The singular values of UA and A are the same because a unitary matrix U preserves the singular values of a matrix, as demonstrated by the equation UA = US(V^ˣ A), where S is a diagonal matrix containing the singular values.
How can we show that UA and A have the same singular values when U is a unitary matrix?To show that UA and A have the same singular values, we need to demonstrate that the singular values of UA are equal to the singular values of A when U is a unitary matrix.
Let A be a matrix of size m x n, and U be a unitary matrix of size m x m. The singular value decomposition (SVD) of A is given by A = USV^ˣ , where S is a diagonal matrix containing the singular values of A. The superscript ˣ denotes the conjugate transpose.
Now consider UA. We can write UA as UA = (USV^ˣ )A = US(V^*A). Note that V^ˣ A is another matrix of the same size as A.
Since U is unitary, it preserves the singular values of a matrix. This means that the singular values of V^*A are the same as the singular values of A.
Therefore, the singular values of UA are equal to the singular values of A. This result holds true for any matrix A and any unitary matrix U.
In conclusion, if U is a unitary matrix, the singular values of UA and A are the same.
Learn more about singular values
brainly.com/question/30357013
#SPJ11
the number √ 63 − 36 √ 3 can be expressed as x y √ 3 for some integers x and y. what is the value of xy ? a. −18 b. −6 c. 6 d. 18 e. 27
The value of xy is -54
To simplify the expression √63 − 36√3, we need to simplify each term separately and then subtract the results.
1. Simplify √63:
We can factorize 63 as 9 * 7. Taking the square root of each factor, we get √63 = √(9 * 7) = √9 * √7 = 3√7.
2. Simplify 36√3:
We can rewrite 36 as 6 * 6. Taking the square root of 6, we get √6. Therefore, 36√3 = 6√6 * √3 = 6√(6 * 3) = 6√18.
3. Subtract the simplified terms:
Now, we can substitute the simplified forms back into the original expression:
√63 − 36√3 = 3√7 − 6√18.
Since the terms involve different square roots (√7 and √18), we can't combine them directly. But we can simplify further by factoring the square root of 18.
4. Simplify √18:
We can factorize 18 as 9 * 2. Taking the square root of each factor, we get √18 = √(9 * 2) = √9 * √2 = 3√2.
Substituting this back into the expression, we have:
3√7 − 6√18 = 3√7 − 6 * 3√2 = 3√7 − 18√2.
5. Now, we can express the expression as x y√3:
Comparing the simplified expression with x y√3, we can see that x = 3, y = -18.
Therefore, the value of xy is 3 * -18 = -54.
So, the correct answer is not provided in the given options.
To know more about simplifying roots, refer here:
https://brainly.com/question/11867272#
#SPJ11
If f(x) = −2x² + 3x, select all the TRUE statements. a. f(0) = 5 b. f(a) = -2a² + 3a c. f (2x) = 8x² + 6x d. f(-2x) = 8x² + 6x
The true statements are b. f(a) = -2a² + 3a and d. f(-2x) = 8x² + 6x.
Statement b is true because it correctly represents the function f(x) with the variable replaced by 'a'. By substituting 'a' for 'x', we get f(a) = -2a² + 3a, which is the same form as the original function.
Statement d is true because it correctly represents the function f(-2x) with the negative sign distributed inside the parentheses. When we substitute '-2x' for 'x' in the original function f(x), we get f(-2x) = -2(-2x)² + 3(-2x). Simplifying this expression yields f(-2x) = 8x² - 6x.
Therefore, both statements b and d accurately represent the given function f(x) and its corresponding transformations.
You can learn more about transformations at
https://brainly.com/question/29788009
#SPJ11
please help!
Q2: Solve the given Differential Equation by Undetermined Coefficient-Annihilator
Approach. y" +16y=xsin4x
The general solution is the sum of the complementary and particular solutions: y(x) = y_c(x) + y_p(x) = c1 cos(4x) + c2 sin(4x) + ((1/16)x + 1/8) sin(4x) + (Cx + D) cos(4x).
y" + 16y = x sin(4x) using the method of undetermined coefficients-annihilator approach, we follow these steps:
Step 1: Find the complementary solution:
The characteristic equation for the homogeneous equation is r^2 + 16 = 0.
Solving this quadratic equation, we get the roots as r = ±4i.
Therefore, the complementary solution is y_c(x) = c1 cos(4x) + c2 sin(4x), where c1 and c2 are arbitrary constants.
Step 2: Find the particular solution:
y_p(x) = (Ax + B) sin(4x) + (Cx + D) cos(4x),
where A, B, C, and D are constants to be determined.
Step 3: Differentiate y_p(x) twice
y_p''(x) = -32A sin(4x) + 16B sin(4x) - 32C cos(4x) - 16D cos(4x).
Substituting y_p''(x) and y_p(x) into the original equation, we get:
(-32A sin(4x) + 16B sin(4x) - 32C cos(4x) - 16D cos(4x)) + 16((Ax + B) sin(4x) + (Cx + D) cos(4x)) = x sin(4x).
Step 4: Collect like terms and equate coefficients of sin(4x) and cos(4x) separately:
For the coefficient of sin(4x), we have: -32A + 16B + 16Ax = 0.
For the coefficient of cos(4x), we have: -32C - 16D + 16Cx = x.
Equating the coefficients, we get:
-32A + 16B = 0, and
16Ax = x.
From the first equation, we find A = B/2.
Substituting this into the second equation, we get 8Bx = x, which gives B = 1/8.
A = 1/16.
Step 5: Substitute the determined values of A and B into y_p(x) to get the particular solution:
y_p(x) = ((1/16)x + 1/8) sin(4x) + (Cx + D) cos(4x).
Step 6: The general solution is the sum of the complementary and particular solutions:
y(x) = y_c(x) + y_p(x) = c1 cos(4x) + c2 sin(4x) + ((1/16)x + 1/8) sin(4x) + (Cx + D) cos(4x).
learn more about general solution
https://brainly.com/question/31491463
#SPJ11
One machine produces 30% of a product for a company. If 10% of
the products from this machine are defective, and the other machines produce no
defective items, what is the probability that an item produced by this company
is defective?
The probability that an item produced by this company is defective is 0.03 or 3%.
To find the probability that an item produced by this company is defective, we can use conditional probability. Let's break down the problem step by step:
Let's assume that the company has only one machine that produces 30% of the products.
Probability of selecting a product from this machine: P(Machine) = 0.3
Probability of a product being defective given it was produced by this machine: P(Defective | Machine) = 0.10
Now, we need to find the probability that any randomly selected item from the company is defective. We can use the law of total probability to calculate it.
