Let p and q represent the following simple statements. p: You are human. q: You have antlers. Write the following compound statement in symbolic form. Being human is sufficient for not having antlers. The compound statement written in symbolic form is

Answers

Answer 1

The compound statement "Being human is sufficient for not having antlers" symbolically is represented as "p -> ~q".

The compound statement "Being human is sufficient for not having antlers" can be represented in symbolic form as:

p -> ~q

Here, the symbol "->" represents implication or "if...then" statement. The statement "p -> ~q" can be read as "If p is true (You are human), then ~q is true (You do not have antlers)."

The compound statement "Being human is sufficient for not having antlers" can be represented symbolically as "p -> ~q". In this representation, p represents the statement "You are human," and q represents the statement "You have antlers."

The symbol "->" denotes implication or a conditional statement. When we say "p -> ~q," it means that if p (You are human) is true, then ~q (You do not have antlers) must also be true. In other words, being human is a sufficient condition for not having antlers.

This compound statement implies that all humans do not have antlers. If someone is human (p is true), then it guarantees that they do not possess antlers (~q is true). However, it does not exclude the possibility of non-human beings lacking antlers or humans having antlers due to other reasons. It simply establishes a relationship between being human and not having antlers based on the given statement.

Learn more about Propositional Logic

brainly.com/question/13104824

#SPJ11


Related Questions

Solve the initial value problem EXAMPLE 1: Solve the initial value problem. dx -10-x, y (0) = -1

Answers

The solution to the initial value problem dx/dy = -10-x, y(0) = -1 is y = e-x-10x-10.

To solve the initial value problem dx/dy = -10-x, y(0) = -1, we can use separation of variables. We start by separating the variables, placing the dx term on one side and the dy term on the other side. This gives us dx = -10-x dy.

Next, we integrate both sides of the equation. On the left side, we integrate dx, which gives us x. On the right side, we integrate -10-x dy, which can be rewritten as -10[tex]e^{-x}[/tex] dy. Integrating -10[tex]e^{-x}[/tex] dy gives us -10[tex]e^{-x}[/tex] + C, where C is the constant of integration.

Now, we solve for y by isolating it. We rewrite -10e-x + C as -10 - e-x + C to match the initial condition y(0) = -1. Plugging in the value of y(0), we have -10 - [tex]e^{0}[/tex] + C = -1. Simplifying this equation, we find C = 9.

Finally, we substitute the value of C back into our equation -10 - [tex]e^{-x}[/tex] + C, giving us -10 - [tex]e^{-x}[/tex] + 9. Simplifying further, we get y = -1 - [tex]e^{-x}[/tex].

Therefore, the solution to the initial value problem dx/dy = -10-x, y(0) = -1 is y = -1 - [tex]e^{-x}[/tex].

Learn more about initial value problem

brainly.com/question/30466257

#SPJ11

The following relations are on {1,3,5,7}. Let r be the relation
xry iff y=x+2 and s the relation xsy iff y in rs.

Answers

The relation r is {(1, 3), (3, 5), (5, 7)}. The relation s is {(1, 5), (1, 7), (3, 7)}.

In the given question, we are provided with a set {1, 3, 5, 7} and two relations, r and s, defined on this set. The relation r is defined as "xry iff y=x+2," which means that for any pair (x, y) in r, the second element y is obtained by adding 2 to the first element x. In other words, y is always 2 greater than x. So, the relation r can be represented as {(1, 3), (3, 5), (5, 7)}.

Now, the relation s is defined as "xsy iff y is in rs." This means that for any pair (x, y) in s, the second element y must exist in the relation r. Looking at the relation r, we can see that all the elements of r are consecutive numbers, and there are no missing numbers between them. Therefore, any y value that exists in r must be two units greater than the corresponding x value. Applying this condition to r, we find that the pairs in s are {(1, 5), (1, 7), (3, 7)}.

Relation r consists of pairs where the second element is always 2 greater than the first element. Relation s, on the other hand, includes pairs where the second element exists in r. Therefore, the main answer is the relations r and s are {(1, 3), (3, 5), (5, 7)} and {(1, 5), (1, 7), (3, 7)}, respectively.

Learn more about relation

brainly.com/question/2253924

#SPJ11

Directions: Do as indicated. Show your solutions as neatly as possible. Draw corresponding figures as needed in the problem. 1. Show that if we have on the same line OA + OB + OC = 0 PQ + PR + PS = 0 then AQ + BR + CS = 30P

Answers

By using the given information and properties of lines, we can prove that AQ + BR + CS = 30P.

In order to prove the equation AQ + BR + CS = 30P, we need to utilize the given information that OA + OB + OC = 0 and PQ + PR + PS = 0.

Let's consider the points A, B, C, P, Q, R, and S that lie on the same line. The equation OA + OB + OC = 0 implies that the sum of the distances from point O to points A, B, and C is zero. Similarly, the equation PQ + PR + PS = 0 indicates that the sum of the distances from point P to points Q, R, and S is zero.

Now, let's examine the expression AQ + BR + CS. We can rewrite AQ as (OA - OQ), BR as (OB - OR), and CS as (OC - OS). By substituting these values, we get (OA - OQ) + (OB - OR) + (OC - OS).

Considering the equations OA + OB + OC = 0 and PQ + PR + PS = 0, we can rearrange the terms and rewrite them as OA = -(OB + OC) and PQ = -(PR + PS). Substituting these values into the expression, we have (-(OB + OC) - OQ) + (OB - OR) + (OC - OS).

Simplifying further, we get -OB - OC - OQ + OB - OR + OC - OS. By rearranging the terms, we have -OQ - OR - OS.

Since PQ + PR + PS = 0, we can rewrite it as -OQ - OR - OS = 0. Therefore, AQ + BR + CS = 30P is proven.

Learn more about: properties of lines

brainly.com/question/29178831

#SPJ11

Which quadratic function shows the widest compared to the parent function y =

Oy=x²
O y = 5x²
Oy=x²
O y = 3x²

Answers

The quadratic function that shows the widest graph compared to the parent function y = x² is y = 5x².

The quadratic function that shows the widest graph compared to the parent function y = x² is y = 5x².

In a quadratic function, the coefficient in front of the x² term determines the shape of the graph.

When the coefficient is greater than 1, it causes the graph to stretch vertically compared to the parent function.

Conversely, when the coefficient is between 0 and 1, it causes the graph to compress vertically.

Comparing the given options, y = 5x² has a coefficient of 5, which is greater than 1.

This means that the graph of y = 5x² will be wider than the parent function y = x²

The graph of y = x² is a basic parabola that opens upward, symmetric around the y-axis.

By multiplying the coefficient by 5 in y = 5x², the graph stretches vertically, making it wider compared to the parent function.

On the other hand, the options y = x² and y = 3x² have coefficients of 1 and 3, respectively, which are both less than 5.

Hence, they will not be as wide as y = 5x².

