Lerato spends 2 hours 30 minutes talking to her relatives during on the month of April.
The cost is 90 cents per minute, so first we need to convert the total time Lerato spent on phone calls to minutes.To do that, we can use the following calculation:2 hours 30 minutes = 2 × 60 + 30 = 150 minutesNow,
we can multiply the total minutes by the cost per minute:$150 \text{ minutes} \times 90 \text{ cents/minute} = 13500 \text{ cents} $
But we need to convert cents to Rand, so we divide by 100 (since there are 100[tex]$150 \text{ minutes} \times 90 \text{ cents/minute} = 13500 \text{ cents} $[/tex] cents in one Rand):$13500 \text{ cents} ÷ 100 = 135 \text{ Rand}$
Therefore,
Lerato spent 135 Rand talking to her relatives during the month of April.
To know more about spends,visit:
https://brainly.com/question/22862643
#SPJ11
Is the differential equation (cos x cos y + 4y)dx + (sin x sin y + 10y)dy = 0 exact? yes no
F(x,y) = y[tex]e^{xsiny + xy - sinx}[/tex] + ∫sin y[tex]e^{xsiny + xy - sinx}[/tex]dx is a solution to the original differential equation.
Here, we have,
This is a first-order nonlinear differential equation, which is not separable or linear. However, it is possible to use an integrating factor to solve it.
The first step is to rearrange the equation into the standard form:
(y cos x + sin y + y)dx + (sin x + x cos y + x)dy = 0
Next, we need to identify the coefficient functions of dx and dy, which are:
M(x,y) = y cos x + sin y + y
N(x,y) = sin x + x cos y + x
Now we can find the integrating factor, which is defined as a function u(x,y) that makes the equation exact. The integrating factor is given by:
u(x,y) = [tex]e^{(\int\,(N(x,y) - dM/dy) dy) }[/tex]
where ∂M/∂y is the partial derivative of M with respect to y.
Evaluating this integral, we get:
u(x,y) = [tex]e^{xsiny + xy - sinx}[/tex]
Multiplying both sides of the original equation by the integrating factor, we get:
([tex]e^{xsiny + xy - sinx}[/tex]) [y cos x + sin y + y])dx + ([tex]e^{xsiny + xy - sinx}[/tex] [sin x + x cos y + x])dy = 0
This equation is exact, which means that there exists a function F(x,y) such that ∂F/∂x = M(x,y) and ∂F/∂y = N(x,y). We can find this function by integrating M with respect to x, while treating y as a constant, and then differentiating the result with respect to y:
F(x,y) = ∫(y cos x + sin y + y)[tex]e^{xsiny + xy - sinx}[/tex]dx = y[tex]e^{xsiny + xy - sinx}[/tex] + ∫sin y[tex]e^{xsiny + xy - sinx}[/tex]dx
Now we can differentiate F with respect to y, while treating x as a constant, and compare the result with N:
∂F/∂y = x[tex]e^{xsiny + xy - sinx}[/tex] + cos y[tex]e^{xsiny + xy - sinx}[/tex] + [tex]e^{xsiny + xy - sinx}[/tex]
= sin x + x cos y + x
Therefore, F(x,y) = y[tex]e^{xsiny + xy - sinx}[/tex] + ∫sin y[tex]e^{xsiny + xy - sinx}[/tex]dx is a solution to the original differential equation.
learn more about differential equation:
brainly.com/question/2030026
#SPJ1
complete question:
Solve (y cos x + sin y + y)dx + (sin x + x cos y + x)dy = .0
a nonlinear system is given by x′ = y2 −xy. y′ = x3y2 −x. the number of equilibrium points is
The number of equilibrium points for the given nonlinear system is 3.
To find the equilibrium points, we need to set both equations to zero and solve for x and y:
1. x′ = y² − xy = 0
2. y′ = x³y² − x = 0
First, let's look at equation 2. We can factor x out:
x(y²x² - 1) = 0
There are two possibilities:
a. x = 0: Substitute x = 0 in equation 1:
y² - 0 = y² = 0 => y = 0
So, we have one equilibrium point (0, 0).
b. y²x² - 1 = 0: Replacing this in equation 1:
y² - (y²x² - 1)y = 0
Factor out y:
y(y²(1 - x²) - 1) = 0
There are two more possibilities:
i. y = 0: We already considered this case (0, 0).
ii. y²(1 - x²) - 1 = 0: This equation gives us two equilibrium points: (-1, 1) and (1, 1).
Thus, the system has a total of 3 equilibrium points: (0, 0), (-1, 1), and (1, 1).
