1.10 A .
Part A
What is the maximum energy Emax stored in the capacitor at any time during the current oscillations?
Express your answer in joules.(Emax=?J)
Part B
How many times per second does the capacitor contain the amount of energy found in part A?
Express your answer in times per second.(=? s^-1)

Answers

Answer:

Part A) The maximum energy stored in the capacitor, Emax is 4.19 x 10^-4 J.

Part B) The number of times per second that it contains this energy is 2.18 x 10^6 s^-1.

Explanation:

Part A:

The maximum energy stored in the capacitor, Emax, can be calculated using the formula:

Emax = 0.5*C*(Vmax)^2

where C is the capacitance, Vmax is the maximum voltage across the capacitor, and the factor of 0.5 comes from the fact that the energy stored in a capacitor is proportional to the square of the voltage.

To find Vmax, we can use the fact that the maximum current in the inductor occurs when the voltage across the capacitor is zero, and vice versa. At the instant when the current is maximum, all the energy stored in the circuit is in the form of magnetic energy in the inductor. Therefore, the maximum voltage across the capacitor occurs when the current is zero.

At this point, the total energy stored in the circuit is given by:

E = 0.5*L*(Imax)^2

where L is the inductance, Imax is the maximum current, and the factor of 0.5 comes from the fact that the energy stored in an inductor is proportional to the square of the current.

Setting this equal to the maximum energy stored in the capacitor, we get:

0.5*L*(Imax)^2 = 0.5*C*(Vmax)^2

Solving for Vmax, we get:

Vmax = Imax/(sqrt(L*C))

Substituting the given values, we get:

Vmax = (1.10 A)/(sqrt(0.420 H * 0.280 nF)) = 187.9 V

Therefore, the maximum energy stored in the capacitor is:

Emax = 0.5*C*(Vmax)^2 = 0.5*(0.280 nF)*(187.9 V)^2 = 4.19 x 10^-4 J

Part B:

The frequency of oscillation of an L-C circuit is given by:

f = 1/(2*pi*sqrt(L*C))

Substituting the given values, we get:

f = 1/(2*pi*sqrt(0.420 H * 0.280 nF)) = 2.18 x 10^6 Hz

The time period of oscillation is:

T = 1/f = 4.59 x 10^-7 s

The capacitor will contain the amount of energy found in part A once per cycle of oscillation, so the number of times per second that it contains this energy is:

1/T = 2.18 x 10^6 s^-1

Learn more about "energy":

https://brainly.com/question/13881533

#SPJ11

to what temperature will 7300 j of heat raise 3.5 kg of water that is initially at 12.0 ∘c ? the specific heat of water is 4186 j/kg⋅c∘ .

Answers

The final temperature after adding 7300 J of heat to 3.5 kg of water is approximately 12.5 °C.

To calculate the temperature to which 7300 j of heat will raise 3.5 kg of water that is initially at 12.0 ∘c, we can use the formula:

Q = m * c * ΔT

Where Q is the amount of heat transferred, m is the mass of the substance being heated (in kilograms), c is the specific heat capacity of the substance (in joules per kilogram per degree Celsius), and ΔT is the change in temperature (in degrees Celsius).

We know that:

- Q = 7300 j
- m = 3.5 kg
- c = 4186 j/kg⋅c∘
- The initial temperature (T1) is 12.0 ∘c.

We can rearrange the formula to solve for ΔT:

ΔT = Q / (m * c)

Plugging in the values, we get:

ΔT = 7300 j / (3.5 kg * 4186 j/kg⋅c∘)

ΔT = 0.496 ∘c

So, 7300 j of heat will raise 3.5 kg of water from 12.0 ∘c to 12.496 ∘c.

More on temperature: https://brainly.com/question/20276134

#SPJ11

Two particles in a high-energy accelerator experiment approach each other head-on with a relative speed of 0.870 c. Both particles travel at the same speed as measured in the laboratory.
What is the speed of each particle, as measured in the laboratory?

Answers

Let v1 and v2 be the speeds of the two particles in the laboratory frame of reference, as measured by an observer at rest relative to the accelerator. speed is approximately 0.670 times the speed of light. (3C)

We are given that the particles approach each other head-on with a relative speed of 0.870 c, where c is the speed of light. This means that the relative velocity between the particles is:[tex]v_rel = (v1 - v2) / (1 - v1v2/c^2) = 0.870c[/tex]

Since the particles travel at the same speed in the laboratory frame of reference, we have v1 = v2 = v. Substituting this into the equation above, we get: [tex]v_rel = 2v / (1 - v^2/c^2) = 0.870c[/tex], Solving for v, we get: v = [tex]c * (0.870 / 1.74)^(1/2) ≈ 0.670c[/tex]

Therefore, each particle has a speed of approximately 0.670 times the speed of light, as measured in the laboratory frame of reference. This result is consistent with the predictions of special relativity, which show that the speed of an object cannot exceed the speed of light, and that the relationship between velocities is more complicated than in classical mechanics.

