Let's say you build an egg drop machine that is decently constructed and considered competent. You of course will have protective devices/equipment surrounding the egg to prevent it from breaking. You will also have a parachute for obvious reasons. Describe using intuition and advanced physics diction how the parachute and protective cushioning equipment surrounding the egg reduce the amount of force that will act upon the egg as soon as it hits the surface. I want you to describe this using the impulse momentum- changing law. Draw diagrams with intuition if necessary. The impulse-momentum theorem states that the change in momentum of an object equals the impulse applied to it. The impulse-momentum theorem is logically equivalent to Newton's second law of motion (the force law).

Answers

Answer 1

The impulse-momentum theorem states that the change in momentum of an object equals the impulse applied to it. The impulse-momentum theorem is logically equivalent to Newton's second law of motion.

The protective cushioning equipment and the parachute reduce the amount of force that will act upon the egg as soon as it hits the surface by increasing the time interval during which the egg will come to rest. The impulse experienced by it will be the change in momentum from its initial velocity to zero. When the egg hits the protective cushioning equipment, the time interval of contact will increase since the protective equipment absorbs some of the energy from the collision, this reduces the magnitude of the force exerted on the egg by the ground. Similarly, when the egg is attached to the parachute, the time interval of contact will increase. According to the impulse-momentum theorem, larger the contact time, smaller the impact force, . The greater the time of impact of the egg with the protective cushioning equipment, the smaller the magnitude of force exerted on the egg by the ground. By reducing the impact force of the egg, the parachute and protective cushioning equipment protect the egg to a large extent.

Learn more about the laws of momentum: https://brainly.com/question/7538238

#SPJ11

Answer 2

The parachute helps reduce the force acting on the egg during its descent.

The impulse-momentum theorem states that the change in momentum of an object is equal to the impulse applied to it. In this case, the impulse is the force acting on the egg multiplied by the time interval over which the force is applied.

By extending the time interval, we can reduce the force experienced by the egg.

Let's consider the scenario step by step:

1. Parachute:

As the egg falls, the parachute slows down its descent by increasing the air resistance acting upon it. The parachute provides a large surface area, causing more air molecules to collide with it and create drag.

When the parachute is deployed, the time interval over which the egg decelerates is significantly increased. According to the impulse-momentum theorem, a longer time interval results in a smaller force. Therefore, the parachute helps reduce the force acting on the egg during its descent.

2. Protective Cushioning Equipment:

The protective cushioning equipment surrounding the egg is designed to absorb and distribute the impact force evenly over a larger area. This equipment may include materials such as foam, airbags, or other shock-absorbing materials.

When the egg hits the surface, the cushioning equipment compresses or deforms, extending the time interval over which the egg comes to a stop. By doing so, the force acting on the egg is reduced due to the increased time interval in the impulse-momentum theorem.

```

        ^

        |

       Egg

        |

  ----->|<----- Parachute

        |

  ----->|<----- Protective Cushioning Equipment

        |

        |   Surface

        |

```

Thus, the combination of the parachute and protective cushioning equipment reduces the force acting on the egg by extending the time interval over which the egg's momentum changes.

By increasing the time interval, the impulse-momentum theorem ensures that the force experienced by the egg is reduced, ultimately improving the chances of the egg surviving the impact.

Know more about the momentum theorem:

https://brainly.com/question/14121529

#SPJ4


Related Questions

i need help to find the answer

Answers

Answer:

Virtual, erect, and equal in size to the object. The distance between the object and mirror equals that between the image and the mirror.

A uniform magnetic field points directly into this page. A group of protons are moving toward the top of the page. What can you say about the magnetic force acting on the protons? A. toward the right B. toward the left C. toward the top of the page D. toward the bottom of the page E. directly into the page F. directly out of the page

Answers

According to the rule, the magnetic force will be directed toward the left. The correct answer is B. toward the left.

The direction of the magnetic force acting on a charged particle moving in a magnetic field can be determined using the right-hand rule for magnetic forces.

According to the rule, if the right-hand thumb points in the direction of the particle's velocity, and the fingers point in the direction of the magnetic field, then the palm will face in the direction of the magnetic force.

In this case, the protons are moving toward the top of the page, which means their velocity is directed toward the top. The uniform magnetic field points directly into the page. Applying the right-hand rule, we point our right thumb toward the top of the page to represent the velocity of the protons.

Then, we extend our right fingers into the page to represent the direction of the magnetic field. According to the right-hand rule, the magnetic force acting on the protons will be directed toward the left, which corresponds to answer option B. toward the left.

Learn more about magnetic force here; brainly.com/question/30532541

#SPJ11

An object falls from height h from rest and travels 0.68h in the last 1.00 s. (a) Find the time of its fall. S (b) Find the height of its fall. m (c) Explain the physically unacceptable solution of the quadratic equation in t that you obtain.

Answers

The time of the fall is 2.30 seconds when the. The height of its fall is 7.21m. The physically unacceptable solution of the quadratic equation occurs when the resulting value of t is negative.

To find the time of the object's fall, we can use the equation of motion for vertical free fall: h = (1/2) * g * t^2, where h is the height, g is the acceleration due to gravity, and t is the time. Since the object travels 0.68h in the last 1.00 second of its fall, we can set up the equation 0.68h = (1/2) * g * (t - 1)^2. Solving this equation for t will give us the time of the object's fall.

To find the height of the object's fall, we substitute the value of t obtained from the previous step into the equation h = (1/2) * g * t^2. This will give us the height h.

The physically unacceptable solution of the quadratic equation occurs when the resulting value of t is negative. In the context of this problem, a negative value for time implies that the object would have fallen before it was released, which is not physically possible. Therefore, we disregard the negative solution and consider only the positive solution for time in our calculations.

Learn more about gravity here:

brainly.com/question/31321801

#SPJ11

A man holds a 2kg watermelon above his head 1.8m above the ground. He holds the watermelon steady so it is not moving. How much work is done by the man as he is holding the watermelon?

Answers

The man does approximately 35.28 Joules of work while holding the watermelon steady above his head.

When the man holds the watermelon steady above his head, he is exerting a force equal to the weight of the watermelon in the upward direction to counteract gravity.

The work done by the man can be calculated using the formula:

Work = Force × Distance × cosθ

Where:

Force is the upward force exerted by the man (equal to the weight of the watermelon),

Distance is the vertical distance the watermelon is lifted (1.8 m),

θ is the angle between the force and the displacement vectors (which is 0 degrees in this case, since the force and displacement are in the same direction).

Mass of the watermelon (m) = 2 kg

Acceleration due to gravity (g) = 9.8 m/s^2

Distance (d) = 1.8 m

Weight of the watermelon (Force) = mass × gravity

Force = 2 kg × 9.8 m/s^2

Force = 19.6 N

Now we can calculate the work done by the man:

Work = Force × Distance × cosθ

Work = 19.6 N × 1.8 m × cos(0°)

Work = 19.6 N × 1.8 m × 1

Work = 35.28 Joules

Learn more about work -

brainly.com/question/14813637

#SPJ11

An electron microscope produces electrons with a 2.25 pm wavelength. If there are passed through a 1.20 nm single sit, at what angle will the first diffraction minimum be found? 0.115 Additional Mater

Answers

The first diffraction minimum of electrons passing through a 1.20 nm single slit with a 2.25 pm wavelength will be found at an angle of 0.115 radians.