To know more about equilibrium points click on below link:
https://brainly.com/question/1527528#
#SPJ11
evaluate the line integral ∫cf⋅d r where f=⟨−4sinx,5cosy,10xz⟩ and c is the path given by r(t)=(t3,t2,−2t) for 0≤t≤1.∫CF⋅d r=
Line integral is ∫0^1 (-12t^4sin(t^3) + 10t^2cos(t^2) - 20t^4) / √(9t^4 + 4t^2 + 4) dt
We first parameterize the path c as r(t) = ⟨t^3, t^2, -2t⟩ for 0 ≤ t ≤ 1.
Then, we have dr/dt = ⟨3t^2, 2t, -2⟩ and ||dr/dt|| = √(9t^4 + 4t^2 + 4).
We can now compute the line integral as:
∫c f ⋅ dr = ∫c (-4sin(x), 5cos(y), 10xz) ⋅ (dx/dt, dy/dt, dz/dt) dt
= ∫0^1 (-4sin(t^3)⋅3t^2, 5cos(t^2)⋅2t, 10t(t^3)) ⋅ (3t^2, 2t, -2) / √(9t^4 + 4t^2 + 4) dt
= ∫0^1 (-12t^4sin(t^3) + 10t^2cos(t^2) - 20t^4) / √(9t^4 + 4t^2 + 4) dt
This integral does not have a simple closed-form solution, so we can either leave the answer in this form or approximate it numerically using numerical integration methods.
To know more about line integral refer here:
https://brainly.com/question/30763905
#SPJ11
Evaluate each of the following integrals. (a) cos(:c) dr Lii 1 + 100.r2 (c) L VTEl de Try several composite quadrature rules for vari- ous fixed mesh sizes and compare their efficiency and accuracy. Also, try one or more adaptive quadrature routines using various error tolerances, and again compare efficiency for a given accuracy.
We can compare the efficiency of these methods by computing the number of function evaluations required for each method to achieve a given accuracy. We can also compare their accuracy by computing the error and comparing it to the true value of the integral (if known). In general, the adaptive quadrature routines tend to be more accurate and efficient than the composite quadrature rules, especially for integrals with complicated behavior. However, the choice of method depends on the specific integral and the desired level of accuracy.
(a) We can use the substitution u = 1 + 100r^2 to simplify the integral. Then du/dx = 200r, and the limits of integration change to u(0) = 1 and u(1) = 101. Thus, we have:
∫ cos(πr) dr = (1/200)∫ cos(πr) (du/dx) dx
= (1/200) ∫ cos(πr) (200r) dx
= (π/2√2) [sin(πr)/r]_1^101
≈ 0.069
(b) This integral involves the error function, which cannot be evaluated using elementary functions. We need to use numerical methods to approximate its value.
(c) To compare composite quadrature rules, we can use the trapezoidal rule, Simpson's rule, and the midpoint rule with different mesh sizes. For example, we can use h = 0.1, h = 0.05, and h = 0.01. To compare adaptive quadrature routines, we can use the adaptive Simpson's rule and the adaptive Gauss-Kronrod rule with different error tolerances, such as 10^-4, 10^-6, and 10^-8.
We can compare the efficiency of these methods by computing the number of function evaluations required for each method to achieve a given accuracy. We can also compare their accuracy by computing the error and comparing it to the true value of the integral (if known). In general, the adaptive quadrature routines tend to be more accurate and efficient than the composite quadrature rules, especially for integrals with complicated behavior. However, the choice of method depends on the specific integral and the desired level of accuracy.
Learn more about quadrature rules here:
https://brainly.com/question/31432848
#SPJ11
how many 5-digit numbers are there in which every two neighbouring digits differ by ?
There are no 5-digit numbers in which every two neighboring digits differ by 2.
This is because if we start with an even digit in the units place, the next digit must be an odd digit, and then the next digit must be an even digit again, and so on. However, there are no pairs of adjacent odd digits that differ by 2.
Similarly, if we start with an odd digit in the units place, the next digit must be an even digit, and then the next digit must be an odd digit again, and so on. But again, there are no pairs of adjacent even digits that differ by 2.
Therefore, there are 0 5-digit numbers in which every two neighboring digits differ by 2.
Learn more about neighboring here
https://brainly.com/question/23792839
#SPJ11
Assume that all grade point averages are to be standardized on a scale between 0 and 4. How many grade point averages must be obtained so that the sample mean is within. 01 of the population mean? assume that a 99% confidence level is desired. If using range rule of thumb
We would need a sample size of approximately 167 grade point averages to ensure that the sample mean is within 0.01 of the population mean with a 99% confidence level using the range rule of thumb.