Probability of selecting a defective item: P(Defective) = P(Machine) * P(Defective | Machine)
Substituting the values, we get:
P(Defective) = 0.3 * 0.10 = 0.03
Therefore, the probability that an item produced by this company is defective is 0.03 or 3%.
Learn more about probability
brainly.com/question/31828911
#SPJ11
ep 4. Substitute the equilibrium concentrations into the equilibrium constant expression and solve for x. [H₂][1₂] [HI]² K = (4.16x10-2-x)(6.93×10-2-x) (0.310 + 2x)2 = 1.80x10-² Rearrange to get an expression of the form ax² + bx + c = 0 and use the quadratic formula to solve for x. This gives: X = 9.26x103, 0.134 The second value leads to results that are not physically reasonable.
The values of x obtained from the quadratic formula are x = 9.26x10^3 and x = 0.134. However, the second value of x leads to results that are not physically reasonable.
In the given problem, we are asked to substitute the equilibrium concentrations into the equilibrium constant expression and solve for x. The equilibrium constant expression is given as K = (4.16x10^-2 - x)(6.93x10^-2 - x)/(0.310 + 2x)^2 = 1.80x10^-2.
To solve for x, we rearrange the equation to the form ax^2 + bx + c = 0, where a = 1, b = -2(4.16x10^-2 + 6.93x10^-2), and c = (4.16x10^-2)(6.93x10^-2) - (1.80x10^-2)(0.310)^2.
Using the quadratic formula x = (-b ± √(b^2 - 4ac))/(2a), we substitute the values of a, b, and c to solve for x. This gives two solutions: x = 9.26x10^3 and x = 0.134.
However, the second value of x, 0.134, leads to results that are not physically reasonable. In the context of the problem, x represents a concentration, and concentrations cannot be negative or exceed certain limits. Therefore, the second value of x is not valid in this case.
Learn more about: quadratic formula
brainly.com/question/22364785
#SPJ11
If U = (1,2,3,4,5,6,7,8,9), A = (2,4,6,8), B = (1,3,5,7) verify De Morgan's law.
De Morgan's Law is verified for sets A and B, as the complement of the union of A and B is equal to the intersection of their complements.
De Morgan's Law states that the complement of the union of two sets is equal to the intersection of their complements. In other words:
(A ∪ B)' = A' ∩ B'
Let's verify De Morgan's Law using the given sets:
U = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {2, 4, 6, 8}
B = {1, 3, 5, 7}
First, let's find the complement of A and B:
A' = {1, 3, 5, 7, 9}
B' = {2, 4, 6, 8, 9}
Next, let's find the union of A and B:
A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}
Now, let's find the complement of the union of A and B:
(A ∪ B)' = {1, 3, 5, 7, 9}
Finally, let's find the intersection of A' and B':
A' ∩ B' = {9}
As we can see, (A ∪ B)' = A' ∩ B'. Therefore, De Morgan's Law holds true for the given sets A and B.
Learn more about De Morgan's Law here :-
https://brainly.com/question/29073742
#SPJ11
Use Simple Algorithm - Big M Method to solve the following questions.
(a)
Max Z =3x1 + 2x2 + x3
Subject to
2x1 + x2 + x3 = 12
3x1 + 4x2 = 11 and x1 is unrestricted
x2 ≥ 0, x3 ≥ 0
(b)
Min Z = 2x1 + 3x2
Subject to
x1 + x2 ≥ 5
x1 + 2x2 ≥ 6
and x1 ≥ 0, x2 ≥ 0
Application of Simple Algorithm - Big M Method to solve linear programming problems with given constraints and objective functions.
(a) Maximize Z = 3x1 + 2x2 + x3 subject to 2x1 + x2 + x3 = 12, 3x1 + 4x2 = 11, x1 unrestricted, x2 ≥ 0, and x3 ≥ 0.Minimize Z = 2x1 + 3x2 subject to x1 + x2 ≥ 5, x1 + 2x2 ≥ 6, x1 ≥ 0, and x2 ≥ 0.The Simple Algorithm - Big M Method is a technique used to solve linear programming problems with both equality and inequality constraints.
In problem (a), we have a maximization problem with three variables (x1, x2, x3) and two equality constraints and non-negativity constraints.
The algorithm involves introducing slack variables, converting the problem into standard form, and using a Big M parameter to handle unrestricted variables.
The objective function is maximized by iteratively improving the solution until an optimal solution is reached.
In problem (b), we have a minimization problem with two variables (x1, x2) and two inequality constraints.
The procedure is similar, where surplus variables are introduced to convert the problem into standard form, and the Big M method is used to handle non-negativity constraints.
The objective function is minimized by following the steps of the algorithm.
By applying the Simple Algorithm - Big M Method to these problems, we can find the optimal solutions that satisfy the given constraints and optimize the objective function.
Learn more about Application
brainly.com/question/31164894
#SPJ11
What are 4 equivalent values that = 45%
Answer: 0.45, 45/100, 9/20, Any factors of the fractions.
Step-by-step explanation:
QUESTION 5 Which of the following statement is true in Z? x(x+y=0); xy(x+y=0); x(x+y=0); O None of these
None of these statements are true in Z (the set of integers). Let's analyze each statement:
1. x(x + y = 0): This equation is not well-formed; it appears to be missing an operator between x and (x + y). Assuming you meant x * (x + y) = 0, even so, this statement is not true in Z. For example, if x = 2 and y = -2, the equation becomes 2(2 - 2) = 0, which simplifies to 0 = 0, but this is not a true statement in Z.
2. xy(x + y = 0): Similarly, this equation is not well-formed. Assuming you meant x * y * (x + y) = 0, this statement is also not true in Z. For example, if x = 2 and y = -2, the equation becomes 2 * -2 * (2 - 2) = 0, which simplifies to 0 = 0, but again, this is not a true statement in Z.
3. x(x + y = 0): This equation is not well-formed either; it seems to be missing a closing parenthesis. Assuming you meant x * (x + y) = 0, this statement is not universally true in Z. It is true when x = 0, as any number multiplied by zero is zero. However, when x ≠ 0, the equation is not satisfied in Z. For example, if x = 2 and y = -2, the equation becomes 2 * (2 - 2) = 0, which simplifies to 0 = 0, but this is not true for all integers.
Therefore, none of the given statements are true in Z.
Learn more about integers here: brainly.com/question/929808
#SPJ11
Calculate the truth value of the following:
(~(0~1) v 1)
0
?