For similar question on  quadratic function.

https://brainly.com/question/29051300  

#SPJ8

Function h has an x-intercept at (4,0). Which statement must be true about D, the discriminant of function h?
A. D>0
B. D >_ 0
C. D = 0
D. D< 0

Answers

Answer:

To determine the statement that must be true about the discriminant of function h, we need to consider the nature of the x-intercept and its relationship with the discriminant.

The x-intercept of a function represents the point at which the function crosses the x-axis, meaning the y-coordinate is zero. In this case, the x-intercept is given as (4, 0), which means that the function h passes through the x-axis at x = 4.

The discriminant of a quadratic function is given by the expression Δ = b² - 4ac, where the quadratic function is written in the form ax² + bx + c = 0.

Since the x-intercept of function h is at (4, 0), we know that the quadratic function has a solution at x = 4. This means that the discriminant, Δ, must be equal to zero.

Therefore, the correct statement about the discriminant D is:

C. D = 0

Answer:

C. D = 0

Step-by-step explanation:

If the quadratic function h has an x-intercept at (4,0), then the quadratic equation can be written as h(x) = a(x-4) ^2. The discriminant of a quadratic equation is given by the expression b^2 - 4ac. In this case, since the x-intercept is at (4,0), we know that h (4) = 0. Substituting this into the equation for h(x), we get 0 = a (4-4) ^2 = 0. This means that a = 0. Since a is zero, the discriminant of h(x) is also zero. Therefore, statement c. d = 0 must be true about d, the discriminant of function h.



Find the area of ΔABC . Round your answer to the nearest tenth

m ∠ C=68°, b=12,9, c=15.2

Answers

To find the area of triangle ΔABC, we can use the formula for the area of a triangle given its side lengths, also known as Heron's formula. Heron's formula states that the area (A) of a triangle with side lengths a, b, and c is:

A = [tex]\sqrt{(s(s-a)(s-b)(s-c))}[/tex]

where s is the semi perimeter of the triangle, calculated as:

s = (a + b + c)/2

In this case, we have the side lengths b = 12, a = 9, and c = 15.2, and we know that ∠C = 68°.

s = (9 + 12 + 15.2)/2 = 36.2/2 = 18.1

Using Heron's formula, we can calculate the area:

A = [tex]\sqrt{(18.1(18.1-9)(18.1-12)(18.1-15.2))}[/tex]

A ≈ 49.9

Therefore, the area of triangle ΔABC, rounded to the nearest tenth, is approximately 49.9 square units.

Learn more about Heron's formula here:

brainly.com/question/29184159

#SPJ11

1 Create a truth table to determine whether ( ∧ ) ∨ (¬( → ) ∨ ¬( → )) is a tautology, a contradiction, or a contingent sentence. Be sure to explain what feature of the truth table you’ve drawn justifies your answer. (That is, indicate which part, or parts, of the table show what the answer is and why.)

Answers

It is a tautology.

In order to create a truth table for ( ∧ ) ∨ (¬( → ) ∨ ¬( → )) and determine whether it is a tautology, a contradiction, or a contingent sentence, follow the steps given below:

Step 1: First, find out the number of propositional variables in the given statement. In this case, there are two propositional variables. Let's call them p and q.

Step 2: Create the truth table with columns for p, q, ¬p, ¬q, ( p ∧ q ), ( p → q ), ¬( p → q ), ¬( p → q ), (¬( p → q )) ∨ ¬( p → q ), and ( p ∧ q ) ∨ ((¬( p → q )) ∨ ¬( p → q )).

Step 3: Fill in the column for p and q with all the possible combinations of truth values. Since there are two variables, there will be four rows. The table will look like this:

Step 4: Evaluate the columns for ¬p, ¬q, ( p ∧ q ), ( p → q ), ¬( p → q ), ¬( p → q ), (¬( p → q )) ∨ ¬( p → q ), and ( p ∧ q ) ∨ ((¬( p → q )) ∨ ¬( p → q )).

Step 5: The column for ( p ∧ q ) ∨ ((¬( p → q )) ∨ ¬( p → q )) will determine whether the given statement is a tautology, a contradiction, or a contingent sentence. The feature of the truth table that justifies the answer is whether there are any rows where the statement is false.

If there are no rows where the statement is false, then it is a tautology.

If there are no rows where the statement is true, then it is a contradiction.

If there are both true and false rows, then it is a contingent sentence.

The completed truth table is shown below:

p  q  ¬p  ¬q  ( p ∧ q )  ( p → q )  ¬( p → q )  ¬( p → q )  (¬( p → q )) ∨ ¬( p → q )  ( p ∧ q ) ∨ ((¬( p → q )) ∨ ¬( p → q ))T  T   F   F       T        T           F                F                                   F                            TT  F   F   T       F        F           T                T                                   T                            FT  T   F   F       F        T           F                F                                   F                            FT  F   T   F       T        T           T                T                                   T                            T

The column for ( p ∧ q ) ∨ ((¬( p → q )) ∨ ¬( p → q )) shows that the statement is true for every row. Therefore, it is a tautology.

Learn more about Tautology from the link :

https://brainly.com/question/1213305

#SPJ11

Based on the analysis of the Truth Table,  ( ∧ ) ∨ (¬( → ) ∨ ¬( → )) is a tautology, meaning it is always true regardless of the truth values of its components.

How is this   so?

To determine   whether the given logical expression is a tautology, a contradiction,or a contingent sentence, we can create a truth table and evaluate the expression for all possible combinations of truth values.

Let's break down the logical expression step by step  -

(∧) ∨(¬(→) ∨ ¬(→) )

1. Let's assign variables to each part of the expression  -

  - P  -  (∧)

  - Q  -  ¬(→)

  - R  -  ¬(→)

2. Expand the expression using the assigned variables  -

  - P ∨ (Q ∨ R)

3. Construct the truth table by considering all possible combinations of truth values for P, Q, and R  -  See attached.

4. Analyzing the truth table  -

  - The truth table shows that the expression evaluates to true (T) for all possible combinations of truth values. There are no rows where the expression evaluates to false (F).

  - Since the   expression evaluates to true for all cases,it is a tautology.

Therefore,( ∧ ) ∨ (¬( → ) ∨ ¬( → )) is a tautology,   meaning it is always true regardless of the truth values of its components.

Learn more about Truth Table at:

https://brainly.com/question/28605215

#SPJ4

Fifty-five distinct numbers are randomly selected from the first 100 natural numbers.
(a) Prove there must be two which differ by 10, and two which differ by 12.
(b) Show there doesn’t have to be two which differ by 11

Answers

(a) The proof is as follows: By the Pigeonhole Principle, if 55 distinct numbers are selected from a set of 100 natural numbers, there must exist at least two numbers that fall into the same residue class modulo 11. This means there are two numbers that have the same remainder when divided by 11. Since there are only 10 possible remainders modulo 11, the difference between these two numbers must be a multiple of 11. Therefore, there exist two numbers that differ by 11. Similarly, using the same reasoning, there must be two numbers that differ by 12.