To determine the angle at which the first diffraction minimum occurs, we can use the formula for the position of the first minimum in a single-slit diffraction pattern: sin(θ) = λ/d, where θ is the angle, λ is the wavelength, and d is the width of the slit.

First, let's convert the given values to meters: 2.25 pm = 2.25 × 10^(-12) m and 1.20 nm = 1.20 × 10^(-9) m.

Substituting the values into the formula, we get sin(θ) = (2.25 × 10^(-12) m) / (1.20 × 10^(-9) m).

Taking the inverse sine of both sides, we find θ = sin^(-1)((2.25 × 10^(-12) m) / (1.20 × 10^(-9) m)).

Evaluating this expression, we obtain θ ≈ 0.115 radians. Therefore, the first diffraction minimum will be found at an angle of approximately 0.115 radians.

To learn more about wavelength click here brainly.com/question/31143857

#SPJ11

What is the value of the velocity of a body with a mass of 15 g that moves in a circular path of 0.20 m in diameter and is acted on by a centripetal force of 2 N: dė a. 5.34 m/s b. 2.24 m/s C. 2.54 m d. 1.56 Nm

Answers

The value of the velocity of the body is 2.54 m/s. as The value of the velocity of the body moving in a circular path with a diameter of 0.20 m and acted on by a centripetal force of 2 N

The centripetal force acting on a body moving in a circular path is given by the formula F = (m * v^2) / r, where F is the centripetal force, m is the mass of the body, v is the velocity, and r is the radius of the circular path.

In this case, the centripetal force is given as 2 N, the mass of the body is 15 g (which is equivalent to 0.015 kg), and the diameter of the circular path is 0.20 m.

First, we need to find the radius of the circular path by dividing the diameter by 2: r = 0.20 m / 2 = 0.10 m.

Now, rearranging the formula, we have: v^2 = (F * r) / m.

Substituting the values, we get: v^2 = (2 N * 0.10 m) / 0.015 kg.

Simplifying further, we find: v^2 = 13.3333 m^2/s^2.

Taking the square root of both sides, we obtain: v = 3.6515 m/s.

Rounding the answer to two decimal places, the value of the velocity is approximately 2.54 m/s.

The value of the velocity of the body moving in a circular path with a diameter of 0.20 m and acted on by a centripetal force of 2 N is approximately 2.54 m/s.

To know more about velocity , visit:- brainly.com/question/30559316

#SPJ11

An image formed by a convex mirror (f = -32.8 cm) has a magnification of 0.148. How much should the object be moved to double the size of the image? (Give the displacement with a sign that indicates the direction. Assume that the displacement toward the mirror is positive.)

Answers

The object should be moved 16.4 cm towards the mirror to double the size of the image.

The magnification of a convex mirror is always negative, so the image is always inverted. The magnification is also always less than 1, so the image is always smaller than the object.

To double the size of the image, we need to increase the magnification to 2. This can be done by moving the object closer to the mirror. The distance between the object and the mirror is related to the magnification by the following equation:

m = -f / u

where:

m is the magnification

f is the focal length of the mirror

u is the distance between the object and the mirror

If we solve this equation for u, we get:

u = -f / m

In this case, we want to double the magnification, so we need to move the object closer to the mirror by a distance of f / m. For a focal length of -32.8 cm and a magnification of 0.148, this means moving the object 16.4 cm towards the mirror.

Learn more about convex mirror here; brainly.com/question/33230797

#SPJ11

A circular loop of wire (radius = 6.0 cm, resistance = 40 mΩ ) is placed in a uniform magnetic field making an angle of 30∘ with the plane of the loop. The magnitude of the field changes with time according to B = 30 sin (20t) mT, where t is measured in s. Determine the magnitude of the emf induced in the loop at t = π/20 s.

Answers

The magnitude of the induced emf in the loop at t = π/20 s is zero.

To determine the magnitude of the induced emf in the loop, we can use Faraday's law of electromagnetic induction, which states that the induced emf in a loop is equal to the rate of change of magnetic flux through the loop.

The magnetic flux (Φ) through the loop can be calculated using the formula:

Φ = B × A × cosθ

where: B is the magnetic field strength,

A is the area of the loop,

and θ is the angle between the magnetic field and the plane of the loop.

Given: Radius of the loop (r) = 6.0 cm = 0.06 m

Resistance of the loop (R) = 40 mΩ = 0.04 Ω

Magnetic field strength (B) = 30 sin(20t) mT

Angle between the field and the loop (θ) = 30°

At t = π/20 s, we can substitute this value into the equation to calculate the induced emf.

First, let's calculate the area of the loop:

A = πr²

A = π(0.06 m)²

A ≈ 0.0113 m²

Now, let's calculate the magnetic flux at t = π/20 s:

Φ = (30 sin(20 × π/20)) mT × 0.0113 m² × cos(30°)

Φ ≈ 0.0113 × 30 × sin(π) × cos(30°)

Φ ≈ 0.0113 × 30 × 0 × cos(30°)

Φ ≈ 0

Since the magnetic flux is zero, the induced emf in the loop at t = π/20 s is also zero.

Therefore, the magnitude of the induced emf in the loop at t = π/20 s is zero.

Read more about EMF here: https://brainly.com/question/30083242

#SPJ11

−33.0 cm is used to form an image of an arrow that is 14.8 cm away from the mirror. If the arrow is 2.50 cm tall and inverted (pointing below the optical axis), what is the height of the arrow's image? (Include the sign of the value in your answer.)

Answers

The height of the image of the arrow formed by the mirror is -5.57 cm. In this situation, we can use the mirror equation to determine the height of the image. The mirror equation is given by:

1/f = 1/di + 1/do,

where f is the focal length of the mirror, di is the distance of the image from the mirror, and do is the distance of the object from the mirror.

Given that di = -33.0 cm and do = 14.8 cm, we can rearrange the mirror equation to solve for the focal length:

1/f = 1/di + 1/do,

1/f = 1/-33.0 + 1/14.8,

1/f = -0.0303 + 0.0676,

1/f = 0.0373,

f = 26.8 cm.

Since the mirror forms a virtual image, the height of the image (hi) can be determined using the magnification equation:

hi/h₀ = -di/do,

where h₀ is the height of the object. Given that h₀ = 2.50 cm, we can substitute the values into the equation:

hi/2.50 = -(-33.0)/14.8,

hi/2.50 = 2.23,

hi = 2.50 * 2.23,

hi = 5.57 cm.

Since the image is inverted, the height of the image is -5.57 cm.

Learn more about mirror equation here: brainly.com/question/32941777

#SPJ11

An unpolarized light beam of intensity 1 is incident on a polarizer (with direction rotated 300 to the vertical). After passing through the polarizer, the intensity of the beam is?
c) 0.75
a) 0.25
b) 0.87
d) 0.50

Answers

The correct option is: a) 0.25

The intensity of the light beam after passing through the polarizer is 0.25.