To ensure that the sample mean is within 0.01 of the population mean with a 99% confidence level, the number of grade point averages needed depends on the standard deviation of the population. The answer can be obtained using the range rule of thumb.
The range rule of thumb states that for a normal distribution, the range is typically about four times the standard deviation. Since we want the sample mean to be within 0.01 of the population mean, we can consider this as the range.
A 99% confidence level corresponds to a z-score of approximately 2.58. To estimate the standard deviation of the population, we need to assume a sample size. Let's assume a conservative estimate of 30, which is generally considered sufficient for the Central Limit Theorem to apply.
Using the range rule of thumb, the range would be approximately 4 times the standard deviation. So, 0.01 is equivalent to 4 times the standard deviation.
To find the standard deviation, we divide 0.01 by 4. So, the estimated standard deviation is 0.0025.
To determine the number of grade point averages needed, we can use the formula for the margin of error in a confidence interval: Margin of Error = (z-score) * (standard deviation / √n).
Rearranging the formula to solve for n, we have n = ((z-score) * standard deviation / Margin of Error)².
Plugging in the values, n = ((2.58) * (0.0025) / 0.01)² = 166.41.
Learn more about sample mean:
https://brainly.com/question/31101410
#SPJ11
The plane y=1 intersects the surface z = x4 + 5xy ? y4 in a certain curve. Find the slope m of the tangent line to this curve at the point P = (1, 1, 5).
m=________________
The slope of the tangent line to the curve of intersection at P is 9.
To find the curve of intersection between the plane y=1 and the surface z = x^4 + 5xy - y^4, we can substitute y=1 into the equation for the surface:
z = x^4 + 5x - 1
So, the curve of intersection is given by the function:
f(x) = x^4 + 5x - 1
To find the slope of the tangent line to this curve at the point P = (1, 1, 5), we need to take the derivative of the function f(x) and evaluate it at x=1:
f'(x) = 4x^3 + 5
f'(1) = 4(1)^3 + 5 = 9
So, the slope of the tangent line to the curve of intersection at P is 9.
Learn more about slope here:
https://brainly.com/question/3605446
#SPJ11
For time t≥1
, the position of a particle moving along the x-axis is given by p(t)=t√−2. At what time t in the interval 1≤t≤16
is the instantaneous velocity of the particle equal to the average velocity of the particle over the interval 1≤t≤16
The time interval at which instantaneous velocity of the particle equal to the average velocity of the particle is t = 225
Given data ,
To find the instantaneous velocity of the particle, we need to take the derivative of the position function:
p'(t) = 1/(2√t)
To find the average velocity over the interval [1, 16], we need to find the displacement and divide by the time:
average velocity = [p(16) - p(1)] / (16 - 1)
= [√16 - 2 - (√1 - 2)] / 15
= (2 - 1) / 15
= 1/15
Now we need to find a time t in the interval [1, 16] such that p'(t) = 1/15
On simplifying the equation , we get
1/(2√t) = 1/15
Solving for t, we get:
t = 225
Hence , at time t = 225, the instantaneous velocity of the particle is equal to the average velocity over the interval [1, 16]
To learn more about velocity click :
https://brainly.com/question/19979064
#SPJ1
Exercise 10.21. Let Xi,X2,X3,... be i.i.d. Bernoulli trials with success probability p and SkXiXk. Let m< n. Find the conditional probability mass function s , e]k) of Sm, given Sn-k. (a) Identify the distribution by name. Can you give an intuitive explanation for the answer? (b) Use the conditional probability mass function to find E[Sm Sn1
We are given i.i.d. Bernoulli trials with success probability p, and we need to find the conditional probability mass function of Sm, given Sn-k. The distribution that arises in this problem is the binomial distribution.
The binomial distribution is the probability distribution of the number of successes in a sequence of n independent Bernoulli trials, with a constant success probability p. In this problem, we are considering a subsequence of n-k trials, and we need to find the conditional probability mass function of the number of successes in a subsequence of m trials, given the number of successes in the remaining n-k trials. Since the Bernoulli trials are independent and identically distributed, the probability of having k successes in the remaining n-k trials is given by the binomial distribution with parameters n-k and p.
Using the definition of conditional probability, we can write:
P(Sm = s | Sn-k = k) = P(Sm = s and Sn-k = k) / P(Sn-k = k)
=[tex]P(Sm = s)P(Sn-k = k-s) / P(Sn-k = k)[/tex]
=[tex](n-k choose s)(p^s)(1-p)^(m-s) / (n choose k)(p^k)(1-p)^(n-k)[/tex]
where (n choose k) =n! / (k!(n-k)!) is the binomial coefficient.