(b) To show that there doesn't have to be two numbers that differ by 11, we can provide a counterexample. Consider the set of numbers {1, 12, 23, 34, ..., 538, 549}. This set contains 55 distinct numbers selected from the first 100 natural numbers, and no two numbers in this set differ by 11. The difference between any two consecutive numbers in this set is 11, which means there are no two numbers that differ by 11.

(a) The Pigeonhole Principle is a mathematical principle that states that if more objects are placed into fewer containers, then at least one container must contain more than one object. In this case, the containers represent the residue classes modulo 11, and the objects represent the selected numbers. Since there are more numbers than residue classes, at least two numbers must fall into the same residue class, resulting in a difference that is a multiple of 11.

(b) To demonstrate that there doesn't have to be two numbers that differ by 11, we provide a specific set of numbers that satisfies the given conditions. In this set, the difference between any two consecutive numbers is 11, ensuring that there are no pairs of numbers that differ by 11. This example serves as a counterexample to disprove the claim that there must always be two numbers that differ by 11.

Learn more about the Pigeonhole Principle.

brainly.com/question/31687163

#SPJ11

5. Solve the system of differential equations for: x" + 3x - 2y = 0 x"+y" - 3x + 5y = 0 for x(0) = 0, x'(0) = 1, y(0) = 0, y'(0) = 1 [14]

Answers

The solution to the given system of differential equations is x(t) = (3/4)e^(2t) - (1/4)e^(-t), y(t) = (1/2)e^(-t) + (1/4)e^(2t).

To solve the system of differential equations, we first write the equations in matrix form as follows:

[1, -2; -3, 5] [x; y] = [0; 0]

Next, we find the eigenvalues and eigenvectors of the coefficient matrix [1, -2; -3, 5]. The eigenvalues are λ1 = 2 and λ2 = 4, and the corresponding eigenvectors are v1 = [1; 1] and v2 = [-2; 3].

Using the eigenvalues and eigenvectors, we can express the general solution of the system as x(t) = c1e^(2t)v1 + c2e^(4t)v2, where c1 and c2 are constants. Substituting the given initial conditions, we can solve for the constants and obtain the specific solution.

After performing the calculations, we find that the solution to the system of differential equations is x(t) = (3/4)e^(2t) - (1/4)e^(-t) and y(t) = (1/2)e^(-t) + (1/4)e^(2t).

Learn more about: differential equations

brainly.com/question/32645495

#SPJ11

A 3500 lbs car rests on a hill inclined at 6◦ from the horizontal. Find the magnitude
of the force required (ignoring friction) to prevent the car from rolling down the hill. (Round
your answer to 2 decimal places)

Answers

The magnitude of the force required to prevent the car from rolling down the hill is 1578.88 Newton.

How to calculate the magnitude of the force?

In accordance with Newton's Second Law of Motion, the force acting on this car is equal to the horizontal component of the force (Fx) that is parallel to the slope:

Fx = mgcosθ

Fx = Fcosθ

Where:

F represents the force.m represents the mass of a physical object.g represents the acceleration due to gravity.

Note: 3500 lbs to kg = 3500/2.205 = 1587.573 kg

By substituting the given parameters into the formula for the horizontal component of the force (Fx), we have;

Fx = 1587.573cos(6)

Fx = 1578.88 Newton.

Read more on force here: https://brainly.com/question/25961211

#SPJ4

The magnitude of the force required to prevent the car from rolling down the hill is approximately 367.01 lbs.

To find the magnitude of the force required to prevent the car from rolling down the inclined hill, we can analyze the forces acting on the car.

The weight of the car acts vertically downward with a magnitude of 3500 lbs. We can decompose this weight into two components: one perpendicular to the incline and one parallel to the incline.

The component perpendicular to the incline can be calculated as W_perpendicular = 3500 * cos(6°).

The component parallel to the incline represents the force that tends to make the car roll down the hill. To prevent this, an equal and opposite force is required, which is the force we need to find.

Since we are ignoring friction, the force required to prevent rolling is equal to the parallel component of the weight: F_required = 3500 * sin(6°).

Calculating this value gives:

F_required = 3500 * sin(6°) ≈ 367.01 lbs (rounded to 2 decimal places).

Therefore, the magnitude of the force required to prevent the car from rolling down the hill is approximately 367.01 lbs.

Learn more about magnitude here:

https://brainly.com/question/30337362

#SPJ11

can you help me find constant A? 2.2 Activity: Dropping an object from several heights For this activity, we collected time-of-flight data using a yellow acrylic ball and the Free-Fall Apparatus. Taped to the yellow acrylic ball is a small washer. When the Drop Box is powered, this washer allowed us to suspend the yellow ball from the electromagnet. Question 2-1: Derive a general expression for the time-of-flight of an object falling through a known heighth that starts at rest. Using this expression, predict the time of flight for the yellow ball. The graph will automatically plot the time-of-flight data you entered in the table. Using your expression from Question 2-1, you will now apply a user-defined best-fit line to determine how well your model for objects in free-fall describes your collected data. Under the Curve Fitting Tool, select "User-defined." You should see a curve that has the form "A*x^(1/2)." If this is not the case, you can edit the "User Defined" curve by following these steps: 1. In the menu on the left-hand side of the screen, click on the Curve Fit Editor button Curve Fit A "Curve Fit Editor" menu will appear. 2. Then, on the graph, click on the box by the fitted curve labeled "User Defined," 3. In the "Curve Fit Editor" menu, type in "A*x^(1/2)". Screenshot Take a screenshot of your data using the Screenshot Tool, which adds the screenshot to the journal in Capstone. Open the journal by using the Journal Tool Save your screenshot as a jpg or PDF, and include it in your assignment submission. Question 2-2: Determine the constant A from the expression you derived in Question 2-1 and compare it to the value that you obtained in Capstone using the Curve Fitting Tool.
Previous question

Answers

The constant A is equal to 4.903. This can be found by fitting a user-defined curve to the time-of-flight data using the Curve Fitting Tool in Capstone.

The time-of-flight of an object falling through a known height h that starts at rest can be calculated using the following expression:

t = √(2h/g)

where g is the acceleration due to gravity (9.8 m/s²).

The Curve Fitting Tool in Capstone can be used to fit a user-defined curve to a set of data points. In this case, the user-defined curve will be of the form A*x^(1/2), where A is the constant that we are trying to find.

To fit a user-defined curve to the time-of-flight data, follow these steps:

Open the Capstone app and select the "Data" tab.Import the time-of-flight data into Capstone.Select the "Curve Fitting" tool.Select "User-defined" from the drop-down menu.In the "Curve Fit Editor" dialog box, type in "A*x^(1/2)".Click on the "Fit" button.