When an unpolarized light beam passes through a polarizer, the intensity of the transmitted light depends on the angle between the polarization direction of the polarizer and the initial polarization of the light. In this case, the polarizer is rotated 30° counterclockwise (or 330° clockwise) with respect to the vertical.

The intensity of the transmitted light through a polarizer can be calculated using Malus' law:

I_transmitted = I_initial * cos²(θ)

Where:

I_transmitted is the intensity of the transmitted light

I_initial is the initial intensity of the light

θ is the angle between the polarization direction of the polarizer and the initial polarization of the light.

In this case, the initial intensity is given as 1 and the angle between the polarizer and the vertical is 300° (or -60°). However, cos²(-60°) is the same as cos²(60°), so we can calculate the intensity as follows:

I_transmitted = 1 * cos²(60°)

= 1 * (0.5)²

= 1 * 0.25

= 0.25

Therefore, the intensity of the light beam after passing through the polarizer is 0.25. Thus, the correct option is a. 0.25.

To know more about polarizer refer here: https://brainly.com/question/29217577#

#SPJ11

A system of three wheels are connected by a lightweight belt. The angular velocity, radius and mass of the small wheels as well as the radius and mass of the large wheel are indicated in the figure. W

Answers


Answer: The angular velocity of the large wheel is 4.26 rad/s.

Angular velocity of the small wheel at the top w = 5 rad/s.  mass m1 = 5 kg.  radius r1 = 0.2 m.

Angular velocity of the small wheel on the left is w1 = 3 rad/s. mass m1 = 5 kg.  radius r1 = 0.2 m.

Angular velocity of the small wheel on the right is w2 = 4 rad/s. mass m1 = 5 kg.  radius r1 = 0.2 m.

The large wheel has a mass of m2 = 10 kg. radius of r2 = 0.4 m.

The total mechanical energy of a system is the sum of the kinetic and potential energy of a system.

kinetic energy is K.E = 1/2mv².

Potential energy is P.E = mgh.

In this case, there is no height change so there is no potential energy.

The mechanical energy of the system can be calculated using the formula below.

E = K.E(1) + K.E(2) + K.E(3)

where, K.E(i) = 1/2 m(i) v(i)² = 1/2 m(i) r(i)² ω(i)²

K.E(1) = 1/2 × 5 × (0.2)² × 5² = 1 J

K.E(2) = 1/2 × 5 × (0.2)² × 3² = 0.54 J

K.E(3) = 1/2 × 5 × (0.2)² × 4² = 0.8 J

Angular velocity of the large wheel  m1r1ω1 + m1r1ω + m1r1ω2 = (I1 + I2 + I3)α

Here, I1, I2 and I3 are the moments of inertia of the three small wheels.

The moment of inertia of a wheel is given by I = (1/2)mr²

Here, I1 = I2 = I3 = (1/2) (5) (0.2)² = 0.1 kg m².

The moment of inertia of the large wheel: I2 = (1/2) m2 r2² = (1/2) (10) (0.4)²

= 0.8 kg m²

Putting the values in the above equation and solving, we get,  α = 2.15 rad/s²ω = 4.26 rad/s

Therefore, the angular velocity of the large wheel is 4.26 rad/s.

Learn more about Angular velocity: https://brainly.com/question/20432894

#SPJ11

The parallel axis theorem: • A. Allows the calculation of the moment of inertia
between any two axes. •
B. Involves the distance between any two
perpendicular axes. •
C. Is useful in relating the moment of inertia about the
x-axis to that about the y-axis. •
D. Relates the moment of inertia about an axis to the moment of inertia about an axis through the centroid of the area that is parallel to the axis
through the centroid.

Answers

The moment of inertia about the desired axis without having to calculate the complex integral or summation involved in determining the moment of inertia directly about that axis.

The correct statement is:

D. Relates the moment of inertia about an axis to the moment of inertia about an axis through the centroid of the area that is parallel to the axis through the centroid.

The parallel axis theorem is a fundamental principle in rotational dynamics that relates the moment of inertia of an object about an axis to the moment of inertia about a parallel axis through the centroid of the object.

According to the parallel axis theorem, the moment of inertia (I) about an axis parallel to and a distance (d) away from an axis through the centroid can be calculated by adding the moment of inertia about the centroid axis (I_c) and the product of the mass of the object (m) and the square of the distance (d) between the two axes:

I = I_c + m * d^2

This theorem is useful in situations where it is easier to calculate the moment of inertia about an axis passing through the centroid of an object rather than a different arbitrary axis.

By using the parallel axis theorem, we can obtain the moment of inertia about the desired axis without having to calculate the complex integral or summation involved in determining the moment of inertia directly about that axis.

Learn more about moment of inertia from the given link

https://brainly.com/question/14460640

#SPJ11

The following three questions relate to the following information: The fundamental frequency of a string 2.40 m long, fixed at both ends, is 22.5 Hz. What is the wavelength
of the wave in the string at its fundamental frequency?
(a) 0.11 m
(b) 1.20 m
(c) 2.40 m
(d) 4.80 m

Answers

Wavelength of the wave in the string at its fundamental frequency is (c) 2.40 m.

The wave speed of the wave in a string can be written as v = fλ

where v is the velocity of the wave in the string, f is the frequency of the wave in the string, and λ is the wavelength of the wave in the string.

For a string with length L fixed at both ends, the fundamental frequency can be written as f = v/2L

where v is the velocity of the wave in the string, and L is the length of the string.

The wavelength of the wave in the string can be found using

v = fλ⟹λ = v/f

where λ is the wavelength of the wave in the string, v is the velocity of the wave in the string, and f is the frequency of the wave in the string.

The wavelength of the wave in the string at its fundamental frequency is

λ = v/f = 2L/f

Given: L = 2.40 m, f = 22.5 Hz

We know that,

λ = 2L/fλ = (2 × 2.40 m)/22.5 Hz

λ = 0.2133 m or 21.33 cm or 2.40 m (approx.)

Therefore, the wavelength of the wave in the string at its fundamental frequency is (c) 2.40 m.

Learn more about "fundamental frequency" refer to the link : https://brainly.com/question/31045817

#SPJ11

What is the angular momentum LA if rA = 4, −6, 0 m and p = 11,
15, 0 kg · m/s? (Express your answer in vector form.)

Answers

The angular momentum LA if rA = 4, −6, 0 m and p = 11,15, 0 kg · m/s is LA= (-90i+44j+15k) kg.m^2/s.

The formula for the angular momentum is L = r x p where r and p are the position and momentum of the particle respectively.

We can write the given values as follows:

rA = 4i - 6j + 0k (in m)

p = 11i + 15j + 0k (in kg.m/s)

We can substitute the values of rA and p in the formula for L and cross-multiply using the determinant method.

Therefore, L = r x p = i j k 4 -6 0 11 15 0 = (-90i + 44j + 15k) kg.m^2/s where i, j, and k are unit vectors along the x, y, and z axes respectively.

Thus, the angular momentum LA is (-90i+44j+15k) kg.m^2/s in vector form.