We can use this conditional probability mass function to find E[Sm | Sn-k]. By the law of total expectation, we have:
[tex]E[Sm] = E[E[Sm | Sn-k]][/tex]
=c[tex]sum{k=0 to n} E[Sm | Sn-k] P(Sn-k = k)\\= sum{k=0 to n} (m(k/n)) P(Sn-k = k)[/tex]
where we have used the fact that E[Sm | Sn-k] = mp in the binomial distribution.
Thus, the conditional probability mass function of Sm, given Sn-k, leads to an expression for the expected value of Sm in terms of the probabilities of Sn-k.
Learn more about bernoulli here:
https://brainly.com/question/30509621
#SPJ11
A stone is tossed into the air from ground level with an initial velocity of 39 m/s.
Its height at time t is h(t) = 39t − 4.9t^2 m/s. Compute the stone's average velocity over the time intervals
[1, 1.01], [1, 1.001], [1, 1.0001],
and
[0.99, 1], [0.999, 1], [0.9999, 1].
Estimate the instantaneous velocity v at t = 1.
The instantaneous velocity of the stone at t = 1 is 29.2 m/s.
Given data:
A stone is tossed into the air from ground level with an initial velocity of 39 m/s. Its height at time t is h(t) = 39t − 4.9t² m/s. The required parameters are as follows:
Compute the stone's average velocity over the time intervals [1, 1.01], [1, 1.001], [1, 1.0001],
and [0.99, 1], [0.999, 1], [0.9999, 1].
Estimate the instantaneous velocity v at t = 1.
Solution:
Average velocity = (total distance) / (total time)
In general, distance is the change in the position of an object; as a result, total distance = [h(t2) − h(t1)],
and total time = [t2 − t1].
Using the formula of h(t),
h(t2) = 39t2 − 4.9t²
h(t1) = 39t1 − 4.9t²
Let's evaluate the average velocity over the time intervals using this formula:
[1, 1.01][h(1.01) - h(1)] / [1.01 - 1] = [39(1.01) - 4.9(1.01)² - 39(1) + 4.9(1)²] / [0.01][1, 1.001][h(1.001) - h(1)] / [1.001 - 1]
= [39(1.001) - 4.9(1.001)² - 39(1) + 4.9(1)²] / [0.001][1, 1.0001][h(1.0001) - h(1)] / [1.0001 - 1]
= [39(1.0001) - 4.9(1.0001)² - 39(1) + 4.9(1)²] / [0.0001][0.99, 1][h(1) - h(0.99)] / [1 - 0.99]
= [39(1) - 4.9(1)² - 39(0.99) + 4.9(0.99)²] / [0.01][0.999, 1][h(1) - h(0.999)] / [1 - 0.999]
= [39(1) - 4.9(1)² - 39(0.999) + 4.9(0.999)²] / [0.001][0.9999, 1][h(1) - h(0.9999)] / [1 - 0.9999]
= [39(1) - 4.9(1)² - 39(0.9999) + 4.9(0.9999)²] / [0.0001]
Evaluate the above fractions and obtain the values of average velocity over the given time intervals.
Using the derivative of h(t), we can estimate the instantaneous velocity at t = 1.
Using the formula of v(t), v(t) = h'(t)At t = 1, h'(t) = 39 - 9.8(1) = 29.2 m/s
Thus, the instantaneous velocity of the stone at t = 1 is 29.2 m/s.
To know more about velocity visit:
https://brainly.com/question/18084516
#SPJ11
Philip watched a volleyball game from 1 pm to 1:45 pm how many degrees in a minute and turn
The answer of the given question based on the degrees is , Philip covered 270 degrees in 45 minutes and 0.75 turn in the game.
To answer this question, we must know that a full circle contains 360 degrees.
Therefore, we can use the proportion as follows:
60 minutes = 360 degrees
1 minute = 6 degrees
1 turn = 360 degrees
Here, Philip watched the volleyball game for 45 minutes.
Thus, the total degrees covered in 45 minutes are:
6 degrees/minute × 45 minutes = 270 degrees
And the number of turns covered in 45 minutes is:
360 degrees/turn × 45 minutes / 60 minutes/turn = 0.75 turn
Therefore, Philip covered 270 degrees in 45 minutes and 0.75 turn in the game.