Capstone will fit the user-defined curve to the data and display the value of the constant A in the "Curve Fit Editor" dialog box. In this case, the value of A is equal to 4.903.

To know more about value click here

brainly.com/question/30760879

#SPJ11

1. Transform each of the following functions using Table of the Laplace transform (i). (ii). t²t3 cos 7t est

Answers

The Laplace transform of the functions (i) and (ii) can be found using the Table of Laplace transforms.

In the first step, we can transform each function using the Table of Laplace transforms. The Laplace transform is a mathematical tool that converts a function of time into a function of complex frequency. By applying the Laplace transform, we can simplify differential equations and solve problems in the frequency domain.

In the case of function (i), we can consult the Table of Laplace transforms to find the corresponding transform. The Laplace transform of t^2 is given by 2!/s^3, and the Laplace transform of t^3 is 3!/s^4. The Laplace transform of cos(7t) is s/(s^2+49). Finally, the Laplace transform of e^st is 1/(s - a), where 'a' is a constant.

For function (ii), we can apply the Laplace transform to each term separately. The Laplace transform of t^2 is 2!/s^3, the Laplace transform of t^3 is 3!/s^4, the Laplace transform of cos(7t) is s/(s^2+49), and the Laplace transform of e^st is 1/(s - a).

By applying the Laplace transform to each term and combining the results, we obtain the transformed functions.

Learn more about Laplace transform

brainly.com/question/30759963

#SPJ11

The exterior angle of a regular polygon is 5 times the interior angle. Find the exterior angle, the interior angle and the number of sides​

Answers

Answer:The interior angle of a polygon is given by

The exterior angle of a polygon is given by

where n is the number of sides of the polygon

The statement

The interior of a regular polygon is 5 times the exterior angle is written as

Solve the equation

That's

Since the denominators are the same we can equate the numerators

That's

180n - 360 = 1800

180n = 1800 + 360

180n = 2160

Divide both sides by 180

n = 12

I).

The interior angle of the polygon is

The answer is

150°

II.

Interior angle + exterior angle = 180

From the question

Interior angle = 150°

So the exterior angle is

Exterior angle = 180 - 150

We have the answer as

30°

III.

The polygon has 12 sides

IV.

The name of the polygon is

Dodecagon

Step-by-step explanation:

Describe where you would plot a point at the approximate location of 3 square root 15

Answers

To plot a point at the approximate location of √15 on a 2D coordinate system, we first need to determine the values for the x and y coordinates.

Since √15 is an irrational number, it cannot be expressed as a simple fraction or decimal. However, we can approximate its value using a calculator or mathematical software. The approximate value of √15 is around 3.87298.

Assuming you want to plot the point (√15, 0) on the coordinate system, the x-coordinate would be √15 (approximately 3.87298), and the y-coordinate would be 0 (since it lies on the x-axis).

So, on the coordinate system, you would plot a point at approximately (3.87298, 0).

Write 220 : 132 in the form 1 : n

Answers

The expression given can be expressed in it's splest term as 5 : 3

Given the expression :

220 : 132

To simplify to it's lowest term , divide both values by 44

Hence, we have :

5 : 3

At this point, none of the values can be divide further by a common factor.

Hence, the expression would be 5:3

Learn more on ratios :https://brainly.com/question/2328454

#SPJ1

Consider the data.

xi 2 6 9 13 20

yi 7 16 10 24 21

(a) What is the value of the standard error of the estimate? (Round your answer to three decimal places.

(b) Test for a significant relationship by using the t test. Use = 0. 5.

State the null and alternative hypotheses.

H0: 1 ≠ 0

Ha: 1 = 0

H0: 0 ≠ 0

Ha: 0 = 0

H0: 1 ≥ 0

Ha: 1 < 0

H0: 0 = 0

Ha: 0 ≠ 0

H0: 1 = 0

Ha: 1 ≠ 0

Find the value of the test statistic. (Round your answer to three decimal places. )

=_____

Answers

To find the standard error of the estimate, we need to calculate the residuals and their sum of squares.

The residuals (ei) can be obtained by subtracting the predicted values (ŷi) from the actual values (yi).  The predicted values can be calculated using a regression model.

Using the given data:

xi: 2 6 9 13 20

yi: 7 16 10 24 21

We can use linear regression to find the predicted values (ŷi). The regression equation is of the form ŷ = a + bx, where a is the intercept and b is the slope.

Calculating the regression equation, we get:

a = 10.48

b = 0.8667

Using these values, we can calculate the predicted values (ŷi) for each xi:

ŷ1 = 12.21

ŷ2 = 15.75

ŷ3 = 18.41

ŷ4 = 21.94

ŷ5 = 26.68

Now, we can calculate the residuals (ei) by subtracting the predicted values from the actual values:

e1 = 7 - 12.21 = -5.21

e2 = 16 - 15.75 = 0.25

e3 = 10 - 18.41 = -8.41

e4 = 24 - 21.94 = 2.06

e5 = 21 - 26.68 = -5.68

Next, we square each residual and calculate the sum of squares of the residuals (SSR):

SSR = e1^2 + e2^2 + e3^2 + e4^2 + e5^2 = 83.269

To find the standard error of the estimate (SE), we divide the SSR by the degrees of freedom (df), which is the number of data points minus the number of parameters in the regression model:

df = n - k - 1

Here, n = 5 (number of data points) and k = 2 (number of parameters: intercept and slope).

df = 5 - 2 - 1 = 2

SE = sqrt(SSR/df) = sqrt(83.269/2) ≈ 7.244

(a) The value of the standard error of the estimate is approximately 7.244.

(b) To test for a significant relationship using the t test, we compare the t statistic to the critical t value at the given significance level (α = 0.05).

The null and alternative hypotheses are:

H0: β1 = 0 (There is no significant relationship between x and y)

Ha: β1 ≠ 0 (There is a significant relationship between x and y)

To find the value of the test statistic, we need additional information such as the sample size, degrees of freedom, and the estimated standard error of the slope coefficient. Without this information, we cannot determine the exact value of the test statistic.

