a. I've attached a plot of the surface. Each face is parameterized by
• [tex]\mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j[/tex] with [tex]0\le x\le2[/tex] and [tex]0\le y\le6-x[/tex];
• [tex]\mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k[/tex] with [tex]0\le u\le2[/tex] and [tex]0\le v\le\frac\pi2[/tex];
• [tex]\mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k[/tex] with [tex]0\le y\le 6[/tex] and [tex]0\le z\le2[/tex];
• [tex]\mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k[/tex] with [tex]0\le u\le2[/tex] and [tex]0\le v\le\frac\pi2[/tex]; and
• [tex]\mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k[/tex] with [tex]0\le u\le\frac\pi2[/tex] and [tex]0\le y\le6-2\cos u[/tex].
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.
[tex]\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k[/tex]
[tex]\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j[/tex]
[tex]\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i[/tex]
[tex]\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j[/tex]
[tex]\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k[/tex]
Then integrate the dot product of f with each normal vector over the corresponding face.
[tex]\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx[/tex]
[tex]=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0[/tex]
[tex]\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du[/tex]
[tex]\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8[/tex]
[tex]\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz[/tex]
[tex]=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0[/tex]
[tex]\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du[/tex]
[tex]=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi[/tex]
[tex]\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du[/tex]
[tex]=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24[/tex]
c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since S is closed, we can find the total flux by applying the divergence theorem.
[tex]\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV[/tex]
where R is the interior of S. We have
[tex]\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7[/tex]
The integral is easily computed in cylindrical coordinates:
[tex]\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2[/tex]
[tex]\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3[/tex]
as expected.
A load of 25 kg is applied to the lower end and of a steal wire of length 25 m and thickness 3.0mm .The other end of wire is suspeded from a rigid support calculate strain and stress produced in the wire
Answer:
the weight of the wire + 25kg
Explanation:
A cart rolls 2 m to the right then rolls back 1 m to the left.
a. What is the total distance rolled by the cart?
Explanation:
It is given that,
Distance covered by the cart to the right is 2 m
Distance covered by the cart to the left is 1 m
We need to find the total distance rolled by the cart. Total distance is equal to the sum of the distances covered by an object. It does depend on the direction.
Total distance = 2 m + 1 m
D = 3 m
The cart rolled to a total distance of 3 m.
Calculate the time it would take a cell phone signal to travel from a point on the equator to the satellite and back.
For an object to move, a(n) _______ force must be applied. Question 1 options: Balanced Unbalanced
Answer:
Unbalenced
Explanation:
when balenced forces are applied to an object there is no motion. When you apply unbalenced force the object you are applying the force to will move in the opposite direction of the force.
Answer:
im pretty sure it unbalenced
Explanation:
i just am
Which examination technique is the visualization of body parts in motion by projecting x-ray images on a luminous fluorescent screen?
Answer:
Fluoroscopy
Explanation:
A Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a physician to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched.
Which one of the following actions would make the maxima in the interference pattern from a grating move closer together?
A. Increasing the number of lines per length.
B. Decreasing the number of lines per length.
C. Increasing the distance to the screen.
D. Increasing the wavelength of the laser.
Answer:
Answer:
A. Increasing the number of lines per length.
a person lifts 60kg on the surface of the earth, how much mass can he lift on the surface of the moon if he applies same magnitude of force
Explanation:
Hey there!
According to the question;
A person can lift mass of 60 kg on earth.
mass(m1) = 60kg
acceleration due to gravity on earth (a) = 9.8m/s²
Now;
force (f) = m.a
= 60*9.8
= 588 N
Since, there is application of same magnitude of force on moon,
mass(m) =?
acceleration due to gravity on moon (a) = 1.67m/s²
Now;
force (f) = m.a
588 = m*1.67
m = 352.09 kg
Therefore, the person who can lift the mass of 60 kg on earth can lift mass of 352 kg on moon.
Hope it helps!
The hydrogen spectrum has a red line at 656 nm, and a blue line at 434 nm. What is the first order angular separation between the two spectral lines obtained with a diffraction grating with 5000 rulings/cm?