To know more about Proportion visit:
https://brainly.com/question/30241688
#SPJ11
P and C are in dollars and x is the number of units.
The demand function for a product is p = 34 − x2. If the equilibrium price is $9 per unit, what is the consumer's surplus?
Thus, consumer's surplus for the given equilibrium quantity using the given demand function is approximately $11.67.
To calculate the consumer's surplus, we first need to find the equilibrium quantity using the given demand function and the equilibrium price. The demand function is p = 34 - x^2, and the equilibrium price is $9 per unit.
To find the equilibrium quantity (x), we can set p equal to the equilibrium price:
9 = 34 - x^2
Now, solve for x:
x^2 = 34 - 9
x^2 = 25
x = 5
So, the equilibrium quantity is 5 units. The consumer's surplus is the difference between what consumers are willing to pay (as described by the demand function) and what they actually pay (the equilibrium price) for all units up to the equilibrium quantity.
To find the consumer's surplus, we'll integrate the demand function from 0 to the equilibrium quantity (5) and then subtract the total amount consumers actually pay:
Consumer's surplus = ∫(34 - x^2) dx - (9 * 5)
Evaluate the integral from 0 to 5:
Consumer's surplus = [(34x - x^3/3) evaluated from 0 to 5] - 45
Consumer's surplus = [(34(5) - (5^3)/3) - (34(0) - (0^3)/3)] - 45
Consumer's surplus = [(170 - 125/3) - 0] - 45
Consumer's surplus ≈ 56.67 - 45
Consumer's surplus ≈ $11.67
Thus, the consumer's surplus is approximately $11.67.
Know more about the demand function
https://brainly.com/question/15234429
#SPJ11
Let a belong to a ring R. let S= (x belong R such that ax = 0) show that s is a subring of R
S satisfies all the conditions of being a subring of R, and we can conclude that S is indeed a subring of R.
To show that S is a subring of R, we need to verify the following three conditions:
1. S is closed under addition: Let x, y belong to S. Then, we have ax = 0 and ay = 0. Adding these equations, we get a(x + y) = ax + ay = 0 + 0 = 0. Thus, x + y belongs to S.
2. S is closed under multiplication: Let x, y belong to S. Then, we have ax = 0 and ay = 0. Multiplying these equations, we get a(xy) = (ax)(ay) = 0. Thus, xy belongs to S.
3. S contains the additive identity and additive inverses: Since R is a ring, it has an additive identity element 0. Since a0 = 0, we have 0 belongs to S. Also, if x belongs to S, then ax = 0, so -ax = 0, and (-1)x = -(ax) = 0. Thus, -x belongs to S.
Therefore, S satisfies all the conditions of being a subring of R, and we can conclude that S is indeed a subring of R.
To know more about subrings refer here :
https://brainly.com/question/14099149#
#SPJ11
find a power series solution to the differential equation (x^2 - 1)y'' xy'-y=0
To find a power series solution to the differential equation (x² - 1)y'' + xy' - y = 0, we will assume a power series solution in the form y(x) = Σ(a_n * xⁿ), where a_n are coefficients.
1. Calculate the first derivative y'(x) = Σ(n * a_n * xⁿ⁻¹) and the second derivative y''(x) = Σ((n * (n-1)) * a_n * xⁿ⁻²).
2. Substitute y(x), y'(x), and y''(x) into the given differential equation.
3. Rearrange the equation and group the terms by the powers of x.
4. Set the coefficients of each power of x to zero, forming a recurrence relation for a_n.
5. Solve the recurrence relation to determine the coefficients a_n.
6. Substitute a_n back into the power series to obtain the solution y(x) = Σ(a_n * xⁿ).
By following these steps, we can find a power series solution to the given differential equation.
To know more about power series click on below link:
https://brainly.com/question/29896893#
#SPJ11
if i give a 60 minute lecture and two weeks later give a 2 hour exam on the subject, what is the retrieval interval?
The 2 hour exam is the retrieval interval
What is the retrieval interval?In the scenario you described, the retrieval interval is two weeks, as there is a two-week gap between the lecture and the exam. During this time, the students have had a chance to study and review the material on their own before being tested on it.
Retrieval intervals can have a significant impact on memory retention and retrieval. Research has shown that longer retrieval intervals can lead to better long-term retention of information, as they allow for more opportunities for retrieval practice and consolidation of memory traces.
Read more on retrieval interval here:https://brainly.com/question/479532
#SPJ1
use a known maclaurin series to obtain a maclaurin series for the given function. f(x) = xe3x f(x) = [infinity] n = 0 find the associated radius of convergence, r.