1
The truth value of the expression (~(0 ~ 1) v 1) 0?1 is false.
To calculate the truth value of the expression, let's break it down step by step:
(~(0 ~ 1) v 1) 0?1Let's evaluate the innermost part of the expression first: (0 ~ 1). The tilde (~) represents negation, so ~(0 ~ 1) means not (0 ~ 1).~(0 ~ 1) evaluates to ~(0 or 1). In classical logic, the expression (0 or 1) is always true since it represents a logical disjunction where at least one of the operands is true. Therefore, ~(0 or 1) is false.Now, we have (~F v 1) 0?1, where F represents false.According to the order of operations, we evaluate the conjunction (0?1) first. In classical logic, the expression 0?1 represents the logical AND operation. However, in this case, we have a 0 as the left operand, which means the overall expression will be false regardless of the value of the right operand.Therefore, (0?1) evaluates to false.Substituting the values, we have (~F v 1) false.Let's evaluate the disjunction (~F v 1). The disjunction (or logical OR) is true when at least one of the operands is true. Since F represents false, ~F is true, and true v 1 is true.Finally, we have true false, which evaluates to false.So, the truth value of the expression (~(0 ~ 1) v 1) 0?1 is false.
Learn more about Logic
brainly.com/question/2141979
#SPJ11
Max Z = 5x1 + 6x2
Subject to: 17x1 + 8x2 ≤ 136
3x1 + 4x2 ≤ 36
x1 ≥ 0 and integer
x2 ≥ 0
A) x1 = 5, x2 = 4.63, Z = 52.78
B) x1 = 5, x2 = 5.25, Z = 56.5
C) x1 = 5, x2 = 5, Z = 55
D) x1 = 4, x2 = 6, Z = 56
The option B) yields the highest value for Z, which is 56.5. Therefore, the correct answer is B) x1 = 5, x2 = 5.25, Z = 56.5
To determine the correct answer, we can substitute each option into the objective function and check if the constraints are satisfied. Let's evaluate each option:
A) x1 = 5, x2 = 4.63, Z = 52.78
Checking the constraints:
17x1 + 8x2 = 17(5) + 8(4.63) = 85 + 37.04 = 122.04 ≤ 136 (constraint satisfied)
3x1 + 4x2 = 3(5) + 4(4.63) = 15 + 18.52 = 33.52 ≤ 36 (constraint satisfied)
B) x1 = 5, x2 = 5.25, Z = 56.5
Checking the constraints:
17x1 + 8x2 = 17(5) + 8(5.25) = 85 + 42 = 127 ≤ 136 (constraint satisfied)
3x1 + 4x2 = 3(5) + 4(5.25) = 15 + 21 = 36 ≤ 36 (constraint satisfied)
C) x1 = 5, x2 = 5, Z = 55
Checking the constraints:
17x1 + 8x2 = 17(5) + 8(5) = 85 + 40 = 125 ≤ 136 (constraint satisfied)
3x1 + 4x2 = 3(5) + 4(5) = 15 + 20 = 35 ≤ 36 (constraint satisfied)
D) x1 = 4, x2 = 6, Z = 56
Checking the constraints:
17x1 + 8x2 = 17(4) + 8(6) = 68 + 48 = 116 ≤ 136 (constraint satisfied)
3x1 + 4x2 = 3(4) + 4(6) = 12 + 24 = 36 ≤ 36 (constraint satisfied)
From the calculations above, we see that options B), C), and D) satisfy all the constraints. However, option B) yields the highest value for Z, which is 56.5. Therefore, the correct answer is: B) x1 = 5, x2 = 5.25, Z = 56.5.
To know more about Constraint here:
https://brainly.com/question/33441689
#SPJ11
For V = F3, let v1 = e1,v2 = e1 + e2,v3 = e1 + e2 + e3. Show that {v1,v2,v3} is a basis for V.
Hint : We know {e1,e2,e3} is a basis for F3, and hence a spanning set; show that {e1,e2,e3} ⊆ Span(v1,v2,v3), and
hence {v1,v2,v3} spans V . Use the fact that {e1,e2,e3} is also a linearly independent set to show that {v1,v2,v3} is a
linearly independent set, and hence a basis for V .
Since {v1, v2, v3} is linearly independent and spans V, it is a basis for V.
To show that {v1, v2, v3} is a basis for V, we need to demonstrate two things: linear independence and spanning.
Linear Independence: We need to show that the vectors v1, v2, and v3 are linearly independent, meaning that no vector in the set can be written as a linear combination of the others. In this case, we can observe that no vector in the set can be expressed as a linear combination of the others because they have distinct components. Each vector has a unique combination of 0s and 1s in its components.
Spanning: We need to show that every vector in V can be expressed as a linear combination of v1, v2, and v3. Since V = F3, every vector in V is a 3-dimensional vector. We can see that by choosing appropriate coefficients for v1, v2, and v3, we can express any 3-dimensional vector in V.
learn more about linearly independent
https://brainly.com/question/14351372
#SPJ11
Adventure Airlines
"Welcome to Adventure Airlines!" the flight attendant announces. "We are
currently flying at an altitude of about 10 kilometers, and we are experiencing
technical difficulties.
"But do not panic," says the flight attendant. "Is there anyone here who knows
math? Anyone at all?
You realize that your help is needed, so you grab your trusty graphing
calculator and head to the front of the plane to offer your assistance. "I think
maybe I can help. What's the problem?" you ask.
The flight attendant leads you to the pilot, who is looking a little green and disoriented.
1 am feeling really bad, and I can't think straight," the pilot mumbles.
"What can I do to help?" you ask.
1 need to figure out when to start my descent. How far from the airport should I be if I want to
descend at a 3-angle?" The pilot is looking worse by the second.
"That's easy!" you exclaim. "Let's see. We're at an altitude of 10 km and we want to land on the
runway at a 3-angle. Hmmm.
How far from the airport did you tell the pilot to start his descent?
Answer:
Therefore, the pilot should start the descent approximately 190.84 kilometers from the airport.
Step-by-step explanation:
To determine how far from the airport the pilot should start their descent, we can use trigonometry. The 3-angle mentioned refers to a glide slope, which is the angle at which the aircraft descends towards the runway. Typically, a glide slope of 3 degrees is used for instrument landing systems (ILS) approaches.
To calculate the distance, we need to know the altitude difference between the current altitude and the altitude at which the plane should be when starting the descent. In this case, the altitude difference is 10 kilometers since the current altitude is 10 kilometers, and the plane will descend to ground level for landing.