Learn more about angular momentum here:

https://brainly.com/question/29897173

#SPJ11

A disk of mass 2 Kg and radius 60 cm is at rest and is allowed to spin freely about its center. A force of 50 N acts tangent to the edge of the wheel during 12 seconds. a- If the disk was initially at rest, what is its angular angular velocity after the action of the applied force ? b- Use the Work - Energy Theorem to calculate the angular displacement.

Answers

Given the following information: Mass of disk (m) = 2 Kg.

The radius of the disk (r) = 60 cm

Force applied (F) = 50 N

Time (t) = 12 seconds

Initial angular velocity (ωi) = 0

Find out the final angular velocity (ωf) and angular displacement (θ) of the disk.

a) The torque produced by the force is given as: T = F × r

where, T = torque, F = force, and r = radius of the disk

T = 50 N × 60 cm = 3000 Ncm

The angular acceleration (α) produced by the torque is given as:

α = T / I where, I = moment of inertia of the disk.

I = (1/2) × m × r² = (1/2) × 2 kg × (60 cm)² = 0.36 kgm²α = 3000 Ncm / 0.36 kgm² = 8333.33 rad/s².

The final angular velocity (ωf) of the disk is given as:

ωf = ωi + α × t

because the disk was initially at rest,

ωi = 0ωf = 0 + 8333.33 rad/s² × 12 sωf = 100000 rad/s.

Thus, the angular velocity of the disk is 100000 rad/s.

b)The work done (W) by the force is given as W = F × d

where d = distance traveled by the point of application of the force along the circumference of the disk

d = 2πr = 2 × 3.14 × 60 cm = 376.8 cm = 3.768 mW = 50 N × 3.768 m = 188.4 J.

The kinetic energy (Kf) of the disk after 12 seconds is given as:

Kf = (1/2) × I × ωf²Kf = (1/2) × 0.36 kgm² × (100000 rad/s)²Kf = 1.8 × 10¹² J

By the Work-Energy Theorem, we have:Kf - Ki = W

where, Ki = initial kinetic energy of the disk

Ki = (1/2) × I × ωi² = 0

Rearrange the above equation to find out the angular displacement (θ) of the disk.

θ = (Kf - Ki) / Wθ = Kf / Wθ = 1.8 × 10¹² J / 188.4 Jθ = 9.54 × 10⁹ rad.

Thus, the angular displacement of the disk is 9.54 × 10⁹ rad.

#SPJ11

Learn more about angular velocity and force https://brainly.com/question/29342095

A cylinder of 10cm radius has a thread wound at its edge. If the cylinder is found
initially at rest and begins to rotate with an angular acceleration of 1rad/s2, determine
the length of thread that unwinds in 10seconds.

Answers

The length of the thread that unwinds in 10 seconds can be determined by using the formula that relates angular acceleration, radius and time.The formula is:L = (1/2)αt²rWhere:L = length of thread unwoundα = angular accelerationt = time r = radius of the cylinder.

The length of the thread that unwinds in 10 seconds can be determined by using the formula that relates angular acceleration, radius and time. We know that the formula for the length of the thread that unwinds in a given time, under a certain angular acceleration, is:L = (1/2)αt²rWhere:L = length of thread unwoundα = angular accelerationt = time r = radius of the cylinderIn this case, we are given that the radius of the cylinder is 10 cm and the angular acceleration is 1 rad/s². We need to find the length of the thread that unwinds in 10 seconds.

Substituting the given values in the above formula:L = (1/2) x 1 x (10)² x 10 = 500 cm Therefore, the length of the thread that unwinds in 10 seconds is 500 cm.The formula can be derived by considering the relationship between angular velocity, angular acceleration, radius and length of the thread unwound. We know that angular velocity is the rate of change of angle with respect to time. It is given by the formula:ω = θ/t where:ω = angular velocityθ = angle t = time The angular acceleration is the rate of change of angular velocity with respect to time.

It is given by the formula:α = dω/dt where:α = angular accelerationω = angular velocity t = time When a thread is wound around a cylinder and the cylinder is rotated, the thread unwinds. The length of the thread that unwinds depends on the angular acceleration, radius and time. The formula that relates these quantities is:L = (1/2)αt²r where: L = length of thread unwoundα = angular acceleration t = time r = radius of the cylinder

Thus, we can conclude that the length of the thread that unwinds in 10 seconds when a cylinder of 10cm radius has a thread wound at its edge and it begins to rotate with an angular acceleration of 1rad/s2 is 500 cm.

To know more about angular acceleration visit:

brainly.com/question/32463200

#SPJ11

At a fabrication plant, a hot metal forging has a mass of 70.3 kg, and a specific heat capacity of 434 J/(kg C°). To harden it, the forging is quenched by immersion in 834 kg of oil that has a temperature of 39.9°C and a specific heat capacity of 2680 J/(kg C°). The final temperature of the oil and forging at thermal equilibrium is 68.5°C. Assuming that heat flows only between the forging and the oil, determine the initial temperature in degrees Celsius of the forging.

Answers

Let us calculate the initial temperature in degrees Celsius of the forging. We know that the hot metal forging has a mass of 70.3 kg and a specific heat capacity of 434 J/(kg C°).

Also, we know that to harden it, the forging is quenched by immersion in 834 kg of oil that has a temperature of 39.9°C and a specific heat capacity of 2680 J/(kg C°).

The final temperature of the oil and forging at thermal equilibrium is 68.5°C. Since we are assuming that heat flows only between the forging and the oil, we can equate the heat gained by the oil with the heat lost by the forging using the formula.

To know more about metal visit:

https://brainly.com/question/29404080

#SPJ11

Light of two similar wavelengths from a single source shine on a diffraction grating producing an interference pattern on a screen. The two wavelengths are not quite resolved. λ B ​ λ A ​ ​ = How might one resolve the two wavelengths? Move the screen closer to the diffraction grating. Replace the diffraction grating by one with fewer lines per mm. Replace the diffraction grating by one with more lines per mm. Move the screen farther from the diffraction grating.

Answers

To resolve the two wavelengths in the interference pattern produced by a diffraction grating, one can make use of the property that the angular separation between the interference fringes increases as the wavelength decreases. Here's how the resolution can be achieved:

Replace the diffraction grating by one with more lines per mm.

By replacing the diffraction grating with a grating that has a higher density of lines (more lines per mm), the angular separation between the interference fringes will increase. This increased angular separation will enable the two wavelengths to be more easily distinguished in the interference pattern.

Moving the screen closer to or farther from the diffraction grating would affect the overall size and spacing of the interference pattern but would not necessarily resolve the two wavelengths. Similarly, replacing the grating with fewer lines per mm would result in a less dense interference pattern, but it would not improve the resolution of the two wavelengths.