Learn more about squares here

https://brainly.com/question/27307830

#SPJ11

Determine whether the following matrices are in echelon form, reduced echelon form or not in echelon form.
a. Choose
-10 0 1
0 -8 0
b.
Choose
1 0 1
0 1 0
0 0 0
c. Choose
1 0 0 -5
0 1 0 -2
0 0 0 0 d. Choose
1 0 0 4
0 0 0 0
0 1 0 -7
Note: In order to get credit for this problem all answers must be correct.
Problem 14. (a) Perform the indicated row operations on the matrix A successively in the order they are given until a matrix in row echelon form is produced.
A = 3 -9 -3
5 -14 -3
Apply (1/3)R1 → R₁ to A.
Apply R₂-5R1→ R₂ to the previous result.
(b) Solve the system
x=
J 3x1-9x2 = do do

Answers

The solution to  echelon form matrix of the system is x = (1, -1, -35/3, -14/3, 1)

(a) Let's analyze each matrix to determine if it is in echelon form, reduced echelon form, or not in echelon form:

a. A = | 10 0 10 -8 0 |

| 0 0 0 0 0 |

This matrix is not in echelon form because there are non-zero elements below the leading 1s in the first row.

b. B = | 1 0 10 1 0 |

| 0 0 0 0 0 |

This matrix is in echelon form because all non-zero rows are above any rows of all zeros. However, it is not in reduced echelon form because the leading 1s do not have zeros above and below them.

c. C = | 1 0 0 -50 |

| 1 0 -20 0 |

| 0 0 0 0 |

This matrix is not in echelon form because there are non-zero elements below the leading 1s in the first and second rows.

d. D = | 1 0 0 40 |

| 0 1 0 -7 |

| 0 0 0 0 |

This matrix is in reduced echelon form because it satisfies the following conditions:

All non-zero rows are above any rows of all zeros.

The leading entry in each non-zero row is 1.

The leading 1s are the only non-zero entry in their respective columns.

(b) The system of equations can be written as follows:

3x1 - 9x2 = 0

To solve this system, we can use row operations on the augmented matrix [A | B] until it is in reduced echelon form:

Multiply the first row by (1/3) to make the leading coefficient 1:

R1' = (1/3)R1 = (1/3) * (3 -9 -35 -14 -3) = (1 -3 -35/3 -14/3 -1)

Subtract 5 times the first row from the second row:

R2' = R2 - 5R1 = (0 0 0 0 0) - 5 * (1 -3 -35/3 -14/3 -1) = (-5 15 35/3 28/3 5)

The resulting matrix [A' | B'] in reduced echelon form is:

A' = (1 -3 -35/3 -14/3 -1)

B' = (-5 15 35/3 28/3 5)

From the reduced echelon form, we can obtain the solution to the system of equations:

x1 = 1

x2 = -1

x3 = -35/3

x4 = -14/3

x5 = 1

Therefore, the solution to the system is x = (1, -1, -35/3, -14/3, 1).

Learn more about: echelon form

https://brainly.com/question/30403280

#SPJ11

For which (if any) of the three dependent variables in this data set (gender, age, ethnicity)
would you want to report the mean?
A. Gender
B. Ethnicity
C. Age
D. A and B
E. A and C

Answers

Out of the three dependent variables in the given data set, gender and age are the ones for which mean should be reported as an answer. Therefore, the correct option is E.

Mean is defined as the average of all the values in a dataset. It is calculated by summing up all the values and then dividing them by the total number of values. Mean is a common measure of central tendency that is often used in statistics. Mean is used to describe the average value of a dataset.

A dependent variable is the variable that is being measured or tested in an experiment. It is the variable that is expected to change in response to the independent variable. In other words, it is the variable that depends on the independent variable. The given data set has three dependent variables: gender, age, and ethnicity. Out of these three variables, mean should be reported for gender and age only. Therefore, the correct answer is E. A and C.

Learn more about Mean:

https://brainly.com/question/20118982

#SPJ11

The locations of student desks are mapped using a coordinate plane where the origin represents the center of the classroom Maria's desk is located at (4, -1) and
Monique's desk is located at (-4, 3) If each unit represents 1 foot, what is the distance from Maria's desk to Monique's desk?
√46 feet
√12 feet
160 feet

Answers

Answer:

I get 4[tex]\sqrt{5}[/tex] which is not a choice.

Step-by-step explanation:

Determine whether the given value is a statistic or a parameter. In a study of all 3237 seniors at a college, it is found that 55% own a computer.

Answers

The given value, 55%, is a statistic. A statistic is a numerical summary of a sample.

To determine whether it is a statistic or a parameter, we need to understand the definitions of these terms:

- Statistic: A statistic is a numerical value that describes a sample, which is a subset of a population. It is used to estimate or infer information about the corresponding population.

- Parameter: A parameter is a numerical value that describes a population as a whole. It is typically unknown and is usually estimated using statistics.

In this case, since the study includes all 3237 seniors at the college, the value "55%" represents the proportion of the entire population of seniors who own a computer. Therefore, it is a statistic.

Learn more about statistic here:

brainly.com/question/13281171

#SPJ11



A manufacturer is making cardboard boxes by cutting out four equal squares from the corners of the rectangular piece of cardboard and then folding the remaining part into a box. The length of the cardboard piece is 1 in. longer than its width. The manufacturer can cut out either 3 × 3 in. squares, or 4 × 4 in. squares. Find the dimensions of the cardboard for which the volume of the boxes produced by both methods will be the same.

c. Which method can you use to solve the system?

Answers

The dimensions of the cardboard for which the volume of the boxes produced by both methods will be the same are width = 26 in and length = 27 in.

(c)The method to solve the system is to equate the volume of the boxes obtained by the two methods since they are both the same.

We are given that a manufacturer is making cardboard boxes by cutting out four equal squares from the corners of the rectangular piece of cardboard and then folding the remaining part into a box. The length of the cardboard piece is 1 in. longer than its width. The manufacturer can cut out either 3 × 3 in. squares, or 4 × 4 in. squares.

We have to find the dimensions of the cardboard for which the volume of the boxes produced by both methods will be the same. Let the width of the cardboard be x in. Then the length of the cardboard is (x + 1) in. The box obtained by cutting out 4 squares of side 3 in. from the cardboard will have:

length (x - 2) in, width (x - 2 - 3 - 3) in = (x - 8) in, and height 3 in.

Volume of the box obtained by cutting out 4 squares of side 3 in. from the cardboard is given by:

V1 = length × width × height= (x - 2) × (x - 8) × 3 in³= 3(x - 2)(x - 8) in³

The box obtained by cutting out 4 squares of side 4 in. from the cardboard will have:

length (x - 2) in, width (x - 2 - 4 - 4) in = (x - 12) in, and height 4 in.

Volume of the box obtained by cutting out 4 squares of side 4 in. from the cardboard is given by:

V2 = length × width × height = (x - 2) × (x - 12) × 4 in³= 4(x - 2)(x - 12) in³

As we know

V1 = V2.

Therefore, 3(x - 2)(x - 8) = 4(x - 2)(x - 12)3(x - 2)(x - 8) - 4(x - 2)(x - 12) = 0(x - 2)(3x - 24 - 4x + 48) = 0(x - 2)(- x + 26) = 0

Therefore, x = 2 or x = 26. x cannot be 2 as the length of the cardboard should be (x + 1) in. which cannot be 3 in.

Therefore, x = 26 in is the width of the cardboard. The length of the cardboard = (x + 1) in.= (26 + 1) in.= 27 in.

Read more about rectangle here:

https://brainly.com/question/29123947

#SPJ11

Tovaluate-147 +5₁ when yoq y=9

Answers

After evaluation when y = 9, the value of -147 + 5₁ is -102.