Using trigonometry, we can apply the tangent function to find the distance:
tangent(angle) = opposite/adjacent
In this case, the opposite side is the altitude difference, and the adjacent side is the distance from the airport where the pilot should start the descent.
tangent(3 degrees) = 10 km / distance
To find the distance, we rearrange the equation:
distance = 10 km / tangent(3 degrees)
Using a calculator, we can evaluate the tangent of 3 degrees, which is approximately 0.0524.
distance = 10 km / 0.0524 ≈ 190.84 km
Many patients get concerned when exposed to in day-to-day activities. t(hrs) 0 3 5 R 1 a test involves injection of a radioactive material. For example for scanning a gallbladder, a few drops of Technetium-99m isotope is used. However, it takes about 24 hours for the radiation levels to reach what we are Below is given the relative intensity of radiation as a function of time. 7 9 1.000 0.891 0.708 0.562 0.447 0.355 The relative intensity is related to time by the equation R = A e^(Bt). Find the constant A by the least square method. (correct to 4 decimal places)
The constant A, obtained using the least squares method, is 0.5698.
To find the constant A using the least squares method, we need to fit the given data points (t, R) to the equation R = A * e^(Bt) by minimizing the sum of the squared residuals.
Let's set up the equations for the least squares method:
Take the natural logarithm of both sides of the equation:
ln(R) = ln(A * e^(Bt))
ln(R) = ln(A) + Bt
Define new variables:
Let Y = ln(R)
Let X = t
Let C = ln(A)
The equation now becomes:
Y = C + BX
We can now apply the least squares method to find the best-fit line for the transformed variables.
Using the given data points (t, R):
(t, R) = (0, 1.000), (3, 0.891), (5, 0.708), (7, 0.562), (9, 0.447), (1, 0.355)
We can calculate the transformed variables Y and X:
Y = ln(R) = [0, -0.113, -0.345, -0.578, -0.808, -1.035]
X = t = [0, 3, 5, 7, 9, 1]
Calculate the sums:
ΣY = -2.879
ΣX = 25
ΣY^2 = 2.847
ΣXY = -14.987
Use the least squares formulas to calculate B and C:
B = (6ΣXY - ΣXΣY) / (6ΣX^2 - (ΣX)^2)
C = (1/6)ΣY - B(1/6)ΣX
Plugging in the values:
B = (-14.987 - (25)(-2.879)) / (6(2.847) - (25)^2)
B = -0.1633
C = (1/6)(-2.879) - (-0.1633)(1/6)(25)
C = -0.5636
Finally, we can calculate A using the relationship A = e^C:
A = e^(-0.5636)
A ≈ 0.5698 (rounded to 4 decimal places)
Therefore, the constant A, obtained using the least squares method, is approximately 0.5698.
Learn more about least square method at https://brainly.com/question/13084720
#SPJ11
<< <
1
WRITER
2
Use the inequality to answer Parts 1-3.
-3(x-2) ≤ =
Part 1: Solve the inequality. Leave answer in terms of a whole number or reduced improper fraction.
Part 2: Write a verbal statement describing the solution to the inequality.
Part 3: Verify your solution to the inequality using two elements of the solution set.
Use a word processing program or handwrite your responses to Parts 1-3. Turn in all three responses.
>
A
Part 1: The solution to the inequality -3(x - 2) ≤ 0 is x ≥ 2.
Part 2: The solution to the inequality is any value of x that is greater than or equal to 2.
Part 3: Verifying the solution, we substitute x = 2 and x = 3 into the original inequality and find that both values satisfy the inequality.
Part 1:
To solve the inequality -3(x - 2) ≤ 0, we need to isolate the variable x.
-3(x - 2) ≤ 0
Distribute the -3:
-3x + 6 ≤ 0
To isolate x, we'll subtract 6 from both sides:
-3x ≤ -6
Next, divide both sides by -3. Remember that when dividing or multiplying by a negative number, we flip the inequality sign:
x ≥ 2
Therefore, the solution to the inequality is x ≥ 2.
Part 2:
A verbal statement describing the solution to the inequality is: "The solution to the inequality is any value of x that is greater than or equal to 2."
Part 3:
To verify the solution, we can substitute two elements of the solution set into the original inequality and check if the inequality holds true.
Let's substitute x = 2 into the inequality:
-3(2 - 2) ≤ 0
-3(0) ≤ 0
0 ≤ 0
The inequality holds true.
Now, let's substitute x = 3 into the inequality:
-3(3 - 2) ≤ 0
-3(1) ≤ 0
-3 ≤ 0
Again, the inequality holds true.
for such more question on inequality
https://brainly.com/question/17448505
#SPJ8
Find the general solution of the differential equation y" - 81y = -243t + 162t². NOTE: Use t as the independent variable. Use c₁ and cg as arbitrary constants. C1 y(t) =
The general solution to the second order homogenous differential equation is [tex]\(C_1 y(t) = c_1 e^{9t} + c_2 e^{-9t} - 2t^2 + 3t - \frac{4}{81}\)[/tex], where c₁ is a constant multiple of the entire expression.
What is the general solution to the differential equation?To find the general solution of the given differential equation y'' - 81y = -243t + 162t², we can start by finding the complementary solution by solving the associated homogeneous equation y'' - 81y = 0.
The characteristic equation for the homogeneous equation is:
r² - 81 = 0
Factoring the equation:
(r - 9)(r + 9) = 0
This equation has two distinct roots: r = 9 and r = -9
Therefore, the complementary solution is:
[tex]\(y_c(t) = c_1 e^{9t} + c_2 e^{-9t}\)[/tex] where c₁ and c₂ are arbitrary constants
To find a particular solution to the non-homogeneous equation, we can use the method of undetermined coefficients. Since the right-hand side of the equation is a polynomial in t of degree 2, we'll assume a particular solution of the form:
[tex]\(y_p(t) = At^2 + Bt + C\)[/tex]
Substituting this assumed form into the original differential equation, we can determine the values of A, B, and C. Taking the derivatives of [tex]\(y_p(t)\)[/tex]:
[tex]\(y_p'(t) = 2At + B\)\\\(y_p''(t) = 2A\)[/tex]
Plugging these derivatives back into the differential equation:
[tex]\(y_p'' - 81y_p = -243t + 162t^2\)\\\(2A - 81(At^2 + Bt + C) = -243t + 162t^2\)[/tex]
Simplifying the equation:
-81At² - 81Bt - 81C + 2A = -243t + 162t²
Now, equating the coefficients of the terms on both sides:
-81A = 162 (coefficients of t² terms)
-81B = -243 (coefficients of t terms)
-81C + 2A = 0 (constant terms)
From the first equation, we find A = -2.