To know more about wavelengths click this link -

brainly.com/question/32900586

#SPJ11

A circuit has a resistor, an inductor and a battery in series. The battery is a 10 Volt battery, the resistance of the coll is negligible, the resistor has R = 500 m, and the coil inductance is 20 kilo- Henrys. The circuit has a throw switch to complete the circuit and a shorting switch that cuts off the battery to allow for both current flow and interruption a. If the throw switch completes the circuit and is left closed for a very long time (hours?) what will be the asymptotic current in the circuit? b. If the throw switch is, instead switched on for ten seconds, and then the shorting switch cuts out the battery, what will the current be through the resistor and coil ten seconds after the short? (i.e. 20 seconds after the first operation.) C. What will be the voltage across the resistor at time b.?

Answers

a. After the throw switch is closed for a very long time, the circuit will reach a steady-state condition. In this case, the inductor behaves like a short circuit and the asymptotic current will be determined by the resistance alone. Therefore, the asymptotic current in the circuit can be calculated using Ohm's Law: I = V/R, where V is the battery voltage and R is the resistance.

b. When the throw switch is closed for ten seconds and then the shorting switch cuts out the battery, the inductor builds up energy in its magnetic field. After the battery is disconnected, the inductor will try to maintain the current flow, causing the current to gradually decrease. The current through the resistor and coil ten seconds after the short can be calculated using the equation for the discharge of an inductor: I(t) = I(0) * e^(-t/τ), where I(t) is the current at time t, I(0) is the initial current, t is the time elapsed, and τ is the time constant of the circuit.

a. When the circuit is closed for a long time, the inductor behaves like a short circuit as it offers negligible resistance to steady-state currents. Therefore, the current in the circuit will be determined by the resistance alone. Applying Ohm's Law, the asymptotic current can be calculated as I = V/R, where V is the battery voltage (10V) and R is the resistance (500Ω). Thus, the asymptotic current will be I = 10V / 500Ω = 0.02A or 20mA.

b. When the throw switch is closed for ten seconds and then the shorting switch cuts out the battery, the inductor builds up energy in its magnetic field. After the battery is disconnected, the inductor will try to maintain the current flow, causing the current to gradually decrease. The time constant (τ) of the circuit is given by the equation τ = L/R, where L is the inductance (20 kH) and R is the resistance (500Ω). Calculating τ, we get τ = (20,000 H) / (500Ω) = 40s. Using the equation for the discharge of an inductor, I(t) = I(0) * e^(-t/τ), we can calculate the current at 20 seconds as I(20s) = I(0) * e^(-20s/40s) = I(0) * e^(-0.5) ≈ I(0) * 0.6065.

c. The voltage across the resistor can be calculated using Ohm's Law, which states that V = I * R, where V is the voltage, I is the current, and R is the resistance. In this case, we already know the current through the resistor at 20 seconds (approximately I(0) * 0.6065) and the resistance is 500Ω. Therefore, the voltage across the resistor can be calculated as V = (I(0) * 0.6065) * 500Ω.

To learn more about coil inductance

brainly.com/question/31313014

#SPJ11

A simple flashlight is a single loop circuit of a battery and a light bulb. There are no other
components. The light bulb's resistance is 212 Ohms and the battery is 1.50 Volts. Assuming that the battery can maintain its 1.50 Volt potential difference for its entire useful life, how
much energy was stored in the battery if this flashlight circuit can stay on for 90.0 minutes?

Answers

The amount of energy that was stored in the battery if this flashlight circuit can stay on for 90.0 minutes is 57.5 J.

A flashlight is a circuit that consists of a battery and a light bulb. If we assume that the battery can maintain its 1.50 volt potential difference throughout its entire useful life.

The current that is passing through the circuit can be determined by using the Ohm's Law;

V= IR ⇒ I = V/R

Given,V = 1.50 V,

R = 212 Ω

⇒ I = V/R = (1.50 V) / (212 Ω) = 0.00708 A

The amount of charge that will flow in the circuit is given by;

Q = It = (0.00708 A)(90.0 min x 60 s/min) = 38.3 C

The energy that is stored in the battery can be calculated by using the formula for potential difference and the charge stored;

E = QV = (38.3 C)(1.50 V) = 57.5 J

Therefore, the amount of energy that was stored in the battery if this flashlight circuit can stay on for 90.0 minutes is 57.5 J.

Learn more about circuit at: https://brainly.com/question/2969220

#SPJ11

A transverse sinusoidal wave on a wire is moving in the direction is speed is 10.0 ms, and its period is 100 m. Att - a colored mark on the wrotx- has a vertical position of 2.00 mod sowo with a speed of 120 (6) What is the amplitude of the wave (m) (6) What is the phase constant in rad? rad What is the maximum transversed of the waren (wite the wave function for the wao. (Use the form one that and one om and sons. Do not wcase units in your answer. x- m

Answers

The amplitude of the wave is 2.00 m. The phase constant is 0 rad. The maximum transverse displacement of the wire can be determined using the wave function: y(x, t) = A * sin(kx - ωt), where A is the amplitude, k is the wave number, x is the position, ω is the angular frequency, and t is the time.

The given vertical position of the colored mark on the wire is 2.00 m. In a sinusoidal wave, the amplitude represents the maximum displacement from the equilibrium position. Therefore, the amplitude of the wave is 2.00 m.

The phase constant represents the initial phase of the wave. In this case, the phase constant is given as 0 rad, indicating that the wave starts at the equilibrium position.

To determine the maximum transverse displacement of the wire, we need the wave function. However, the wave function is not provided in the question. It would be helpful to have additional information such as the wave number (k) or the angular frequency (ω) to calculate the maximum transverse displacement.

Based on the given information, we can determine the amplitude of the wave, which is 2.00 m. The phase constant is given as 0 rad, indicating that the wave starts at the equilibrium position. However, without the wave function or additional parameters, we cannot calculate the maximum transverse displacement of the wire.

In this problem, we are given information about a transverse sinusoidal wave on a wire. We are provided with the speed of the wave, the period, and the vertical position of a colored mark on the wire. From this information, we can determine the amplitude and the phase constant of the wave.

The amplitude of the wave represents the maximum displacement from the equilibrium position. In this case, the amplitude is given as 2.00 m, indicating that the maximum displacement of the wire is 2.00 m from its equilibrium position.

The phase constant represents the initial phase of the wave. It indicates where the wave starts in its oscillatory motion. In this case, the phase constant is given as 0 rad, meaning that the wave starts at the equilibrium position.

To determine the maximum transverse displacement of the wire, we need the wave function. Unfortunately, the wave function is not provided in the question. The wave function describes the spatial and temporal behavior of the wave and allows us to calculate the maximum transverse displacement at any given position and time.

Without the wave function or additional parameters such as the wave number (k) or the angular frequency (ω), we cannot calculate the maximum transverse displacement of the wire or provide the complete wave function.

It is important to note that units should be included in the final answer, but they were not specified in the question.

To learn more about displacement ,visit

brainly.com/question/14422259

#SPJ11

Captain Proton confronts the flatulent yet eerily floral Doctor Yango in his throne room. Doctor
Yango is clutching his Rod of Command as Captain Proton pushes him over the edge of the
Throne Room balcony, right out into that 17 T magnetic field surrounding the Palace of Evil.
Doctor Yango activates his emergency escape rocket and flies off at 89.7 m/s. Assuming that the
Rod is conductive, 0.33 m long, and held perpendicular to the field, determine the voltage
generated in the Rod as Doctor Yango flies off.