Know more about relative velocity  here:

https://brainly.com/question/29655726

#SPJ11

Show that the condition for constructive interference for the following situation with a general angle of incidence theta is given by:
2*noil*t*cos(theta)' = (m + 0.5)*(lamda) , m=0, +1, -1, +2, -2, ...
where t is the thickness of the oil film and lamda is the wavelength of the incidence light in vacuum and we will assume nair =1 and noil>nglass for this problem.

Answers

The equation that represents the condition for constructive interference in the given situation is 2*noil*t*cos(theta') = (m + 0.5)*(lamda).

To show that the condition for constructive interference in the given situation is 2*noil*t*cos(theta)' = (m + 0.5)*(lamda), with m=0, ±1, ±2, ..., we need to consider the phase difference between the light waves reflected from the top and bottom surfaces of the oil film.

When light with an angle of incidence theta passes through the air-oil interface, it gets refracted, and the angle of refraction, theta', can be determined using Snell's law: nair*sin(theta) = noil*sin(theta'). Since we assume nair = 1, we have sin(theta) = noil*sin(theta').

The light waves reflect from the top and bottom surfaces of the oil film and interfere with each other. The path difference between these reflected waves is twice the distance traveled by the light within the oil film, which is given by 2*noil*t*cos(theta').

For constructive interference, the phase difference between the two light waves must be an odd multiple of pi or (2m + 1) * pi, where m = 0, ±1, ±2, .... This means that the path difference should be equal to (m + 0.5) * lamda.

So, we have:

2*noil*t*cos(theta') = (m + 0.5)*(lamda)

This equation represents the condition for constructive interference in the given situation.

Learn more about "angle": https://brainly.com/question/25716982

#SPJ11

solve the emp to find the hicksian demand function, h (p, u)

Answers

The Hicksian demand function h(p, u) represents the optimal consumption bundle that minimizes expenditure given prices p and a fixed utility level u.

To find the Hicksian demand function, h(p, u), follow these steps:
1. Determine the utility function, which reflects consumers' preferences.
2. Calculate the expenditure function by minimizing the cost of achieving utility level u, given prices p.
3. Derive the Marshallian demand function, which shows the optimal consumption bundle given prices p and income.
4. Apply the Shepard's lemma to the expenditure function to obtain the Hicksian demand function, h(p, u), which shows the consumption bundle that minimizes expenditure while maintaining a constant utility level u.

In this process, you will obtain the Hicksian demand function, which is a key concept in consumer theory and represents the optimal consumption choices to minimize expenditure given prices and a fixed utility level.

Learn more about optimal consumption here:

https://brainly.com/question/29997674

#SPJ11

A thin layer of oil (n = 1.25) is on top of a puddle of water (n = 1.33). If normally incident 500-nm light is strongly reflected, what is the minimum nonzero thickness of the oil layer in nanometers?
A. 600
B. 400
C. 200
D. 100

Answers

The answer is D. 100 nanometers.



In order for the light to be strongly reflected, the angle of incidence must be greater than the critical angle. Since the question states that the light is normally incident, the angle of incidence is zero degrees and there is no reflection. Therefore, the only way for the light to be strongly reflected is for there to be a thin layer of oil that causes the light to undergo a phase shift upon reflection, resulting in constructive interference.

The phase shift is given by 2pi*d*n/lambda, where d is the thickness of the oil layer, n is the refractive index of the oil, and lambda is the wavelength of the light. For constructive interference to occur, this phase shift must be an integer multiple of 2pi. Therefore, we can write the condition as 2*d*n/lambda = m, where m is an integer.

We know that the wavelength of the light is 500 nm and the refractive index of the oil is 1.25. Plugging these values into the above equation, we get 2*d*1.25/500 = m. Rearranging, we get d = 250m/1.25. In order for d to be nonzero and for there to be a reflected beam, m must be a nonzero integer. The minimum value of m is 1, which corresponds to d = 100 nm. Therefore, the minimum nonzero thickness of the oil layer is 100 nm.