From the second equation, we find B = 3.
Plugging these values into the third equation, we can solve for C:
-81C + 2(-2) = 0
-81C - 4 = 0
-81C = 4
C = -4/81
Therefore, the particular solution is:
[tex]\(y_p(t) = -2t^2 + 3t - \frac{4}{81}\)[/tex]
The general solution of the differential equation is the sum of the complementary and particular solutions:
[tex]\(y(t) = y_c(t) + y_p(t)\)\(y(t) = c_1 e^{9t} + c_2 e^{-9t} - 2t^2 + 3t - \frac{4}{81}\)[/tex]
Learn more on homogenous differential equation here;
https://brainly.com/question/14926412
#SPJ4
The general solution of the given differential equation is:
y(t) = c₁e^(9t) + c₂e^(-9t) - 2t² + 3t, where c₁ and c₂ are arbitrary constants.
To find the general solution of the given differential equation y" - 81y = -243t + 162t², we can solve it by first finding the complementary function and then a particular solution.
Complementary Function:
Let's find the complementary function by assuming a solution of the form y(t) = e^(rt).
Substituting this into the differential equation, we get:
r²e^(rt) - 81e^(rt) = 0
Factoring out e^(rt), we have:
e^(rt)(r² - 81) = 0
For a nontrivial solution, we require r² - 81 = 0. Solving this quadratic equation, we find two distinct roots: r = 9 and r = -9.
Therefore, the complementary function is given by:
y_c(t) = c₁e^(9t) + c₂e^(-9t), where c₁ and c₂ are arbitrary constants.
Particular Solution:
To find a particular solution, we can assume a polynomial of degree 2 for y(t) due to the right-hand side being a quadratic polynomial.
Let's assume y_p(t) = At² + Bt + C, where A, B, and C are constants to be determined.
Differentiating twice, we find:
y_p'(t) = 2At + B
y_p''(t) = 2A
Substituting these derivatives into the differential equation, we have:
2A - 81(At² + Bt + C) = -243t + 162t²
Comparing coefficients of like powers of t, we get the following equations:
-81A = 162 (coefficient of t²)
-81B = -243 (coefficient of t)
-81C + 2A = 0 (constant term)
Solving these equations, we find A = -2, B = 3, and C = 0.
Therefore, the particular solution is:
y_p(t) = -2t² + 3t
The general solution is the sum of the complementary function and the particular solution:
y(t) = y_c(t) + y_p(t)
= c₁e^(9t) + c₂e^(-9t) - 2t² + 3t
Therefore, the general solution of the given differential equation is:
y(t) = c₁e^(9t) + c₂e^(-9t) - 2t² + 3t, where c₁ and c₂ are arbitrary constants.
Learn more about differential equation from the given link.
https://brainly.com/question/25731911
#SPJ11
I need help with this as soon as possible and shown work as well
Answer: EF = 6.5 FG = 5.0
Step-by-step explanation:
Since this is not a right triangle, you must use Law of Sin or Law of Cos
They have given enough info for law of sin : [tex]\frac{a}{sin A} =\frac{b}{sinB}[/tex]
The side of the triangle is related to the angle across from it.
[tex]\frac{a}{sin A} =\frac{b}{sinB}[/tex] >formula
[tex]\frac{FG}{sin E} =\frac{EG}{sinF}[/tex] >equation, substitute
[tex]\frac{FG}{sin 39} =\frac{7.9}{sin86}[/tex] >multiply both sides by sin 39
[tex]FG =\frac{7.9}{sin86}sin39[/tex] >plug in calc
FG = 5.0
<G = 180 - 86 - 39 >triangle rule
<G = 55
[tex]\frac{a}{sin A} =\frac{b}{sinB}[/tex] >formula
[tex]\frac{EF}{sin G} =\frac{EG}{sinF}[/tex] >equation, substitute
[tex]\frac{EF}{sin 55} =\frac{7.9}{sin86}[/tex] >multiply both sides by sin 55
[tex]EF =\frac{7.9}{sin86}sin55[/tex] >plug in calc
EF = 6.5
Find the matrix A′ for T relative to the basis B′
a. T: R2 ⟶ R2, T(x, y) = (2x − y, y − x);B′ = {(1, −2),
(0,3)}
b. T: R3 ⟶ R3, T(x, y, z) = (x, y, z);B′ = {(1,1,0), (1,0,1),
(0,1,1)
The matrix A' for T relative to the basis B' is:
[[2, -1],
[-1, 1]]
To find the matrix A' for T relative to the basis B', we need to determine how T acts on each vector in B'.
In the given problem (a), T: R2 ⟶ R2, T(x, y) = (2x − y, y − x), and B' = {(1, −2), (0, 3)}.
We can start by applying T to each vector in B' and expressing the results as linear combinations of the vectors in B'.
For the first vector (1, -2):
T(1, -2) = (2(1) - (-2), (-2) - 1) = (4, -3) = 4(1, -2) + (-3)(0, 3)
For the second vector (0, 3):
T(0, 3) = (2(0) - 3, 3 - 0) = (-3, 3) = (-3)(1, -2) + 2(0, 3)
From the above calculations, we can see that T(1, -2) can be expressed as a linear combination of the vectors in B' with coefficients 4 and -3, and T(0, 3) can be expressed as a linear combination of the vectors in B' with coefficients -3 and 2.
Therefore, the matrix A' for T relative to the basis B' is:
[[4, -3],
[-3, 2]]
Learn more about matrix
brainly.com/question/29000721
#SPJ11
Worth a 100 points!
The question is in the attachment below.
Answer:
B. 7.5
Step-by-step explanation:
Let's solve this problem using similar triangles.One right triangle is formed by:
the height of the streetlight (i.e., 18 ft),the distance between the top of the streetlight and the top of the tree's shadow (i.e., unknown since we don't need it for the problem),and the distance between the base of the streetlight and the top of the tree's shadow (i.e., 15 ft between the streetlight's base and the tree's base + the unknown length of the shadow)Another similar right triangle is formed by:
the height of the tree (i.e., 6 ft),the distance between the top of the tree and the top of its shadow (i.e., also unknow since we don't need it for the problem),and the distance between the tree's base and the top of it's shadow (i.e., the unknown length of the shadow).Proportionality of similar sides:
Similar triangles have similar sides, which are proportional.We can use this proportionality to solve for s, the length of the tree's shadow in ft.First set of similar sides:
The height of the streetlight (i.e., 18 ft) is similar to the height of the tree (i.e., 6 ft).Second set of similar sides:
Similarly, the distance between the base of the streetlight and the top of the tree's shadow (i.e., 15 ft + unknown shadow's length) is similar to the length of the tree's shadow (i.e., an unknown length).Now we can create proportions to solve for s, the length of the shadow:
18 / 6 = (15 + s) / s
(3 = (15 + s) / s) * s
(3s = 15 + s) - s
(2s = 15) / 2
s = 7.5
Thus, the length of the shadow is 7.5 ft.