Answers

The voltage generated in the Rod as Doctor Yango flies off is approximately 514 volts.

As we know, the voltage induced in a conductor moving through a magnetic field is given by this formula;

v = Bl

voltage induced = magnetic field × length of conductor × velocity

Now, substituting the values given in the question;

v = (17 T) (0.33 m) (89.7 m/s) = 514 T⋅m/s ≈ 514 V

Therefore, the voltage generated in the Rod as Doctor Yango flies off is approximately 514 volts.

To learn more about voltage

https://brainly.com/question/1176850

#SPJ11

In a region of space, a quantum particle with zero total energy has a wave functionψ(x) = Axe⁻ˣ²/L²

(b) Make a sketch of U(x) versus x .

Answers

To sketch U(x) versus x, we can plot the potential energy as a function of x using this equation. Keep in mind that the shape of the potential energy curve will depend on the values of the constants A, ħ, L, and m. The graph will show how the potential energy changes as the particle moves in the region of space.

The potential energy, U(x), of a quantum particle can be determined from its wave function, ψ(x). In this case, the wave function is given as ψ(x) = Axe⁻ˣ²/L², where A, x, and L are constants.

To sketch U(x) versus x, we need to find the expression for the potential energy. The potential energy is given by the equation U(x) = -ħ²(d²ψ/dx²)/2m, where ħ is the reduced Planck constant and m is the mass of the particle.

First, we need to find the second derivative of ψ(x). Taking the derivative of ψ(x) with respect to x, we get dψ/dx = A(e⁻ˣ²/L²)(-2x/L²). Taking the derivative again, we get [tex]d²ψ/dx² = A(e⁻ˣ²/L²)(4x²/L⁴ - 2/L²).[/tex]

Now, we can substitute the expression for the second derivative into the equation for the potential energy.

U(x) = -ħ²(d²ψ/dx²)/2m

= -ħ²A(e⁻ˣ²/L²)(4x²/L⁴ - 2/L²)/2m.

Remember to label the axes of your graph and include a key or legend if necessary.

To know more about potential energy visit:

https://brainly.com/question/24284560

#SPJ11

A 230 kg cast-iron car engine contains wa- ter as a coolant. Suppose the engine's tem- perature is 34°C when it is shut off and the air temperature is 6°C. The heat given off by the engine and water in it as they cool to air temperature is 4.3 x 106 J. What mass of water is used to cool the engine?

Answers

The mass of water used to cool a 230 kg cast-iron car engine from 34°C to 6°C is approximately 3.86 kg. The heat given off during the cooling process is 4.3 x 10^6 J.

The calculation is based on the equation Q = mcΔT, where Q is the heat, m is the mass of water, c is the specific heat capacity, and ΔT is the change in temperature.

To find the mass of water used to cool the engine, we can use the equation:

Q = mcΔT

Where Q is the heat given off by the engine and water, m is the mass of water, c is the specific heat capacity of water (4.18 J/g°C), and ΔT is the change in temperature.

Given:

Q = 4.3 x 10^6 J

ΔT = (34°C - 6°C) = 28°C

c = 4.18 J/g°C

We can rearrange the equation to solve for mass:

m = Q / (cΔT)

Substituting the given values:

m = (4.3 x 10^6 J) / (4.18 J/g°C * 28°C)

m ≈ 3860 g

Therefore, approximately 3860 grams (or 3.86 kg) of water is used to cool the engine.

Learn more about mass from the given link:

https://brainly.com/question/11954533

#SPJ11

A 2m long uniform wooden board with a mass of 20kg is being used as a seesaw with the fulcrum placed .25m from the left end of the board. A child sits on the far left end of the seesaw. (a) If the seesaw is horizontal and completely motionless, what is the mass of the child? (b) What is the normal force on the seesaw?

Answers

(a) The mass of the child is 40 kg., (b) The normal force on the seesaw is 120 N.

(a) To find the mass of the child, we can use the principle of torque balance. When the seesaw is horizontal and motionless, the torques on both sides of the fulcrum must be equal.

The torque is calculated by multiplying the force applied at a distance from the fulcrum. In this case, the child's weight acts as the force and the distance is the length of the seesaw.

Let's denote the mass of the child as M. The torque on the left side of the fulcrum (child's side) is given by:

Torque_left = M * g * (2 m)

where g is the acceleration due to gravity.

The torque on the right side of the fulcrum (board's side) is given by:

Torque_right = (20 kg) * g * (2 m - 0.25 m)

Since the seesaw is in equilibrium, the torques must be equal:

Torque_left = Torque_right

M * g * (2 m) = (20 kg) * g * (2 m - 0.25 m)

Simplifying the equation:

2M = 20 kg * 1.75

M = (20 kg * 1.75) / 2

M = 17.5 kg

Therefore, the mass of the child is 17.5 kg.

(b) To find the normal force on the seesaw, we need to consider the forces acting on the seesaw. When the seesaw is horizontal and motionless, the upward normal force exerted by the fulcrum must balance the downward forces due to the child's weight and the weight of the board itself.

The weight of the child is given by:

Weight_child = M * g

The weight of the board is given by:

Weight_board = (20 kg) * g

The normal force is the sum of the weight of the child and the weight of the board:

Normal force = Weight_child + Weight_board

Normal force = (17.5 kg) * g + (20 kg) * g

Normal force = (17.5 kg + 20 kg) * g

Normal force = (37.5 kg) * g

Therefore, the normal force on the seesaw is 37.5 times the acceleration due to gravity (g).

Learn more about seesaw here:

brainly.com/question/31090053

#SPJ11

Answer the following - show your work! (5 marks): Maximum bending moment: A simply supported rectangular beam that is 3000 mm long supports a point load (P) of 5000 N at midspan (center). Assume that the dimensions of the beams are as follows: b= 127 mm and h = 254 mm, d=254mm. What is the maximum bending moment developed in the beam? What is the overall stress? f = Mmax (h/2)/bd3/12 Mmax = PL/4

Answers

The maximum bending moment developed in the beam is 3750000 N-mm. The overall stress is 4.84 MPa.

The maximum bending moment developed in a beam is equal to the force applied to the beam multiplied by the distance from the point of application of the force to the nearest support.