Evaluation refers to the process of finding the value or result of a mathematical expression or equation. It involves substituting given values or variables into the expression and performing the necessary operations to obtain a numerical or simplified value. The result obtained after substituting the values is the evaluation of the expression.

To evaluate the expression -147 + 5₁ when y = 9, we substitute the value of y into the expression:

-147 + 5 * 9

Simplifying the multiplication:

-147 + 45

Performing the addition:

-102

Therefore, when y = 9, the value of -147 + 5₁ is -102.

Learn more about evaluation

https://brainly.com/question/20067491

#SPJ11

Consider the ellipsoid x²+ y²+4z² = 41.
The implicit form of the tangent plane to this ellipsoid at (-1, -2, -3) is___
The parametric form of the line through this point that is perpendicular to that tangent plane is L(t) =____
Find the point on the graph of z=-(x²+ y²) at which vector n = (30, 6,-3) is normal to the tangent plane. P =______

Answers

The point P on the graph of z = -(x² + y²) at which the vector n = (30, 6, -3) is normal to the tangent plane is P = (-30, -6, -936).

To find the implicit form of the tangent plane to the ellipsoid x² + y² + 4z² = 41 at the point (-1, -2, -3), we can follow these steps:
1. Differentiate the equation of the ellipsoid with respect to x, y, and z to find the partial derivatives:

  ∂F/∂x = 2x
  ∂F/∂y = 2y
  ∂F/∂z = 8z


2. Substitute the coordinates of the given point (-1, -2, -3) into the partial derivatives:

  ∂F/∂x = 2(-1) = -2
  ∂F/∂y = 2(-2) = -4
  ∂F/∂z = 8(-3) = -24


3. The equation of the tangent plane can be expressed as:
  -2(x + 1) - 4(y + 2) - 24(z + 3) = 0


4. Simplify the equation to get the implicit form of the tangent plane:

  -2x - 4y - 24z - 22 = 0


The implicit form of the tangent plane to the given ellipsoid at (-1, -2, -3) is -2x - 4y - 24z - 22 = 0.

Now, let's find the parametric form of the line through this point that is perpendicular to the tangent plane:


1. The direction vector of the line can be obtained from the coefficients of x, y, and z in the equation of the tangent plane:
  Direction vector = (-2, -4, -24)


2. Normalize the direction vector by dividing each component by its magnitude:
  Magnitude = sqrt{(-2)^2 + (-4)^2 + (-24)^2}= (\sqrt{576})= 24

 Normalized direction vector = (-2/24, -4/24, -24/24) = (-1/12, -1/6, -1)


3. The parametric form of the line through the given point (-1, -2, -3) is:

 L(t) = (-1, -2, -3) + t(-1/12, -1/6, -1)

To find the point on the graph of z = -(x² + y²) at which the vector n = (30, 6, -3) is normal to the tangent plane, we can follow these steps:
1. Differentiate the equation z = -(x² + y²) with respect to x and y to find the partial derivatives:
 ∂z/∂x = -2x
  ∂z/∂y = -2y


2. Substitute the coordinates of the point into the partial derivatives:
  ∂z/∂x = -2(30) = -60
  ∂z/∂y = -2(6) = -12


3. The normal vector of the tangent plane is the negative of the gradient:
  Normal vector = (-∂z/∂x, -∂z/∂y, 1) = (60, 12, 1)


4. The point on the graph of z = -(x² + y²) at which the vector n = (30, 6, -3) is normal to the tangent plane can be found by solving the system of equations:
  -2x = 60
  -2y = 12
  z = -(x² + y²)

Solving these equations, we find x = -30, y = -6, and z = -936.

Therefore, the point P on the graph of z = -(x² + y²) at which the vector n = (30, 6, -3) is normal to the tangent plane is P = (-30, -6, -936).

Learn more about 'tangent plane':

https://brainly.com/question/31406556

#SPJ11

Find the determinant of the matrix
[2+2x³ 2-2x² + 4x³ 0]
[-x³ 1+ x² - 2x³ 0]
[10 + 6x² 20+12x² -3-3x²]
and use the adjoint method to find M-1
det (M) =
M-1=

Answers

The determinant of the matrix M is 0, and the inverse matrix [tex]M^{-1}[/tex] is undefined.

To find the determinant of the matrix and the inverse using the adjoint method, we start with the given matrix M:

[tex]M = \[\begin{bmatrix}2+2x^3 & 2-2x^2+4x^3 & 0 \\-x^3 & 1+x^2-2x^3 & 0 \\10+6x^2 & 20+12x^2-3-3x^2 & 0 \\\end{bmatrix}\][/tex]

To find the determinant of M, we can use the Laplace expansion along the first row:

[tex]det(M) = (2+2x^3) \[\begin{vmatrix}1+x^2-2x^3 & 0 \\20+12x^2-3-3x^2 & 0 \\\end{vmatrix}\] - (2-2x^2+4x^3) \[\begin{vmatrix}-x^3 & 0 \\10+6x^2 & 0 \\\end{vmatrix}\][/tex]

[tex]det(M) = (2+2x^3)(0) - (2-2x^2+4x^3)(0) = 0[/tex]

Therefore, the determinant of M is 0.

To find the inverse matrix, [tex]M^{-1}[/tex], using the adjoint method, we first need to find the adjoint matrix, adj(M).

The adjoint of M is obtained by taking the transpose of the matrix of cofactors of M.

[tex]adj(M) = \[\begin{bmatrix}C_{11} & C_{21} & C_{31} \\C_{12} & C_{22} & C_{32} \\C_{13} & C_{23} & C_{33} \\\end{bmatrix}\][/tex]

Where [tex]C_{ij}[/tex] represents the cofactor of the element [tex]a_{ij}[/tex] in M.

The inverse of M can then be obtained by dividing adj(M) by the determinant of M:

[tex]M^{-1} = \(\frac{1}{det(M)}\) adj(M)[/tex]

Since det(M) is 0, the inverse of M does not exist.

Therefore, [tex]M^{-1}[/tex] is undefined.

To know more about determinant, refer here:

https://brainly.com/question/31867824

#SPJ4

How many ways can 2 men and 2 women be selected for a debate toumament if there are 13 male finalists and 10 female finalists? There are ways to select 2 men and 2 women for the debate tournament.

Answers

The number of ways to select 2 men and 2 women for the debate tournament is 78 * 45 = 3510 ways.

To select 2 men from 13 male finalists, we can use the combination formula. The formula for selecting r items from a set of n items is given by nCr, where n is the total number of items and r is the number of items to be selected.
In this case, we want to select 2 men from 13 male finalists, so we have 13C2 = (13!)/(2!(13-2)!) = 78 ways to select 2 men.

Similarly, to select 2 women from 10 female finalists, we have 10C2 = (10!)/(2!(10-2)!) = 45 ways to select 2 women.
To find the total number of ways to select 2 men and 2 women, we can multiply the number of ways to select 2 men by the number of ways to select 2 women.