Explanation:
When light travels from one medium to another, the angle of incidence, refractive indices, and wavelength of the light all play a role in determining whether the light is transmitted, reflected, or refracted. In this case, the thin layer of oil on top of the water causes the light to reflect strongly due to constructive interference. The minimum nonzero thickness of the oil layer can be found using the equation 2*d*n/lambda = m, where d is the thickness of the oil layer, n is the refractive index of the oil, lambda is the wavelength of the light, and m is an integer that represents the number of times the light wave goes up and down in the oil layer. The minimum value of m that results in a reflected beam is 1, which corresponds to a thickness of 100 nm.
For normally incident light to be strongly reflected, the condition for constructive interference must be met. The equation for this condition is:

2 * n * d * cos(θ) = m * λ

where n is the refractive index of the oil layer, d is the thickness of the oil layer, θ is the angle of incidence (0° for normal incidence), m is an integer representing the order of interference, and λ is the wavelength of light.

Since the light is normally incident, cos(θ) = 1. We want to find the minimum nonzero thickness, so we can set m = 1.

1.25 * 2 * d = 1 * 500 nm

Solving for d, we get:

d = 500 nm / (2 * 1.25) = 200 nm

To Know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

Consider the thin plate shown in the sketch . Suppose that a = 170 mm, b = 450 mm, r = 50 mm. The material has a mass per unit area of 20 kg/m
2
.
Determine the mass moment of inertia of the thin plate about an axis perpendicular to the page and passing through point O.
a) 0.785 kg-m
2
b) 0.738 kg-m
2
c) 0.0273 kg-m
2
d) 1.20 kg-m
2

Answers

The correct answer is b.

What is the mass moment of inertia of the thin plate about an axis perpendicular to the page and passing through point O?

To determine the mass moment of inertia of a thin plate about an axis perpendicular to the page and passing through point O.

We can use the formula I = (1/12) * m * (a^2 + b^2), where I is the mass moment of inertia, m is the mass per unit area, and a and b are the dimensions of the plate.

Plugging in the given values, we get I = (1/12) * 20 * (0.17^2 + 0.45^2) = 0.738 kg-m^2.

Therefore, the correct answer is (b).

Learn more about Mass moment of inertia calculation.

brainly.com/question/31135787

#SPJ11

An object is placed at the position x1 = 70 cm and a second mass that is 1/6 times as large is placed at x2 = 223 cm. find the location of the center of mass of the system.

Answers

The center of mass of the system is located at 107.5 cm from the reference point.

The center of mass (COM) of a two-object system can be found using the following formula:

COM = (m1x1 + m2x2) / (m1 + m2)

where

m1 and m2 are the masses of the two objects,

x1 and x2 are their respective positions.

In this case, let's call the mass at x1 as object 1 with mass m1, and the mass at x2 as object 2 with mass m2. We are given that m2 = m1/6.

Using the formula, the position of the center of mass is:

COM = (m1x1 + m2x2) / (m1 + m2)

COM = (m1 * 70 cm + (m1/6) * 223 cm) / (m1 + (m1/6))

COM = (70 + 37.1667) / (1 + 1/6)

COM = 107.5 cm

Therefore, the center of mass of the system is located at 107.5 cm from the reference point.

To know more about center of mass refer here

brainly.com/question/28996108#

#SPJ11

Two uncharged metal spheres, spaced 10.0 cmcm apart, have a capacitance of 28.0 pf. How much work would it take to move 16.0 nc of charge from one sphere to the other?

Answers

The work required to move 16.0 nC of charge from one sphere to the other is approximately [tex]4.57 * 10^{-9} J[/tex].

The work required to move a charge between two points is given by the formula:

W = q * V

where W is the work done, q is the charge moved, and V is the potential difference between the two points.

The capacitance of a parallel-plate capacitor is given by:

C = ε₀ * A / d

where C is the capacitance, ε₀ is the permittivity of free space, A is the area of each plate, and d is the distance between the plates.

Since the metal spheres are uncharged, we can assume that they are neutral and have equal and opposite charges (+Q and -Q) when the 16.0 nC of charge is transferred.

We can use the capacitance equation to find the charge on each sphere:

C = Q / V

where Q is the charge on each sphere and V is the potential difference between the spheres.

Rearranging the equation gives:

Q = C * V

Since the spheres are uncharged initially, the potential difference between them is zero before the charge is transferred. After the charge is transferred, the potential difference between the spheres is:

V = Q / C

Substituting this expression for V into the expression for work, we get:

W = q * V = q * (Q / C)

where q is the amount of charge being transferred (16.0 nC) and Q is the charge on each sphere.