Answer:
Explanation:
grating element or slit width a = 1 x 10⁻² / 5000
= 2 x 10⁻⁶ m
angular width of first order spectral line of wavelength λ
= λ / a
for blue line angular width
= 434 x 10⁻⁹ / 2 x 10⁻⁶ radian
= 217 x 10⁻³ radian
for red line angular width
= 656 x 10⁻⁹ / 2 x 10⁻⁶ radian
= 328 x 10⁻³ radian
difference of their angular width
= 328 x 10⁻³ - 217 x 10⁻³
= 111 x 10⁻³ radian
Ans .
A 5.0 kg block hangs from a spring with spring constant 2000 N/m. The block is pulled down 5.0 cm from the equilibrium position and given an initial velocity of 1.0 m/s back towards equilibrium. a) What is the total mechanical energy of the motion
Answer:
Explanation:i think this would help u
An engine causes a car to move 10 meters with a force of 100 N. The engine produces 10,000 J of energy. What is the efficiency of this engine?
Answer:
10%
Explanation:
Efficiency = work done / energy used
e = (10 m × 100 N) / (10,000 J)
e = 0.1
The efficiency is 0.1, or 10%.
Several books are placed on a table. These books have a combined weight of 25 N and cover an area of 0.05 m2. How much pressure do the books exert on the table? The pressure the books apply to the table top is __ Pa.
Answer:
500 PascalsExplanation:
[tex]Force = 25N\\Area = 0.05m^2\\\\Pressure = \frac{Force}{Area}\\ \\Pressure = \frac{25}{0.05}\\\\ Pressure = 500 Pascals[/tex]
When you shine a beam of light, which is composed of just two different colors, red and green, onto a diffraction grating which color gets diffracted more
Answer:
The diffraction grating separates light into colors as the light passes through the many fine slits of the grating. This is a transmission grating. ... The prism separates light into colors because each color passes through the prism at a different speed and angle.
Ocean waves with a wavelength of 120 m are coming in at a rate of 8 per minute. What is their speed?
Explanation:
We know that,
[tex]v(wave \: speed) = f(frequency) \times \alpha (wavelength)[/tex]
frequency (f) = 1 / t (sec) = 8/60 = 0.13 Hz
V ( wave speed) = 0.13 * 120 = 16 m/sec
The speed of the given wave is equal to 15.96 m/s.
What are frequency and wavelength?The frequency of the wave can be defined as the number of oscillations of a wave in one second. The frequency has S.I. units which can be expressed as per second or hertz (Hz).
The wavelength can be described as the distance between the two adjacent points in phase. Two crests or two troughs of a wave are separated by a distance is called wavelength.
The relationship between wavelength (λ), frequency (ν), and wave speed (V):
V = νλ
Given, the frequency of the wave, ν = 8 min⁻¹ = 0.133 s⁻¹
The wavelength of the wave, λ = 120 m
The speed of the waves can calculate from the above-mentioned relationship:
V = νλ = 120 × 0.133 = 15.96 m/s
Therefore, the speed of the wave is equal to 15.96 m/s.