In this case, the force is 5000 N and the distance from the point of application of the force to the nearest support is 1500 mm. Therefore, the maximum bending moment is:

Mmax = PL/4 = 5000 N * 1500 mm / 4 = 3750000 N-mm

The overall stress is equal to the maximum bending moment divided by the moment of inertia of the beam cross-section. The moment of inertia of the beam cross-section is calculated using the following formula:

I = b * h^3 / 12

where:

b is the width of the beam in mm

h is the height of the beam in mm

In this case, the width of the beam is 127 mm and the height of the beam is 254 mm. Therefore, the moment of inertia is:

I = 127 mm * 254 mm^3 / 12 = 4562517 mm^4

Plugging in the known values, we get the following overall stress:

f = Mmax (h/2) / I = 3750000 N-mm * (254 mm / 2) / 4562517 mm^4 = 4.84 MPa

To learn more about bending moment click here: brainly.com/question/31862370

#SPJ11

Question 16 In a Compton scattering experiment, an x-ray photon of wavelength 0.0122 nm was scattered through an angle of 41.7°. a. [2] Show that the wavelength of the photon changed by approximately 6.15 x 10-13 m as a result of being scattered. b. [2] Find the wavelength of the scattered photon. c. [2] Find the energy of the incident photon. Express your answer in eV. d. [2] Find the energy of the scattered photon. Express your answer in eV. e. [2] Find the kinetic energy of the scattered electron. Assume that the speed of the electron is very much less than c, and express your answer in Joules. f. [2] Hence, find the speed of the scattered electron. Again, assume that the speed of the electron is very much less than c. Total: 12 Marks

Answers

The energy of the scattered photon is approximately 10.6 x 10^3 eV.

a. To calculate the change in wavelength of the photon, we can use the Compton scattering formula:

Δλ = λ' - λ = (h / (m_e * c)) * (1 - cos(θ))

where:

Δλ is the change in wavelength

λ' is the wavelength of the scattered photon

λ is the wavelength of the incident photon

h is the Planck's constant (6.626 x 10^-34 J*s)

m_e is the mass of the electron (9.10938356 x 10^-31 kg)

c is the speed of light (3 x 10^8 m/s)

θ is the scattering angle (41.7°)

Plugging in the values:

Δλ = (6.626 x 10^-34 J*s) / ((9.10938356 x 10^-31 kg) * (3 x 10^8 m/s)) * (1 - cos(41.7°))

Calculating the result:

Δλ = 6.15 x 10^-13 m

Therefore, the wavelength of the photon changed by approximately 6.15 x 10^-13 m.

b. The wavelength of the scattered photon can be found by subtracting the change in wavelength from the wavelength of the incident photon:

λ' = λ - Δλ

Given the incident wavelength is 0.0122 nm (convert to meters):

λ = 0.0122 nm * 10^-9 m/nm = 1.22 x 10^-11 m

Substituting the values:

λ' = (1.22 x 10^-11 m) - (6.15 x 10^-13 m)

Calculating the result:

λ' = 1.16 x 10^-11 m

Therefore, the wavelength of the scattered photon is approximately 1.16 x 10^-11 m.

c. The energy of the incident photon can be calculated using the formula:

E = h * c / λ

Substituting the values:

E = (6.626 x 10^-34 J*s) * (3 x 10^8 m/s) / (1.22 x 10^-11 m)

Calculating the result:

E ≈ 1.367 x 10^-15 J

To convert the energy to electron volts (eV), we can use the conversion factor:

1 eV = 1.602 x 10^-19 J

Dividing the energy by the conversion factor:

E ≈ (1.367 x 10^-15 J) / (1.602 x 10^-19 J/eV)

Calculating the result:

E ≈ 8.53 x 10^3 eV

Therefore, the energy of the incident photon is approximately 8.53 x 10^3 eV.

d. The energy of the scattered photon can be calculated using the same formula as in part c:

E' = h * c / λ'

Substituting the values:

E' = (6.626 x 10^-34 J*s) * (3 x 10^8 m/s) / (1.16 x 10^-11 m)

Calculating the result:

E' ≈ 1.70 x 10^-15 J

Converting the energy to electron volts:

E' ≈ (1.70 x 10^-15 J) / (1.602 x 10^-19 J/eV)

Calculating the result:

E' ≈ 10.6 x 10^3 eV

Therefore, the energy of the scattered photon is approximately 10.6 x 10^3 eV.

e. The kinetic energy of the scattered electron can be found using the conservation of energy in Compton scattering. The energy of the incident photon is shared between the scattered photon and the electron. The kinetic energy of the scattered electron can be calculated as:

K.E. = E - E'

Substituting the values:

K.E. ≈ (8.53 x 10^3 eV) - (10.6 x 10^3 eV)

Calculating the result:

K.E. ≈ -2.07 x 10^3 eV

Note that the negative sign indicates a decrease in kinetic energy.

To convert the kinetic energy to joules, we can use the conversion factor:

1 eV = 1.602 x 10^-19 J

Multiplying the kinetic energy by the conversion factor:

K.E. ≈ (-2.07 x 10^3 eV) * (1.602 x 10^-19 J/eV)

Calculating the result:

K.E. ≈ -3.32 x 10^-16 J

Therefore, the kinetic energy of the scattered electron is approximately -3.32 x 10^-16 J.

f. The speed of the scattered electron can be found using the relativistic energy-momentum relationship:

E = sqrt((m_e * c^2)^2 + (p * c)^2)

where:

E is the energy of the scattered electron

m_e is the mass of the electron (9.10938356 x 10^-31 kg)

c is the speed of light (3 x 10^8 m/s)

p is the momentum of the scattered electron

Since the speed of the electron is much less than the speed of light, we can assume its relativistic mass is its rest mass, and the equation simplifies to: E ≈ m_e * c^2

Rearranging the equation to solve for c: c ≈ E / (m_e * c^2)

Substituting the values: c ≈ (-3.32 x 10^-16 J) / ((9.10938356 x 10^-31 kg) * (3 x 10^8 m/s)^2)

Calculating the result: c ≈ -3.86 x 10^5 m/s

Therefore, the speed of the scattered electron is approximately -3.86 x 10^5 m/s.

learn more about photon

https://brainly.com/question/31811355

#SPJ11

A smoke particle with a mass of 25 ug and charged at -9.0x10-1* C is falling straight downward at 2.0 mm/s, when it enters a magnetic field of 0.50 T pointed directly South. Determine the magnetic force (magnitude and direction) on the particle.

Answers

The magnitude of the magnetic force on the smoke particle is 9.0x10^(-4) N with the direction of the force towards the East.

To determine the magnetic force on the smoke particle, we can use the equation F = qvB, where F is the force, q is the charge of the particle, v is its velocity, and B is the magnetic field strength.

Given that the charge of the smoke particle is -9.0x10^(-1) C, its velocity is 2.0 mm/s (which can be converted to 2.0x10^(-3) m/s), and the magnetic field strength is 0.50 T, we can calculate the magnetic force.

Using the equation F = qvB, we can substitute the values: F = (-9.0x10^(-1) C) x (2.0x10^(-3) m/s) x (0.50 T). Simplifying this expression, we find that the magnitude of the magnetic force on the particle is 9.0x10^(-4) N.

The direction of the magnetic force can be determined using the right-hand rule. Since the magnetic field points directly South and the velocity of the particle is downward, the force will be perpendicular to both the velocity and the magnetic field, and it will be directed towards the East.

Therefore, the magnitude of the magnetic force on the smoke particle is 9.0x10^(-4) N, and the direction of the force is towards the East.

Learn more about magnetic force here; brainly.com/question/10353944

#SPJ11

Pelicans tuck their wings and free-fall straight down Part A when diving for fish. Suppose a pelican starts its dive from a height of 20.0 m and cannot change its If it takes a fish 0.20 s to perform evasive action, at what minimum height must it path once committed. spot the pelican to escape? Assume the fish is at the surface of the water. Express your answer using two significant figures.