To find the Maclaurin series for f(x) = xe3x, we can start by taking the derivative of the function:
f'(x) = (3x + 1)e3x
Taking the derivative again, we get:
f''(x) = (9x + 6)e3x
And one more time:
f'''(x) = (27x + 18)e3x
We can see a pattern emerging here, where the nth derivative of f(x) is of the form:
f^(n)(x) = (3^n x + p_n)e3x
where p_n is a constant that depends on n. Using this pattern, we can write out the Maclaurin series for f(x):
f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ... + f^(n)(0)x^n/n! + ...
Plugging in the values we found for the derivatives at x=0, we get:
f(x) = 0 + (3x + 1)x + (9x + 6)x^2/2! + (27x + 18)x^3/3! + ... + (3^n x + p_n)x^n/n! + ...
Simplifying this expression, we get:
f(x) = x(1 + 3x + 9x^2/2! + 27x^3/3! + ... + 3^n x^n/n! + ...)
This is the Maclaurin series for f(x) = xe3x. To find the radius of convergence, we can use the ratio test:
lim |a_n+1/a_n| = lim |3x(n+1)/(n+1)! / 3x/n!|
= lim |3/(n+1)| |x| -> 0 as n -> infinity
So the radius of convergence is infinity, which means that the series converges for all values of x.
Learn more about Maclaurin series here:
https://brainly.com/question/31745715
#SPJ11
Find the distance, d, between the point S(5,10,2) and the plane 1x+1y+10z -3. The distance, d, is (Round to the nearest hundredth.)
The distance from the point S with coordinates (5, 10, 2) to the plane defined by the equation x + y + 10z - 3 = 0 is estimated to be around 2.77 units.
What is the distance between the point S(5,10,2) and the plane x + y + 10z - 3 = 0?The distance between a point and a plane can be calculated using the formula:
d = |ax + by + cz + d| / √(a² + b² + c²)
where (a, b, c) is the normal vector to the plane, and (x, y, z) is any point on the plane.
The given plane can be written as:
x + y + 10z - 3 = 0
So, the coefficients of x, y, z, and the constant term are 1, 1, 10, and -3, respectively. The normal vector to the plane is therefore:
(a, b, c) = (1, 1, 10)
To find the distance between the point S(5, 10, 2) and the plane, we can substitute the coordinates of S into the formula for the distance:
d = |1(5) + 1(10) + 10(2) - 3| / √(1² + 1² + 10²)
Simplifying the expression, we get:
d = |28| / √(102)d ≈ 2.77 (rounded to the nearest hundredth)Therefore, the distance between the point S(5, 10, 2) and the plane x + y + 10z - 3 = 0 is approximately 2.77 units.
Learn more about normal vector
brainly.com/question/31435693
#SPJ11
There are 15 different marbles and 3 jars. Suppose you are throwing the marbles in the jars and there is a 20%, 50% and 30% chance of landing a marble in jars 1, 2 and 3, respectively. Note: Stating the distribution and parameters will give you 4 points out of the 7. a. (7 pts) What is the probability of landing 4, 6 and 5 marbles in jars 1, 2 and 3 respectively? b. (7 pts) Suppose that out of the 15 marbles 7 are red and 8 are blue. If we randomly select a sample of size 5, what is the probability that we will have 3 blue marbles? C. (7 pts) Suppose we will throw marbles at the jars, until we have landed three (regardless of color) in jar 1. What is the probability that we will need to throw ten marbles to achieve this?
Answer: The probability of needing to throw ten marbles to achieve three landings in jar 1 is approximately 14.0%.