Learn more about wavelength and frequency, here:
brainly.com/question/18651058
#SPJ5
A hydraulic lift raises a 2 000-kg automobile when a 500-N force is applied to the smaller piston. If the smaller piston has an area of 10 cm2, what is the cross-sectional area of the larger piston
Answer:
The cross-sectional area of the larger piston is 392 cm²
Explanation:
Given;
output mass of the piston, m₀ = 2000 kg
input force of the piston, F₁ = 500 N
input area of the piston, A₁ = 10 cm² = 0.001 m²
The output force is given by;
F₀ = m₀g
F₀ = 2000 x 9.8
F₀ = 19600 N
The cross-sectional area of the larger piston or output area of the piston will be calculated by applying the following equations;
[tex]\frac{F_i}{A_i} = \frac{F_o}{A_o} \\\\A_o= \frac{F_o A_i}{F_i} \\\\A_o = \frac{19600*0.001}{500} \\\\A_o = 0.0392 \ m^2\\\\A_o = 392 \ cm^2[/tex]
Therefore, the cross-sectional area of the larger piston is 392 cm²
Calculate the range of wavelengths (in m) for AM radio given its frequency range is 540 to 1,600 kHz. smaller value m larger value m (b) Do the same for the ultraviolet frequency range of 760 to 30,000 THz. smaller value m larger value m
Answer:
a) λ = 555.5 m, λ = 187.5 nm
Explanation:
The velocity of a wave is given by the relation
c = λ f
λ = c /f
a) length of the radii AM
λ = 3 10⁸/540 10⁻⁷
λ= 5.555 102 m
λ = 555.5 m
f = 1600 kHz
λ = 3 108/1600 103
λ = 1.875 102 m
lam = 187.5 nm
b) light = 760 Thz = 760 10-12 Hz
λ= c/f
λ = 3 108/760 10-12
λ = 3.947 10-9
λ= 30000 Thz
λ= c/f
λ = 3 10⁸/ 30000 10-12
λ = 1 m
3. What conclusion can you make about the electric field strength between two parallel plates? Explain your answer referencing Photo 2.
Answer:
From the relation above we can conclude that the as the distance between the two plate increases the electric field strength decreases
Explanation:
I cannot find any attached photo, but we can proceed anyways theoretically.
The electric field strength (E) at any point in an electric field is the force experienced by a unit positive charge (Q) at that point
i.e
[tex]E=\frac{F}{Q}[/tex]
But the force F
[tex]F= \frac{kQ1Q2}{r^2}[/tex]
But the electric field intensity due to a point charge Q at a distance r meters away is given by
[tex]E= \frac{\frac{kQ1Q2}{r^2}}{Q} \\\\\E= \frac{Q1}{4\pi er^2 }[/tex]
From the relation above we can conclude that the as the distance between the two plate increases the electric field strength decreases
A 0.2-stone is attached to a string and swung in a circle of radius 0.6 m on a horizontal and frictionless surface. If the stone makes 150 revolutions per minute, the tension force of the string on the stone is:
Answer:
2960 N
Explanation:
Convert rev/min to rad/s:
150 rev/min × (2π rad/rev) × (1 min / 60 s) = 50π rad/s
Sum of forces in the centripetal direction:
∑F = ma
T = m v² / r
T = m ω² r
T = (0.2 kg) (50π rad/s)² (0.6 m)
T = 2960 N
Grocery store managers contend that there is less total energy consumption in the summer if the store is kept at a low temperature. Make arguments to support or refute this claim, taking into account that there are numerous refrigerators and freezers in the store.
Answer:
Argument in favor of less total energy consumption if the store is kept at a low temperature
Explanation:
Have in mind that if the store has numerous refrigerators and freezers, the energy consumption of those machines have to be included into the analysis.
Recall that the efficiency (or Coefficient Of Performance - COP) of a frezzer or refrigerator is inversely proportional to the temperature difference between the inside of th machine and the environment where it is operation, therefore the smaller the difference, the highest their efficiency. Therefore, the cooler the environment (the temperature at which the store is kept) the better performance of the running refrigerators and freezers.
A proton, moving north, enters a magnetic field. Because of this field, the proton curves downward. We may conclude that the magnetic field must have a component: _______
a. upward.
b. towards the west.
c. towards the east.
d. towards the north.
e. downward.
Answer:
towards the west
One can conclude that the magnetic field must have a component towards the east. The correct option is c.
What is magnetic field?A magnetic field is a vector field that describes the magnetic influence on moving charges, currents, and magnetic materials.
A moving charge in a magnetic field is subjected to a force that is perpendicular to both its own velocity and the magnetic field.
Every magnet possesses a north as well as a south pole. The opposite poles attract each other, whereas the same poles repel each other.
When you rub a piece of iron against a magnet, the atoms' north-seeking poles line up in the same direction.
Moving north, a proton enters a magnetic field. The proton curves downward as a result of this field. We can conclude that the magnetic field must have an eastward component.
Thus, the correct option is c.