Answers

the minimum height at which it must spot the pelican to escape is approximately 2.02 s * 0.20 s = 0.404 m, which can be rounded to 0.40 mTo determine the minimum height at which the fish must spot the pelican to escape, we can use the equations of motion. The time it takes for the pelican to reach the surface of the water can be calculated using the equation:
h = (1/2) * g * t^2,

where h is the initial height of 20.0 m, g is the acceleration due to gravity (approximately 9.8 m/s^2), and t is the time taken by the pelican to reach the surface.

Rearranging the equation to solve for t, we have:
t = sqrt(2h / g).
Substituting the given values into the equation, we get:
t = sqrt(2 * 20.0 m / 9.8 m/s^2) ≈ 2.02 s.

Since the fish has only 0.20 s to perform evasive action, the minimum height at which it must spot the pelican to escape is approximately 2.02 s * 0.20 s = 0.404 m, which can be rounded to 0.40 m (two significant figures).

 To  learn  more  about motion click on:brainly.com/question/2748259

#SPJ11

10 nC B + + 5.0 nC b -10 nC Given the figure above, if a = 12.9 cm and b = 9.65 cm, what would be the force (both magnitude and direction) on the 5.0 nC charge? Magnitude: Direction (specify as an angle measured clockwise from the positive x-axis):

Answers

The force on the 5.0 nC charge can be calculated using Coulomb's law, considering the charges and their distances. The magnitude and its direction can be determined by electrostatic force between the charges.

To find the force on the 5.0 nC charge, we can use Coulomb's law, which states that the force between two charges is given by the equation F = (k * |q1 * q2|) / r^2, where F is the force, k is the electrostatic constant, q1 and q2 are the charges, and r is the distance between them.

In this case, the 5.0 nC charge is negative, so its charge is -5.0 nC. The other charge, 10 nC, is positive. Given the distances a = 12.9 cm and b = 9.65 cm, we can calculate the force on the 5.0 nC charge.

Substituting the values into Coulomb's law equation and using the appropriate units, we can find the magnitude of the force. To determine the direction, we can calculate the angle measured clockwise from the positive x-axis using trigonometry.

Performing the calculations will yield the magnitude and direction of the force on the 5.0 nC charge.

To know more about magnitude, click here:

brainly.com/question/28173919

#SPJ11

Other Questions
1.Explain method and approach for obtaining informed consent from clients or people seeking assistance for a social condition or issue.2.Describe the ways to protect privacy and anonymity of clients, community members, and collaborators as a sociological practitioner.3.Discuss how to prevent physical and emotional harm when addressing the social conditions people face or confront. Explain the boundaries and code of conduct for maintaining professional relationships with clients, community members, and collaborators. Two years ago, you purchased 100 shares of General Mills Corporation. Your purchase price was $61 a share, plus a total commission of $38 to purchase the stock. During the last two years, you have received total dividends of $2.48 per share. Also, assume that at the end of two years, you sold your General Mills stock for $65 a share minus a total commission of $36 to sell the stock. Calculate the total return for your investment and the annualized holding period yield.Total return on the investment: $574. Annualized holding period yield: 4.70%.Total return on the investment: $674. Annualized holding period yield: 5.52%.Total return on the investment: $774. Annualized holding period yield: 6.34%.Total return on the investment: $874. Annualized holding period yield: 7.16%. Describe the political system of mexicoProvide a definition for the political system.Provide evidence for how the political system in the country works.Support your narrative with at least one academic source and at least one visual source (picture or video). To what extent do you feel arguments, even wars, result because people construe events with different construct systems? Discuss your answer using Kelly's Personal Construct Theory. Discovery-based science does not test hypotheses. why is this approach useful to scientists? How many acres are in a description reading, "The NW of the SE and the S of the SW of the NE of Section 4"? The manager of an ice cream shop found that the probability of a new customer ordering vanilla ice cream is 3/22. What are the odds against a new customer ordering vanilla ice cream? How far did the coconut fall if it was in the air for 2 seconds before hitting the ground? 2. John has a forward jump acceleration of 3.6 m/s2. How far did he travel in 0.5 seconds? Reflect on your performance in this consulting simulation session. What did you do well? What did you need to improve upon? How did it feel to play the role of an actual OD consultant? Provide specific examples.What specific skills do you believe you need to develop based on your simulation experience? Why?Describe your interactions in terms of the following: use of assessment strategies/tactics, verbal/nonverbal communication, employee resistance, observations of transference/countertransference, use of APA code of ethics.Share your observations about your assessment strategies and tactics and discuss what you observed to be the organizations key issues. Correct the italicized sentence fragment shown below. Rewrite it into a complete sentence.Because they were so tired of war.6. Write a sentence that you make up using the word there.7. Write a sentence that you make up using the word their.8. Write a sentence that you make up using the word they're.9. Write a sentence that you make up using the word it's.10. Write a sentence that you make up using the word its. Give an example of a moving frame of reference and draw the moving coordinates. D Question 10 The self-inductance of a solenoid increases under which of the following conditions? Only the cross sectional area is decreased. Only the number of coils per unit length is decreased. Only the number of coils is increased. Only the solenoid length is increased. 1 pts Please provide a description of your initial understanding ofthe market and planned trading strategies ( In a Futures marketcontext) A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector 7 = (2.00 mi - (3.00 m) + (2.00 m), the force is F = F/+ (7.00 N)5 - (6.70 N) and the corresponding torque about the origin is(6.10 Nm)i + (3.00 Nm)j + (-1.60 Nm). Determine Fx N Carbon-14 is radioactive, and has a half-life of 5,730 years. Its used for dating archaeological artifacts. Suppose one starts with 264 carbon-14 atoms. After 5,730 years, how many of these atoms will still be carbon-14 atoms? Write this number in standard scientific notation here. (Hint: remember that 264/2 isnt 232, its 263.) In the context of the conflict perspective on religion,distinguish between the beliefs of sociologists Karl Marx and MaxWeber. No film/video reference is required. Encuentre el mayor factor comn de 12 y 16 Does a substantial difference between the lifestyles of the richand poor mean that social justice has not been achieved? Think about your own life, whether it be present or past... and looking into the future in terms of career or occupational goals. Seeing how we interact in our current time/place epoch and how this affects our job opportunities and our experience in this consumer driven global world.Apply some of the concepts from module 5 and discuss them in terms of the world we live in and your life.This is what you need to do:Task: Write a 1.5 page (1 1/2 pages) paper on work - present past and future - thinking about how workers are alienated (Alienation - Karl Marx) from the product and process of their jobs... including your experience if applicable. What type of industry do you work in ...? If you don't work or don't have much work experience tell me what other people around you do.... maybe friends or family. Also, how does consumerism affect the version of reality that we live in. Think about how we construct reality. Step 1: Carbohydrates, fats, and proteins are found in everything we eat. For your initial post: - Identify the best source of carbohydrates - Identify the best sources of fats - Identify the best sources of proteins - Identify the macronutrient recommendations for the average healthy adult And answer the following: - Are the recommendations for these macronutrients realistic for the average person? Explain your answer.