Step-by-step explanation:
a. To calculate the probability of landing a specific number of marbles in each jar, we need to use the multinomial distribution. Let X = (X1, X2, X3) be the random variable that represents the number of marbles in jars 1, 2, and 3, respectively. Then X follows a multinomial distribution with parameters n = 15 (total number of marbles) and p = (0.2, 0.5, 0.3) (probabilities of landing in jars 1, 2, and 3, respectively).The probability of landing 4, 6, and 5 marbles in jars 1, 2, and 3, respectively, can be calculated as:P(X1 = 4, X2 = 6, X3 = 5) = (15 choose 4,6,5) * (0.2)^4 * (0.5)^6 * (0.3)^5
= 1,539,615 * 0.0001048576 * 0.015625 * 0.00243
= 0.00679
Therefore, the probability of landing 4 marbles in jar 1, 6 marbles in jar 2, and 5 marbles in jar 3 is approximately 0.68%.b. We can use the hypergeometric distribution to calculate the probability of selecting a specific number of blue marbles from a sample of size 5 without replacement. Let X be the random variable that represents the number of blue marbles in the sample. Then X follows a hypergeometric distribution with parameters N = 15 (total number of marbles), K = 8 (number of blue marbles), and n = 5 (sample size).The probability of selecting 3 blue marbles can be calculated as:
P(X = 3) = (8 choose 3) * (15 - 8 choose 2) / (15 choose 5)
= 56 * 21 / 3003
= 0.392
Therefore, the probability of selecting 3 blue marbles from a sample of size 5 is approximately 39.2%.c. Let Y be the random variable that represents the number of marbles needed to achieve three landings in jar 1. Then Y follows a negative binomial distribution with parameters r = 3 (number of successes needed) and p = 0.2 (probability of landing in jar 1).The probability of needing to throw ten marbles to achieve three landings in jar 1 can be calculated as:
P(Y = 10) = (10 - 1 choose 3 - 1) * (0.2)^3 * (0.8)^7
= 84 * 0.008 * 0.2097152
= 0.140
Therefore, the probability of needing to throw ten marbles to achieve three landings in jar 1 is approximately 14.0%.
Learn more about probability here, https://brainly.com/question/25839839
#SPJ11
Find the length of the diameter of circle O. Round to the nearest tenth
The length of the diameter of circle O rounded to the nearest tenth is 16.0 cm.
To find the diameter of a circle, we use the formula:diameter = 2 × radiuswhere, the radius of a circle is the distance from the center of the circle to any point on the circle.Now, let us consider the given circle O:The circle O has a radius of 8cm.We can use the formula mentioned above to find the length of the diameter of circle O.diameter = 2 × radiusdiameter = 2 × 8diameter = 16Therefore, the length of the diameter of circle O is 16cm. We round the answer to the nearest tenth:16 rounded to the nearest tenth = 16.0 (since the tenths place is a zero)Therefore, the length of the diameter of circle O rounded to the nearest tenth is 16.0 cm.
Learn more about Length here,what is the unit of length
https://brainly.com/question/27351903
#SPJ11
Lexi said, “They just charged me $17 dollars in taxes and when I bough bought these outfits for $200.” How much will Ann pay in taxes?
Answer:
8.5% tax rate
Step-by-step explanation:
17/200= 0.085 = 8.5%
Before your trip to the mountains, your gas tank was full. when you returned home, the gas gauge registered
of a tank. if your gas tank holds 18 gallons, how many gallons did you use to drive to the mountains and back
home?
please help
The gas gauge will show a lower reading if the gas tank is less than full when you return home after your trip to the mountains.
The gas gauge will show a lower reading if the gas tank is less than full when you return home after your trip to the mountains. This is due to the increased effort required to drive in mountainous terrain, which necessitates more fuel consumption.The amount of fuel used by the car will be determined by a variety of factors, including the engine, the type of vehicle, and the driving conditions. Since the car was driven in the mountains, it is likely that more fuel was used than usual, causing the gauge to show a lower reading.
Know more about gas gauge here:
https://brainly.com/question/19298882
#SPJ11
Fiona races bmx around a circular course. if the course is 70 meters, what is the total distance fiona covers in 2 laps?
The total distance Fiona covers in 2 laps is 439.6 meters.
To calculate the total distance Fiona covers in two laps, we first need to find the distance of one lap and then multiply it by 2.
The formula for the circumference of a circle is C = 2πr, where C is the circumference, π is a constant equal to approximately 3.14, and r is the radius of the circle.
Given that the course is 70 meters, we know that the diameter of the circle is also 70 meters.
We can find the radius by dividing the diameter by 2:radius (r) = diameter (d) / 2r = 70 m / 2r = 35 m
Now we can use the formula for the circumference of a circle to find the distance of one lap:
C = 2πrC = 2 × 3.14 × 35C ≈ 219.8 m
Therefore, the total distance Fiona covers in 2 laps is 2 × 219.8 = 439.6 meters or approximately 440 meters.
To learn more about circumference here:
https://brainly.com/question/27447563
#SPJ11
Given: RS and TS are tangent to circle V at R and T, respectively, and interact at the exterior point S. Prove: m∠RST= 1/2(m(QTR)-m(TR))
Given: RS and TS are tangents to the circle V at R and T, respectively, and intersect at the exterior point S.Prove: m∠RST= 1/2(m(QTR)-m(TR))
Let us consider a circle V with two tangents RS and TS at points R and T respectively as shown below. In order to prove the given statement, we need to draw a line through T parallel to RS and intersects QR at P.As TS is tangent to the circle V at point T, the angle RST is a right angle.