For more details regarding magnetic field, visit:
https://brainly.com/question/23096032
#SPJ2
CAN SOMEONE HELP ME PLEASE ITS INTEGRATED SCIENCE AND I AM STUCK
Answer:
[tex]\huge \boxed{\mathrm{Option \ D}}[/tex]
Explanation:
Two forces are acting on the object.
Subtracting 2 N from both forces.
2 N → Object ← 5 N
- 2 N - 2N
0 N → Object ← 3 N
The force 3 N is pushing the object to the left side.
The mass of the object is 10 kg.
Applying formula for acceleration (Newton’s Second Law of Motion).
a = F/m
a = 3/10
a = 0.3
7. A sound wave begins traveling through a thin metal rod at one end with a speed that is 15 times the speed of sound in air. If an observer at the other end of the rod hears the sound twice, one from the sound traveling through the rod and one from the sound traveling through the air, with a time delay of 0.12 s, how long is the rod? The speed of sound in air is 343 m/s.
Answer:
L = 44,096 m
Explanation:
The speed of the sound wave is constant therefore we can use the relations of uniform kinematics
v = x / t
the speed of the wave in the bar is
v = 15 v or
v = 15 343
v = 5145 m / s
The sound at the bar goes the distance
L = v t
Sound in the air travels the same distance
L = v_air (t + 0.12)
as the two recognize the same dissonance,
v t = v_air (t +0.12)
t (v- v_air) = 0.12 v_air
t = 0.12 v_air / (v -v_air)
l
et's calculate
t = 0.12 343 / (5145 - 343)
t = 8.57 10-3 s
The length of the bar is
L = 5145 8.57 10-3
L = 44,096 m
A rigid uniform bar of length L and mass m is suspended by a massless wire AC and a rigid massless link BC. Determine the tension in BC immediately after AC breaks.
Answer:
hello the needed diagram is missing attached below is the diagram and the detailed solution
The tension in BC = [tex]\frac{\sqrt{2} }{4} mg[/tex]
Explanation:
ATTACHED BELOW IS THE DETAILED SOLUTION T THE GIVEN PROBLEM
Ma = mg - T/ [tex]\sqrt{2}[/tex] equation 1
Ma = 3T / [tex]\sqrt{2}[/tex] equation 2
equate both equations to determine the tension on BC
A 70 kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above water when his lungs are full.
Required:
a. Calculate the volume of air he inhales - called his lung capacity - in liters.
b. Does this lung volume seem reasonable?
Answer:
Explanation:
A) Vair = 1.3 L
B) Volume is not reasonable
Explanation:
A)
Assume
m to be total mass of the man
mp be the mass of the man that pulled out of the water
m1 be the mass above the water with the empty lung
m2 be the mass above the water with full lung
wp be the weight that the buoyant force opposes as a result of the air.
Va be the volume of air inside man's lungs
Fb be the buoyant force due to the air in the lung
given;
m = 78.5 kg
m1 = 3.2% × 78.5 = 2.5 kg
m2 = 4.85% × 78.5 = 3.8kg
But, mp = m2- m1
mp = 3.8 - 2.5
mp = 1.3kg
So using
Archimedes principle, the relation for formula for buoyant force as;
Fb = (m_displaced water)g = (ρ_water × V_air × g)
Where ρ_water is density of water = 1000 kg/m³
Thus;
Fb = wp = 1.3× 9.81
Fb = 12.7N
But
Fb = (ρ_water × V_air × g)
So
Vair = Fb/(ρ_water × × g)
Vair = 12.7/(1000 × 9.81)
V_air = 1.3 × 10^(-3) m³
convert to litres
1 m³ = 1000 L
Thus;
V_air = 1.3× 10^(-3) × 1000
V_air = 1.3 L
But since the average lung capacity of an adult human being is about 6-7litres of air.
Thus, the calculated lung volume is not reasonable
Explanation:
A train moving west with an initial velocity of 20 m/s accelerates at 4 m/s2 for 10 seconds. During this tim
moves a distance of
meters.
Answer:
400m
Explanation:
[tex]x = v_{0}t + \frac{at^{2} }{2} \\x = 20*10+\frac{4*10x^{2} }{2} = 400m[/tex]on which principle does water pump work ?