So, the total number of ways to select 2 men and 2 women for the debate tournament is 78 * 45 = 3510 ways.

Learn more about combination here at:

https://brainly.com/question/4658834

#SPJ11

(b) A certain security system contains 12 parts. Suppose that the probability that each individual part will fail is 0.3 and that the parts fail independently of each other. Given that at least two of the parts have failed, compute the probability that at least three of the parts have failed?

Answers

Given that at least two of the parts have failed in the given case, the probability that at least three of the parts have failed is 0.336.

Let X be the number of parts that have failed. The probability distribution of X follows the binomial distribution with parameters n = 12 and p = 0.3, i.e. X ~ Bin(12, 0.3).

The probability that at least two of the parts have failed is:

P(X ≥ 2) = 1 − P(X < 2)

P(X < 2) = P(X = 0) + P(X = 1)

P(X = 0) = (12C0)(0.3)^0(0.7)^12 = 0.7^12 ≈ 0.013

P(X = 1) = (12C1)(0.3)^1(0.7)^11 ≈ 0.12

Therefore, P(X < 2) ≈ 0.013 + 0.12 ≈ 0.133

Hence, P(X ≥ 2) ≈ 1 − 0.133 = 0.867

Let Y be the number of parts that have failed, given that at least two of the parts have failed. Then, Y ~ Bin(n, q), where q = P(part fails | part has failed) is the conditional probability of a part failing, given that it has already failed.

From the given information,

q = P(X = k | X ≥ 2) = P(X = k and X ≥ 2)/P(X ≥ 2) for k = 2, 3, ..., 12.

The numerator P(X = k and X ≥ 2) is equal to P(X = k) for k ≥ 2 because X can only take on integer values. Therefore, for k ≥ 2, P(X = k | X ≥ 2) = P(X = k)/P(X ≥ 2).

P(X = k) = (12Ck)(0.3)^k(0.7)^(12−k)

P(X ≥ 3) = P(X = 3) + P(X = 4) + ... + P(X = 12)≈ 0.292 (using a calculator or software)

Therefore, the probability that at least three of the parts have failed, given that at least two of the parts have failed, is:

P(Y ≥ 3) = P(X ≥ 3 | X ≥ 2) ≈ P(X ≥ 3)/P(X ≥ 2) ≈ 0.292/0.867 ≈ 0.336

Learn more about Probability:

https://brainly.com/question/23382435

#SPJ11

Look at the image below. Identify the coordinates for point X, so that the ratio of AX : XB = 5 : 4

Answers

The coordinates of X that partitions XY in the ratio 5 to 4 include the following: X (-1.6, -7).

How to determine the coordinates of point X?

In this scenario, line ratio would be used to determine the coordinates of the point X on the directed line segment AB that partitions the segment into a ratio of 5 to 4.

In Mathematics and Geometry, line ratio can be used to determine the coordinates of X and this is modeled by this mathematical equation:

M(x, y) = [(mx₂ + nx₁)/(m + n)],  [(my₂ + ny₁)/(m + n)]

By substituting the given parameters into the formula for line ratio, we have;

M(x, y) = [(5(2) + 4(-6))/(5 + 4)],  [(5(-11) + 4(-2))/(5 + 4)]

M(x, y) = [(10 - 24)/(9)],  [(-55 - 8)/9]

M(x, y) = [-14/9],  [(-63)/9]

M(x, y) = (-1.6, -7)

Read more on line ratio here: brainly.com/question/14457392

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

In a manufacturing process that laminates several ceramic layers, 1. 0% of the assemblies are defective. Assume the assemblies are independent.

(a) What is the mean number of assemblies that need to be checked to obtain 5 defective assemblies? (Round to nearest integer)

(b) What is the standard deviation of the number of assemblies that need to be checked to obtain 5 defective assemblies?

Answers

(a)  The mean number of assemblies that need to be checked to obtain 5 defective assemblies is 500.

(b) The standard deviation of the number of assemblies that need to be checked to obtain 5 defective assemblies is approximately 2.22.

To answer the questions, we can use the concept of a binomial distribution since we are dealing with a manufacturing process where the probability of an assembly being defective is known (1.0%) and the assemblies are assumed to be independent.

In a binomial distribution, the mean (μ) is given by the formula μ = n * p, and the standard deviation (σ) is given by the formula σ = √(n * p * (1 - p)), where n is the number of trials and p is the probability of success.

(a) To obtain 5 defective assemblies, we need to check multiple assemblies until we reach 5 defective ones. Let's denote the number of assemblies checked as X. We are looking for the mean number of assemblies, so we need to find the value of n.

Using the formula μ = n * p and solving for n:

n = μ / p = 5 / 0.01 = 500

Therefore, the mean number of assemblies that need to be checked to obtain 5 defective assemblies is 500.

(b) To find the standard deviation, we use the formula σ = √(n * p * (1 - p)). Substituting the values:

σ = √(500 * 0.01 * (1 - 0.01)) = √(500 * 0.01 * 0.99) = √4.95 ≈ 2.22

Therefore, the standard deviation of the number of assemblies that need to be checked to obtain 5 defective assemblies is approximately 2.22.

Learn more about standard deviation here:-

https://brainly.com/question/13498201

#SPJ11

Three artificial flaws in type 316L austenitic stainless steel plates were fabricated using a powderbed-based laser metal additive manufacturing machine. The three artificial flaws were designed to have the same length, depth, and opening.
Flaw A is a simple rectangular slit with a surface length of 20 mm, depth of 5 mm, and opening of 0.4 mm, which was fabricated as a reference.
Flaw B simulates a flaw branched inside a material
Flaw C consists of 16 equally spaced columns
What type of probe do you propose to be used and suggest a suitable height, diameter and frequency? The flaws were measured by eddy current testing with a constant lift-off of 0.2 mm.
Draw the expected eddy current signals on the impedance plane and explain, in your words, why the eddy current signals appear different despite the flaws having the same length and depth

Answers

Step 1: The proposed probe for flaw detection in type 316L austenitic stainless steel plates is an eddy current probe with a suitable height, diameter, and frequency.

Step 2: Eddy current testing is an effective non-destructive testing method for detecting flaws in conductive materials. In this case, the eddy current probe should have a suitable height, diameter, and frequency to ensure accurate flaw detection.

The height of the probe should be adjusted to maintain a constant lift-off of 0.2 mm, which is the distance between the probe and the surface of the material being tested. This ensures consistent measurement conditions and reduces the influence of lift-off variations on the test results.

The diameter of the probe should be selected based on the size of the flaws and the desired spatial resolution. It should be small enough to accurately detect the flaws but large enough to cover the entire flaw area during scanning.

The frequency of the eddy current probe determines the depth of penetration into the material. Higher frequencies provide shallower penetration but higher resolution, while lower frequencies provide deeper penetration but lower resolution. The frequency should be chosen based on the expected depth of the flaws and the desired level of sensitivity.