To find Q, we can use the capacitance equation:

C = ε₀ * A / d

Solving for A and substituting the given values, we get:

A = C * d / ε₀ = 28.0 pF * 0.1 m / [tex]8.85 * 10^{-12} F/m[/tex] = [tex]3.16 * 10^{-7} m^2[/tex]

Since the spheres are identical, each sphere has half of the total charge:

Q = q/2 = 8.0 nC

Substituting the values into the expression for work, we get:

W = q * (Q / C) = 16.0 nC * (8.0 nC / 28.0 pF) = [tex]4.57 * 10^{-9} J[/tex]

To know more about potential difference refer here

https://brainly.com/question/12198573#

#SPJ11

Karen uses 9. 5 pints of white paint and blue paint to paint her bedroom walls. 3

5

of this amount is white paint, and the rest is blue paint. How many pints of blue paint did she use to paint her bedroom walls?

Answers

Karen used a total of 9.5 pints of white and blue paint combined to paint her bedroom walls, with 3.5 pints being white paint. The question asks for the amount of blue paint used.

To find the amount of blue paint Karen used, we need to subtract the amount of white paint from the total amount of paint used. We know that the total amount of paint used is 9.5 pints, and 3.5 pints of that is white paint. Therefore, to find the amount of blue paint, we subtract 3.5 from 9.5: 9.5 - 3.5 = 6 pints. Hence, Karen used 6 pints of blue paint to paint her bedroom walls.

Learn more about paint pints here:

https://brainly.com/question/28867046

#SPJ11

which equation shows the integrated rate law for a substance that reacts according to first-order kinetics?

Answers

The integrated rate law for a substance that reacts according to first-order kinetics is ln[A] = -kt + ln[A]0.

This equation expresses the natural logarithm of the concentration of the substance at a given time [A] as a function of time (t), the rate constant (k), and the initial concentration of the substance [A]0. The negative slope of the graph of ln[A] versus time is equal to the rate constant k. This equation is derived by integrating the first-order rate law equation, which states that the rate of a reaction is directly proportional to the concentration of a reactant. First-order reactions are characterized by a constant half-life, which is independent of the initial concentration of the reactant.

Learn more about  reacts according here;

https://brainly.com/question/2630197

#SPJ11

The temperature at state A is 20ºC, that is 293 K. What is the heat (Q) for process D to B, in MJ (MegaJoules)? (Hint: What is the change in thermal energy and work done by the gas for this process?)
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.

Answers

To calculate the heat (Q) for process D to B, we need to use the first law of thermodynamics, which states that the change in thermal energy of a system is equal to the heat added to the system minus the work done by the system.

In this case, we are going from state D to state B, which means the gas is expanding and doing work on its surroundings. The work done by the gas is given by the formula W = PΔV, where P is the pressure and ΔV is the change in volume. Since the gas is expanding, ΔV will be positive.

To calculate ΔV, we can use the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin. We know the temperature at state A is 293 K, and we are told that state D has a volume twice that of state A, so we can calculate the volume at state D as:

V_D = 2V_A = 2(nRT/P)

Now, at state B, we are told that the pressure is 2 atm, so we can calculate the volume at state B as:

V_B = nRT/P = (nRT/2)

The change in volume is then:

ΔV = V_B - V_D = (nRT/2) - 2(nRT/P) = (nRT/2) - (4nRT/2) = - (3nRT/2P)

Since we are given the pressure at state A as 1 atm, we can calculate the number of moles of gas using the ideal gas law:

n = PV/RT = (1 atm x V_A)/(0.08206 L atm/mol K x 293 K) = 0.0405 mol

Now we can calculate the work done by the gas:

W = PΔV = 1 atm x (-3/2) x 0.0405 mol x 8.3145 J/mol K x 293 K = -932 J

Note that we have included the negative sign in our calculation because the gas is doing work on its surroundings.

Finally, we can calculate the heat (Q) using the first law of thermodynamics:

ΔU = Q - W

ΔU is the change in thermal energy of the system, which we can calculate using the formula ΔU = (3/2)nRΔT, where ΔT is the change in temperature. We know the temperature at state B is 120ºC, which is 393 K, so ΔT = 393 K - 293 K = 100 K. Substituting in the values for n and R, we get:

ΔU = (3/2) x 0.0405 mol x 8.3145 J/mol K x 100 K = 151 J

Now we can solve for Q:

Q = ΔU + W = 151 J - (-932 J) = 1083 J

To convert to MJ, we divide by 1,000,000: Q = 1.083 x 10^-3 MJ

Our answer has two significant figures and is negative because the gas is losing thermal energy.

For more such questions on thermodynamics

https://brainly.com/question/13059309

#SPJ11

To calculate the heat (Q) for process D to B, we need to first understand the changes in thermal energy and work done by the gas during the process. As the temperature at state A is 20ºC or 293 K, we can use this as our initial temperature.