Answer:
The working principle of a water pump mainly depends upon the positive displacement principle as well as kinetic energy to push the water.
Explanation:
it mainly depends upon the positive displacement principle and also kinetic energy to push water. hope this hepls!
The earth has a vertical electric field at the surface,pointing down, that averages 102 N/C. This field is maintained by various atmosphericprocesses, including lightning.
What is the excess charge on the surface of the earth? inC
Answer:
[tex]q = -461532.5 \ C[/tex]
Explanation:
From the question we are told that
The electric filed is [tex]E = 102 \ N/C[/tex]
Generally according to Gauss law
=> [tex]E A = \frac{q}{\epsilon_o }[/tex]
Given that the electric field is pointing downward , the equation become
[tex]- E A = \frac{q}{\epsilon_o }[/tex]
Here [tex]q[/tex] is the excess charge on the surface of the earth
[tex]A[/tex] is the surface area of the of the earth which is mathematically represented as
[tex]A = 4\pi r^2[/tex]
Where r is the radius of the earth which has a value [tex]r = 6.3781*10^6 m[/tex]
substituting values
[tex]A = 4 * 3.142 * (6.3781*10^6 \ m)^2[/tex]
[tex]A =5.1128 *10^{14} \ m^2[/tex]
So
[tex]q = -E * A * \epsilon _o[/tex]
Here [tex]\epsilon_o[/tex] s the permitivity of free space with value
[tex]\epsilon_o = 8.85*10^{-12} \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]
substituting values
[tex]q = -102 * 5.1128 *10^{14} * 8.85 *10^{-12}[/tex]
[tex]q = -461532.5 \ C[/tex]
A photon has an energy of 2.09×10^-18 kJ .What is its wavelength?
Answer:
wavelength= 1.05 × 10^ -46 m
Explanation:
the formula : λ= hc/E
where; "h" = Planck's constant [6.626 × 10^ -34]
c= speed of light [3.0 × 10^ 8]
you first have to convert the energy of the photon to Joules by dividing the constant by 1000
2.09 × 10^ -18 / 1000 = 2.09 × 10^ -21
then you replace you data into the equation
λ= 6.626 × 10^ -34 × 3.0 × 10^ 8 / 2.09 × 10 ^ -21
first multiply the Planck's constant and the speed of light then divide it by the energy which is in "Joules"
:. λ = 1.05 × 10^ -46
hope this helps
What is the threshold velocity vthreshold(ethanol) for creating Cherenkov light from a charged particle as it travels through ethanol (which has an index of refraction of n
Explanation:
The velocity of light in a medium of refractive index [tex]n[tex] is given by,
[tex]v=\frac{c}{n}[/tex]
[tex]v \text { is the velocity of light in the medium }[/tex]
[tex]c \text { is speed of light in vacuum }[/tex]
The exact value of speed of light in vacuum is [tex]299792458 \mathrm{m} / \mathrm{s}[/tex].
For Cherenkov radiation to be emitted, the velocity of the charged particle traversing the medium must be greater than this velocity. Thus, the threshold velocity of for creating Cherenkov radiation is,
[tex]v_{\text {Cherenkov }} \geq \frac{c}{n}[/tex]
[tex]v_{\text {threshod }}=\frac{c}{n}[/tex]
For water [tex]n=1.33,[tex] thus the threshold velocity for producing Cherenkov radiation in water is,
[tex]v_{\text {threatold }(\text { water })} &=\frac{299792458 \mathrm{m} / \mathrm{s}}{1.33}[/tex]
[tex]=225407863 \mathrm{m} / \mathrm{s}[/tex]
[tex]=2.254 \times 10^{8} \mathrm{m} / \mathrm{s}[/tex]
For ethanol [tex]n=1.36[tex], thus the threshold velocity for producing Cherenkov radiation in water is,
[tex]v_{\text {threstold }( \text { ettanol) } } &=\frac{299792458 \mathrm{m} / \mathrm{s}}{1.36}[/tex]
[tex]=220435630 \mathrm{m} / \mathrm{s}[/tex]
[tex]=2.204 \times 10^{8} \mathrm{m} / \mathrm{s}[/tex]
Answer:
The answer is "2.2 × [tex]\bold{10^8}[/tex]".