Check the validity of the answer:
We can check our answer by substituting 7.5 for s and seeing if we get the same answer on both sides of the equation we just used to solve for s:
18 / 6 = (15 + 7.5) / 7.5
3 = 22.5 / 7.5
3 = 3
Thus, our answer is correct.
Answer:
B. 7.5
[tex]\hrulefill[/tex]
Step-by-step explanation:
The given diagram shows two similar right triangles.
Let "x" be the base of the smaller triangle. Therefore:
The smaller triangle has a base of x ft and a height of 6 ft.The larger triangle has a base of (15 + x) ft and a height of 18 ft.In similar triangles, corresponding sides are always in the same ratio. Therefore, we can set up the following ratio of base to height:
[tex]\begin{aligned}\sf \underline{Smaller\;triangle}\; &\;\;\;\;\;\sf \underline{Larger\;triangle}\\\\\sf base:height&=\sf base:height\\\\x:6&=(15+x):18\end{aligned}[/tex]
Express the ratios as fractions:
[tex]\dfrac{x}{6}=\dfrac{(15+x)}{18}[/tex]
Cross multiply and solve for x:
[tex]\begin{aligned}18x&=6(15+x)\\\\18x&=90+6x\\\\18x-6x&=90+6x-6x\\\\12x&=90\\\\\dfrac{12x}{12}&=\dfrac{90}{12}\\\\x&=7.5\end{aligned}[/tex]
Therefore, the shadow of the tree is 7.5 feet long.
Problem 5 (Eigenvalues and Eigenvectors). Suppose the vector k 1 is an eigenvector of the matrix A-¹, where the matrix 2 1 1 1 2 1 1 1 2 Compute all possible values of k. A = X=
The possible values of k are ±1.
Step 1: The main answer is that the possible values of k are ±1.
Step 2: To find the possible values of k, we need to consider the eigenvector equation for the matrix A⁻¹. Let's denote the eigenvector as k₁. According to the definition of an eigenvector, we have A⁻¹k₁ = λk₁, where λ represents the eigenvalue corresponding to the eigenvector k₁.
Let's substitute the given matrix A into the equation A⁻¹k₁ = λk₁:
|2 1 1|⁻¹ |k₁₁| = λ |k₁₁|
|1 2 1| |k₁₂| |k₁₂|
|1 1 2| |k₁₃| |k₁₃|
Expanding the equation, we have:
(1/3)k₁₁ + (1/3)k₁₂ + (1/3)k₁₃ = λk₁₁
(1/3)k₁₁ + (1/3)k₁₂ + (1/3)k₁₃ = λk₁₂
(1/3)k₁₁ + (1/3)k₁₂ + (1/3)k₁₃ = λk₁₃
To simplify the equation, we can multiply both sides by 3:
k₁₁ + k₁₂ + k₁₃ = 3λk₁₁
k₁₁ + k₁₂ + k₁₃ = 3λk₁₂
k₁₁ + k₁₂ + k₁₃ = 3λk₁₃
Since k₁ is a non-zero eigenvector, we can divide the above equations by k₁:
1 + (k₁₂/k₁₁) + (k₁₃/k₁₁) = 3λ
(k₁₁/k₁₂) + 1 + (k₁₃/k₁₂) = 3λ
(k₁₁/k₁₃) + (k₁₂/k₁₃) + 1 = 3λ
Let's denote k₁₂/k₁₁ as a, k₁₃/k₁₂ as b, and k₁₁/k₁₃ as c. The above equations become:
1 + a + b = 3λ
c + 1 + b = 3λ
c + a + 1 = 3λ
Adding the three equations, we get:
2(a + b + c) + 3 = 9λ
Since λ is a scalar, it must satisfy the above equation. Simplifying further:
2(a + b + c) = 9λ - 3
2(a + b + c) = 3(3λ - 1)
The right-hand side of the equation is a multiple of 3. Therefore, the left-hand side must also be a multiple of 3. Since a, b, and c are ratios of components of k₁, they can be any real numbers. The only way the left-hand side can be a multiple of 3 is if each of a, b, and c is individually a multiple of 3.
Therefore, the possible values of a, b, and c are all integers. Since they represent ratios of components of k₁, the possible values of k₁ are ±1.
Learn more about matrix A⁻¹.
brainly.com/question/29132693
#SPJ11
Given a line x−2y+5=0, find its slope. A. −2 B. −1/2
C. 1/2 D. 2
Considering the definition of a line, the slope of the line x-2y+5=0 is 1/2.
Definition of linear equationA linear equation o line can be expressed in the form y = mx + b
where
x and y are coordinates of a point.m is the slope.b is the ordinate to the origin. The ordinate to the origin is the point where a line crosses the y-axis.Slope of the line x-2y+5=0In this case, the line is x-2y+5=0. Expressed in the form y = mx + b, you get:
x-2y=-5
-2y=-5-x
y= (-x-5)÷ (-2)
y= 1/2x +5/2
where:
the slope is 1/2.the ordinate to the origin is 5/2Finally, the slope of the line x-2y+5=0 is 1/2.
Learn more about line:
https://brainly.com/question/28882561
#SPJ4
Considering the definition of a line, the slope of the line x-2y+5=0 is 1/2.
A linear equation o line can be expressed in the form y = mx + b
where
x and y are coordinates of a point.
m is the slope.
b is the ordinate to the origin. The ordinate to the origin is the point where a line crosses the y-axis.
Slope of the line x-2y+5=0
In this case, the line is x-2y+5=0. Expressed in the form y = mx + b, you get:
x-2y=-5
-2y=-5-x
y= (-x-5)÷ (-2)
y= 1/2x +5/2
where:
the slope is 1/2.
the ordinate to the origin is 5/2
Finally, the slope of the line x-2y+5=0 is 1/2.
Learn more about line from the given link :
brainly.com/question/28882561
#SPJ11
State the concept of closeness between the two curves u(t) and 2 same end points u(a) = 2(a) and (b) = 2(b)
The concept of closeness between the two curves u(t) and 2 is determined by the condition that they have the same end points u(a) = 2(a) and u(b) = 2(b).