Overall, the eddy current probe with suitable height, diameter, and frequency can effectively detect the artificial flaws in type 316L austenitic stainless steel plates fabricated using a powderbed-based laser metal additive manufacturing machine.

Learn more about eddy current probe
brainly.com/question/31499836

#SPJ11



Find the range for the measure of the third side of a triangle given the measures of two sides.

4 ft, 8 ft

Answers

The range for the measure of the third side of a triangle given the measures of two sides (4 ft, 8 ft), is 4 ft < third side < 12 ft.

To find the range for the measure of the third side of a triangle given the measures of two sides (4 ft, 8 ft), we can use the Triangle Inequality Theorem.

According to the Triangle Inequality Theorem, the third side of a triangle must be less than the sum of the other two sides and greater than the difference of the other two sides.

Substituting the given measures of the two sides (4 ft, 8 ft), we get:

Third side < (4 + 8) ft

Third side < 12 ft

And,

Third side > (8 - 4) ft

Third side > 4 ft

Therefore, the range for the measure of the third side of the triangle is 4 ft < third side < 12 ft.

Learn more about Triangle Inequality Theorem here: https://brainly.com/question/1163433

#SPJ11

Other Questions
Dr. Bloom wants to conduct a case study on an individual with an abnormal personality. He decides to do a case study, rather than another method because of the advantages to this method. Which of the following is NOT an advantage to the case study method? a) Provides justice to the topic of study. b) Necessary based on the amount of data available. c) Helps to provide a source of ideas to researchers. d) Allows findings to generalize to others with that personality In their moccasins: Marla's story_ (week 5)_ Explain empathy in the relation to conflict prevention Reflect on how you would gain insight into Marlas indigenous culture Examine how the nurses understanding of truth and reconciliation report will reduce conflict with Marla when establishing a therapeuticrelationship A- Which graphs could represent the Acceleration versus Time for CONSTANT VELOCITY MOTION Problem 1 A simple (i.e. single equilibrium stage) batch still is being used to separate benzene from o-xylene; a system which may be assumed to have a constant relative volatility of 6.7. The feed to the still is 1000 mol of 60 mol % benzene. The process is run until the instantaneous distillate composition is 70 mol % benzene. Determine: a) the composition and amount of the residue remaining in the still pot b) the amount and average composition of the distillate c) the time required for the process to run if the boil-up rate is 50 mol/h Problem 2 For the same system in Problem 1, the process is run until 50 mol% of the benzene originally in the still-pot has been vaporised. Determine a) the amount of o-xylene remaining in the still pot b) the amount and composition of the distillate c) which of the runs takes longer A company draws its total cost curve and total revenue curve on the same graph. If the firm wishes to maximize profits, it will select the output at which the slope of the total revenue curve is greatest. horizontal distance between the two curves is greatest. vertical distance between the two curves is greatest. total cost curve cuts the total revenue curve. Question 15 /1 The rule of equating marginal benefit with marginal cost is proper for economies, but it does not describe the way in which people make non-economic decisions. True False Research into the influence of group polarization on decision-making (for example, Moscovici and Zavalloni, 1969) suggests that groups tend to the initial tendencies of individual group members. a. Exaggerate b. Average Oc. Nullity d. Moderate Langara Woodcraft borrowed money to purchase equipment. The loan is repaid by making payments of $1004.84 at the end of every month over four years. If interest is 4.9% compounded semi-annually, what was the original loan balance? What is the resistivity of a wire of 0.89 mm diameter, 1.9 m length, and 68 m2 resistance. Number _____ Units ______ A particle starts from the origin at t=0.0 s with a velocity of 8.1 i m/s and moves in the xy plane with a constant acceleration of (-9.3 i + 8.8 j)m/s2. When the particle achieves the maximum positive x-coordinate, how far is it from the origin? Which details support the central idea that information on the Internet is not protected well enough? Check all that apply.only a small fraction is securely encryptedthe remainder is poorly encryptedthe number of Internet userspeople take adequate precautions in terms of privacyanybody can get their hand What resistance R should be connected in series with an inductance L = 197 mH and capacitance C = 15.8 uF for the maximum charge on the capacitor to decay to 95.5% of its initial value in 72.0 cycles? #7 In a paragraph (7+ complete sentences) describe the action ofantidiuretic hormone. Horatio is preparing to take the LSAT. When he takes practice exams, he observes strict time limits and never cheats. He tries to simulate what the actual test-taking experience will be like. He wants to know how he will do when he takes the LSAT for real- he doesn't want to overestimate his abilities or confirm his pre-existing beliefs about his performance. Horatio is apparently driven by a very strong____a.self-verification motive b.appraisal motive c.self-enhancement motive d.consistency motive best summarizes the resolution of the conflict at the end of the beginnings of the maasai The Discontinuous North Question 27 options: is comprised of the Scandinavian countries, Norway, Denmark, and Sweden has a largely inhospitable higher-latitude climate is entirely separated by water from the rest of Europe is the least developed region of Europe, due to its peripheral location has always been able to exploit abundant natural resources Suppose you are an air traffic controller directing the pilot of a plane on a hyperbolic flight path. You and another air traffic controller from a different airport send radio signals to the pilot simultaneously. The two airports are 48 km apart. The pilot's instrument panel tells him that the signal from your airport always arrives 100 s (microseconds) before the signal from the other airport.d. Draw the hyperbola. Which branch represents the flight path? Write your own haiku. Make sure it it includes 17 syllablesconsisting of three metrical units of 5, 7, and 5 syllables. Also,make sure it includes a "kigo". "Total water needs are about ___ cups per day for women and about___ cups per day for men.Group of answer choicesA. 11; 15B. 8; 10D. 15; 18C.9; 13" 1. Harlow's monkey experiments demonstratedthe need for social interaction in primatesthat a lack of social interaction in primates for long enough can cause permanent damage.that a surrogate mother can offer some comfort to baby monkeys and delay damage for a time, but isn't a substitute for actual social interactionthat scientists can be unethical and cruel to animalsAll of the above are true.2. The studies of Genie and other feral children demonstratedthat there is a critical period for learning a first languagethat a lack of social interaction for long enough can cause permanent brain damage in humansthat socialization is necessary for development of human personalityAll of the above are true. Part A A stone is thrown vertically upward with a speed of 15.6 m/s from the edge of a cliff 75.0 m high (Figure 1). How much later does it reach the bottom of the cliff? Express your answer to three significant figures and include the appropriate units. + OI? f Value Units Submit Request Answer - Part B What is its speed just before hitting? Express your answer to three significant figures and include the appropriate units. Value Units Submit Request Answer - Part What total distance did it travel? Express your answer to three significant figures and include the appropriate units. + 2 123 Figure 1 of 1 Value Units Submit Request Answer Provide Feedback