Explanation:
In the given question the value of n is missing which can be defined as follows:
n= 1.36
The velocity value of the threshold(ethanol) for a generation the Cerenkov light from the charged particle by travel through ethanol as:
know we will have to use an equation as follows:
Formula:
(ethanol) or the vthreshold = [tex]\frac{c}{n}[/tex]
[tex]= \frac{3\times 10^8} {1.36} \\\\= 2.2 \times 10^8[/tex]
The water in vthreshold:
[tex]= 2.2 \times 10^8 \ \ \frac{m}{ s} \\\\[/tex]
Express the value in c, that is multiple, so, the value of vthreshold(water) is:
=(0.735) c
Imagine two pairs of books. In the first pair, two books of mass m_1m 1 m, start subscript, 1, end subscript and m_2m 2 m, start subscript, 2, end subscript are separated by the distance rrr, resulting in a gravitational force F_1F 1 F, start subscript, 1, end subscript. In the second pair, two books of mass 2m_12m 1 2, m, start subscript, 1, end subscript and 4m_24m 2 4, m, start subscript, 2, end subscript are separated by the distance 2r2r2, r, resulting in a gravitational force of F_2F 2 F, start subscript, 2, end subscript. The relationship between these two forces can be written as F_2 = nF_1F 2 =nF 1 F, start subscript, 2, end subscript, equals, n, F, start subscript, 1, end subscript. In the expression F_2 = nF_1F 2 =nF 1 F, start subscript, 2, end subscript, equals, n, F, start subscript, 1, end subscript, what is the value of nnn?
The value of n in the relationship between F₁ and F₂, (F₂ = n·F₁), is n = 2
The reason for the above value is as follows;
The given parameters of the first pair of books are;
The masses of the books = m₁, and m₂
The distance between the two m₁ and m₂ = r
The gravitational force between the masses = F₁
The given parameters of the second pair of books are;
The masses of the books second pair = 2·m₁, and 4·m₂
The distance between the two masses in second pair = 2·r
The gravitational force between the masses in second pair = F₂
The relationship between the two forces is F₂ = n·F₁
The required parameter;
The value of n in F₂ = n·F₁
According to Newton's law of universal gravitation, we have;
[tex]\mathbf{F = G \times \dfrac{m_1 \times m_2}{r^2}}[/tex]
Therefore, we get;
[tex]F_1 = G \times \dfrac{m_1 \times m_2}{r^2}[/tex]
[tex]F_2 = G \times \dfrac{2\cdot m_1 \times 4 \cdot m_2}{(2 \cdot r)^2} = G \times \dfrac{8 \times m_1 \times m_2}{4 \times r^2} = 2 \times G \times \dfrac{ m_1 \times m_2}{r^2} = 2 \times F_1[/tex]
Therefore;
F₂ = 2·F₁
The value of n in F₂ = n·F₁ is n = 2
Learn more about gravitational force between masses here;
https://brainly.com/question/11359658
A balloon contains 1.21 x 105 L of ideal gas at 265K. The gas is then cooled to 201 K. What is the volume (L) assuming no gas enters or exits the balloon
Answer:
The new volume will be 0.918 x 10^5 L
Explanation:
initial volume [tex]V_{1}[/tex] = 1.21 x 10^5 L
Initial temperature [tex]T_{1}[/tex] = 265 K
Final volume [tex]V_{2}[/tex] = ?
Final temperature [tex]T_{2}[/tex] = 201 K
Th gas is an ideal gas.
For ideal gases, the equation [tex]V_{1}[/tex]/[tex]T_{1}[/tex] = [tex]V_{2}[/tex]/[tex]T_{2}[/tex] = constant
substituting value, we have
(1.21 x 10^5)/265 = [tex]V_{2}[/tex]/201
[tex]V_{2}[/tex] = 24321000/265 = 91777.4 L
= 0.918 x 10^5 L