Process D to B involves a decrease in temperature, which means the thermal energy of the gas decreases. This change in thermal energy is given by the equation ΔE = mcΔT, where ΔE is the change in thermal energy, m is the mass of the gas, c is the specific heat capacity of the gas, and ΔT is the change in temperature.

As we don't have information about the mass and specific heat capacity of the gas, we cannot calculate ΔE. However, we do know that the change in thermal energy is equal to the heat transferred in or out of the system, which is represented by Q.

The work done by the gas during this process is given by the equation W = -PΔV, where W is the work done, P is the pressure, and ΔV is the change in volume. Again, we don't have information about the pressure and change in volume, so we cannot calculate W.

Therefore, we cannot calculate the heat (Q) for process D to B with the given information. We would need additional information about the gas and the specific process to calculate Q accurately.

learn more about thermal energy here: brainly.com/question/18989562

#SPJ11

Other Questions
Design an algorithm for computing for any positive integer n. Besides assignment and comparison, you may only use the four basic arithmetical operations (+, -, , ). Write the algorithm as pseudocode. What is the time complexity of the algorithm? Is it possible to design the algorithm so that it uses O(log n) multiplications (or even fewer)? suppose 0.1 g of x and 1.0 ml of water were mixed and heated to 80 c. would all of substance x dissolve? You are given the following best-response functions for duopoly firms playing a Bertrand price-setting game: p_1 = 25 + 0.5 m_1 + 0.25p_2, and p_2 = 25 +0.5m_2 + 0.25p_1, where m_1 and m_2 are the marginal costs for firm 1 and firm 2 respectively. Let m_1 = m_2 = $10. Solve for the Bertrand equilibrium prices. Firm 1 $ (round answers to the nearest penny) Firm 2 $ (round answers to the nearest penny) Let m_1 = $30 and m_2 = $10. Solve for the Bertrand equilibrium prices. Firm 1 $ (round answers to the nearest penny) Firm 2 $ (round answers to the nearest penny) Consider the following code segment. int[][] values = {{1, 2, 3}, {4,5,6}}; int x = 0; for (int j = 0; j < values.length; j++) { for (int k = 0; k Chlorine has a vapor pressure of 10 atm.at 35.6 C . In a mixture of chlorine and carbon tetrachloride, the vapor pressure of chlorine is 9.3 atm at 35.6 C What is the activity of chlorine in the mixture? (strang 5.1.15) use row operations to simply and compute these determinants: (a) 101 201 301 102 202 302 103 203 303 (b) 1 t t2 t 1 t t 2 t 1 a standardized test statistic is given for a hypothesis test involving proportions (using the standard normal distribution). HELP IM JUST LEARNING THIS TODAY Consider the one-sided (right side) confidence interval expressions for a mean of a normal population. What value of a would result in a 85% CI? Consider the reaction A products. Will the half life of this reaction increase, decrease, or stay the same over time if the reaction is the following order?0 order, first order, second order 5. A piece of machinery has initial cost of $40.000 and results in an increase in annual maintenance costs of $2000. If the machine saves the company $10,000 per year, in how many years will the machine pay for itself if annual compounding is considered? (i=8%) A. 4 years B. 5 years C. 6 years D. 7 years E. 8 years many cells store lipids in droplets of varying sizes. these droplets A polygon will be dilated on a coordinate grid to create a smaller polygon. The polygon is dilated using the origin as the center of dilation. Which rule could represent this dilation?F. (x,y)(x7,y7)G. (x,y)(0. 9x,0. 9y)H. (x,y)(0. 5x,0. 5y)J. (x,y)(54x,54y) In FGH, f = 960 inches, g = 380 inches and h=820 inches. Find the measure of F to the nearest degree. answer is 100 Read and choose the correct option with the stem-changing verb in the preterite tense. l, despus de facturar las maletas, _________ (seguir) a la inspeccin de seguridad. Question 8 options:siguiseguistesegusiguieron What is the length of the arc shown in red? does the point (10,3) lie on the circle that passes through the point (2,9) with center (3,2)? If you put 90 ml of concentrate in a glass how much water should be added Consider the following time series data. time value 7.6 6.2 5.4 5.4 10 7.6 Calculate the trailing moving average of span 5 for time periods 5 through 10. t-5: t=6: t=7: t=8: t=9: t=10: compute the flux of the vector field, vector f, through the surface, s. vector f= xvector i yvector j zvector k and s is the sphere x2 y2 z2 = a2 oriented outward.