When considering the concept of closeness between two curves, it is important to examine their behavior at the end points. In this case, we are comparing the curves u(t) and 2, and we have the condition that they share the same end points u(a) = 2(a) and u(b) = 2(b).
This condition implies that at the points a and b, the values of the curve u(t) are equal to the constant value 2 multiplied by the respective points a and b. Essentially, this means that the curve u(t) is directly proportional to the constant curve 2, with the proportionality factor being the respective points a and b.
In other words, the curve u(t) is a linear transformation of the curve 2, where the points a and b determine the scaling factor. This scaling factor determines how closely the curve u(t) follows the curve 2. If the scaling factor is close to 1, the two curves will closely align, indicating a high degree of closeness. Conversely, if the scaling factor deviates significantly from 1, the two curves will diverge, indicating a lower degree of closeness.
Learn more about curves
brainly.com/question/29736815
#SPJ11
12. Extend the meaning of a whole-number exponent. a n
= n factors a⋅a⋅a⋯a,
where a is any integer. Use this definition to find the following values. a. 2 4
b. (−3) 3
c. (−2) 4
d. (−5) 2
e. (−3) 5
f. (−2) 6
The result of the whole-number exponent expressions are
a. 16
b. -27
c. 16
d. 25
e. -243
f. 64
How to solve the expressionsUsing the definition of whole-number exponent, we can multiply the base integer by itself as many times as the exponent indicates.
For positive exponents, the result is a repeated multiplication of the base. For negative exponents, the result is the reciprocal of the repeated multiplication.
a. 2⁴ = 2 * 2 * 2 * 2 = 16
b. (-3)³ = (-3) * (-3) * (-3) = -27
c. (-2)⁴ = (-2) * (-2) * (-2) * (-2) = 16
d. (-5)² = (-5) * (-5) = 25
e. (-3)⁵ = (-3) * (-3) * (-3) * (-3) * (-3) = -243
f. (-2)⁶ = (-2) * (-2) * (-2) * (-2) * (-2) * (-2) = 64
Learn more about integer at
https://brainly.com/question/929808
#SPJ4
The values are 16, -27, 26, 25, -243, 64
Using the extended definition of a whole-number exponent, we can find the values as follows:
a. 2^4 = 2 × 2 × 2 × 2 = 16
b. (-3)^3 = (-3) × (-3) × (-3) = -27
c. (-2)^4 = (-2) × (-2) × (-2) × (-2) = 16
d. (-5)^2 = (-5) × (-5) = 25
e. (-3)^5 = (-3) × (-3) × (-3) × (-3) × (-3) = -243
f. (-2)^6 = (-2) × (-2) × (-2) × (-2) × (-2) × (-2) = 64
So the values are:
a. 2^4 = 16
b. (-3)^3 = -27
c. (-2)^4 = 16
d. (-5)^2 = 25
e. (-3)^5 = -243
f. (-2)^6 = 64
Learn more about values here:
https://brainly.com/question/11546044
#SPJ11
5. A person is parasailing behind a boat.
The cable (string) that attaches them to the boat is 170 feet long.
If the person is 60 feet (up) high.
What is the angle of depression (from the person)?
Round your answer to the nearest tenth of a degree.
H
Р
The angle of depression from the person is approximately 20.2 degrees.
To find the angle of depression, we can consider the triangle formed by the person, the boat, and the vertical line from the person to the water surface. The person is 60 feet above the water, and the cable connecting them to the boat is 170 feet long.
The angle of depression is the angle formed between the cable and the horizontal line. This angle can be found using trigonometry. We can use the tangent function, which is defined as the ratio of the opposite side to the adjacent side.
In this case, the opposite side is the height of the person (60 feet) and the adjacent side is the horizontal distance between the person and the boat. Let's denote this distance as x.
Using the tangent function, we have:
tan(angle) = opposite / adjacent
tan(angle) = 60 / x
To find the value of x, we can use the Pythagorean theorem, which states that the sum of the squares of the two legs of a right triangle is equal to the square of the hypotenuse. In this case, the hypotenuse is the length of the cable (170 feet), and the legs are the height of the person (60 feet) and the horizontal distance (x).
Applying the Pythagorean theorem, we have:
x^2 + 60^2 = 170^2
x^2 + 3600 = 28900
x^2 = 28900 - 3600
x^2 = 25300
x = √25300
x ≈ 159.1 feet
Now, we can substitute the value of x into the tangent equation to find the angle:
tan(angle) = 60 / 159.1
Using a calculator, we can calculate the inverse tangent (arctan) of this ratio:
angle ≈ arctan(60 / 159.1)
angle ≈ 20.2 degrees
As a result, the angle of depression with respect to the person is roughly 20.2 degrees.
for such more question on angle of depression
https://brainly.com/question/27865363
#SPJ8
Use two arbitrary 2-dimensional vectors to verify: If vectors u
and v are orthogonal, then
u2+ν2=u-v2.
Here, u2is the length squared of u.
The statement "If vectors u and v are orthogonal, then u² + v² = (u - v)²" is not true in general.
What is the dot product of two arbitrary 3-dimensional vectors u and v?To verify the given statement, let's consider two arbitrary 2-dimensional vectors:
Vector u: (u₁, u₂)
Vector v: (v₁, v₂)
The length squared of vector u, denoted as u², is given by:
u² = u₁² + u₂²
According to the statement, if vectors u and v are orthogonal, then:
u² + v² = (u - v)²
Expanding the right side of the equation:
(u - v)² = (u₁ - v₁)² + (u₂ - v₂)²
= u₁² - 2u₁v₁ + v₁² + u₂² - 2u₂v₂ + v₂²
= u₁² + u₂² - 2u₁v₁ - 2u₂v₂ + v₁² + v₂²
Comparing this with the left side of the equation (u² + v²), we can see that they are not equal. There is a missing cross term (-2u₁v₁ - 2u₂v₂) on the left side. Therefore, the statement is not true in general.
In other words, if vectors u and v are orthogonal, it does not imply that u² + v² is equal to (u - v)².
Learn more about orthogonal
brainly.com/question/32196772
#SPJ11
primo car rental agency charges $45per day plus $0.40 per mile. ultimo car rental agency charges $26 per day plus $0.85 per mile. find the daily mileage for
which the ultimo charge is twice the primo charge.
To find the daily mileage for which the Ultimo charge is twice the Primo charge, we can set up an equation and solve for the unknown value.
Let's start by defining some variables:
- Let x be the daily mileage.
- The Primo car rental agency charges $45 per day plus $0.40 per mile, so the Primo charge can be expressed as 45 + 0.40x.
- The Ultimo car rental agency charges $26 per day plus $0.85 per mile, so the Ultimo charge can be expressed as 26 + 0.85x.
According to the question, we need to find the value of x for which the Ultimo charge is twice the Primo charge. Mathematically, we can write this as:
26 + 0.85x = 2(45 + 0.40x)
Now, let's solve this equation step-by-step:
1. Distribute the 2 to the terms inside the parentheses on the right side of the equation:
26 + 0.85x = 90 + 0.80x
2. Move all the x terms to one side of the equation and all the constant terms to the other side:
0.85x - 0.80x = 90 - 26
3. Simplify and solve for x:
0.05x = 64
x = 64 / 0.05
x = 1280
Therefore, the daily mileage for which the Ultimo charge is twice the Primo charge is 1280 miles.
Learn more about variables here:
brainly.com/question/28248724
#SPJ11
(a) Find the solutions of the recurrence relation an ·an-1-12an-2 = 0, n ≥ 2, satisfying the initial conditions ao = 1,a₁ = 1
(b) Find the solutions of the recurrence relation a_n = 10a_(n-1) - 25a_(n-2) + 32, n ≥ 2, satisfying the initial conditions ao = 3, a₁ = 7. (c) Find all solutions of the recurrence relation a_n + a_(n-1) - 12a_(n-2) = 2^(n) (d) Find all the solutions of the recurrence relation a_n = 4a_(n-1) - 4a_(n-2)
(e) Find all the solutions of the recurrence relation a_n = 2a_(n-1) - a_(n-2) + 2
(f) Find all the solutions of the recurrence relation a_n - 2a_(n-1) - 3a_(n-2) = 3^(n)
Solutions for the given recurrence relations:
(a) Solutions for an ·an-1-12an-2 = 0, n ≥ 2, with ao = 1 and a₁ = 1.
(b) Solutions for a_n = 10a_(n-1) - 25a_(n-2) + 32, n ≥ 2, with ao = 3 and a₁ = 7.
(c) Solutions for a_n + a_(n-1) - 12a_(n-2) = 2^(n).
(d) Solutions for a_n = 4a_(n-1) - 4a_(n-2).
(e) Solutions for a_n = 2a_(n-1) - a_(n-2) + 2.
(f) Solutions for a_n - 2a_(n-1) - 3a_(n-2) = 3^(n).
In (a), the recurrence relation is an ·an-1-12an-2 = 0, and the initial conditions are ao = 1 and a₁ = 1. Solving this relation involves identifying the values of an that make the equation true.
In (b), the recurrence relation is a_n = 10a_(n-1) - 25a_(n-2) + 32, and the initial conditions are ao = 3 and a₁ = 7. Similar to (a), finding solutions involves identifying the values of a_n that satisfy the given relation.
In (c), the recurrence relation is a_n + a_(n-1) - 12a_(n-2) = 2^(n). Here, the task is to find all solutions of a_n that satisfy the relation for each value of n.
In (d), the recurrence relation is a_n = 4a_(n-1) - 4a_(n-2). Solving this relation entails determining the values of a_n that make the equation true.
In (e), the recurrence relation is a_n = 2a_(n-1) - a_(n-2) + 2. The goal is to find all solutions of a_n that satisfy the relation for each value of n.
In (f), the recurrence relation is a_n - 2a_(n-1) - 3a_(n-2) = 3^(n). Solving this relation involves finding all values of a_n that satisfy the equation.
Solving recurrence relations is an essential task in understanding the behavior and patterns within a sequence of numbers. It requires analyzing the relationship between terms and finding a general expression or formula that describes the sequence. By utilizing the given initial conditions, the solutions to the recurrence relations can be determined, providing insights into the values of the sequence at different positions.
Learn more about recurrence relations
brainly.com/question/32773332
#SPJ11
Use a half-angle identity to find the exact value of each expression.
cos 90°
The exact value of cos(90°) using a half-angle identity, is 0.
The half-angle formula states that cos(θ/2) = ±√((1 + cosθ) / 2). By substituting θ = 180° into the half-angle formula, we can determine the exact value of cos(90°).
To find the exact value of cos(90°) using a half-angle identity, we can use the half-angle formula for cosine, which is cos(θ/2) = ±√((1 + cosθ) / 2).
Substituting θ = 180° into the half-angle formula, we have cos(90°) = cos(180°/2) = cos(90°) = ±√((1 + cos(180°)) / 2).
The value of cos(180°) is -1, so we can simplify the expression to cos(90°) = ±√((1 - 1) / 2) = ±√(0 / 2) = ±√0 = 0.
Therefore, the exact value of cos(90°) is 0.
Learn more about half-angle here:
brainly.com/question/29173442
#SPJ11
Reasoning For what value of x will matrix A have no inverse? A = [1 2 3 x]
For the value of x = 4, matrix A will have no inverse.
If a matrix A has no inverse, then its determinant equals zero. The determinant of matrix A is defined as follows:
|A| = 1(2x3 - 3x2) - 2(1x3 - 3x1) + 3(1x2 - 2x1)
we can simplify and solve for x as follows:|A| = 6x - 12 - 6x + 6 + 3x - 6 = 3x - 12
Therefore, we must have 3x - 12 = 0 for matrix A to have no inverse.
Hence, x = 4. That is the value of x for which the matrix A does not have an inverse.
For the value of x = 4, matrix A will have no inverse.
Know more about matrix here,
https://brainly.com/question/28180105
#SPJ11
Xander spends most of his time with his 10 closest friends. He has known 4 of his 10 friends since kindergarten. If he is going to see a movie tonight with 3 of his 10 closest friends, what is the probability that the first 2 of the friends to show up to the movie are friends he has known since kindergarten but the third is not? iv been stuke on this one for a bit and im being timed someone plese help me
Answer:
1/10 / 10%
Step-by-step explanation:
This is like the equivalent to a jar with 4 green balls and 6 white balls, where you are picking 3. (The 4 green balls signify the friends from kindergarten.)
You want to solve the probability that the first two balls are green and the third is white.
First draw --> 4 green out of 10 balls --> 4/10 = 2/5
Second draw --> 3 green out of 9 balls --> 3/9 = 1/3
Third draw --> 6 white out of 8 balls --> 6/8 = 3/4
2/5 x 1/3 x 3/4
= 6/60
= 1/10
so the answer is 1/10 (or 10%)
PS I took the quiz