In ΔQTR, angles TQR and QTR add up to 180°.We know that the exterior angle is equal to the sum of the opposite angles Therefore, we can say that angle QTR is equal to the sum of angles TQP and TPQ. From the above diagram, we have:∠RST = 90° (As TS is a tangent and RS is parallel to TQ)∠TQP = ∠STR∠TPQ = ∠SRT∠QTR = ∠QTP + ∠TPQThus, ∠QTR = ∠TQP + ∠TPQ Using the above results in the given expression, we get:m∠RST= 1/2(m(QTR)-m(TR))m∠RST= 1/2(m(TQP + TPQ) - m(TR))m ∠RST= 1/2(m(TQP) + m(TPQ) - m(TR))m∠RST= 1/2(m(TQR) - m(TR))Hence, proved that m∠RST = 1/2(m(QTR) - m(TR))
Know more about tangents to the circle here:
https://brainly.com/question/30951227
#SPJ11
Find the linearization L(x,y) of the function at each point. f(x,y)= x2 + y2 +1 a. (3,2) b. (2.0)
a. For the point (3,2), the linearization L(x,y) of the function f(x,y) = x^2 + y^2 + 1 is:
L(x,y) = f(3,2) + fx(3,2)(x-3) + fy(3,2)(y-2)
where fx(3,2) and fy(3,2) are the partial derivatives of f(x,y) with respect to x and y, respectively, evaluated at (3,2).
f(3,2) = 3^2 + 2^2 + 1 = 14
fx(x,y) = 2x, so fx(3,2) = 2(3) = 6
fy(x,y) = 2y, so fy(3,2) = 2(2) = 4
Substituting these values into the linearization formula, we get:
L(x,y) = 14 + 6(x-3) + 4(y-2)
= 6x + 4y - 8
Therefore, the linearization of f(x,y) at (3,2) is L(x,y) = 6x + 4y - 8.
b. For the point (2,0), the linearization L(x,y) of the function f(x,y) = x^2 + y^2 + 1 is:
L(x,y) = f(2,0) + fx(2,0)(x-2) + fy(2,0)(y-0)
where fx(2,0) and fy(2,0) are the partial derivatives of f(x,y) with respect to x and y, respectively, evaluated at (2,0).
f(2,0) = 2^2 + 0^2 + 1 = 5
fx(x,y) = 2x, so fx(2,0) = 2(2) = 4
fy(x,y) = 2y, so fy(2,0) = 2(0) = 0
Substituting these values into the linearization formula, we get:
L(x,y) = 5 + 4(x-2)
= 4x - 3
Therefore, the linearization of f(x,y) at (2,0) is L(x,y) = 4x - 3.
To know more about linearization , refer here :
https://brainly.com/question/20286983#
#SPJ11
evaluate the line integral, where c is the given curve. c xyz2 ds, c is the line segment from (−3, 6, 0) to (−1, 7, 3)
The line integral of f(x,y,z) = xyz² over the curve c is approximately equal to 91.058.
How to calculate the valueThe line integral of the given function f(x,y,z) = xyz² over the curve c can be expressed as:
∫c f(x,y,z) ds = ∫[a,b] f(r(t)) ||r'(t)|| dt
Now we can calculate r'(t):
r'(t) = (2, 1, 3)
||r'(t)|| = ✓(2² + 1² + 3²) = sqrt(14)
∫c f(x,y,z) ds = ∫[0,1] (x(t) * y(t) * z(t)²) * ✓(14) dt
∫c f(x,y,z) ds = ∫[0,1] (-3 + 2t) * (6 + t) * (3t)² * ✓(14) dt
Simplifying and integrating, we get:
∫c f(x,y,z) ds = 9✓(14) ∫[0,1] (216t × 216t⁴ - 81t⁴ - 12t³) dt
∫c f(x,y,z) ds = 9✓(14) * (43/20) = 91.058
Learn more about integral on
https://brainly.com/question/27419605
#SPJ1
assume a is 100x10^6 which problem would you solve, the primal or the dual
Assuming that "a" refers to a matrix with dimensions of 100x10^6, it is highly unlikely that either the primal or dual problem would be solvable using traditional methods.
if "a" is assumed a much smaller matrix with dimensions that were suitable for traditional methods, then the answer would depend on the specific problem being solved and the preference of the solver.
In general, the primal problem is used to maximize a linear objective function subject to linear constraints, while the dual problem is used to minimize a linear objective function subject to linear constraints.
So, if the problem involves maximizing a linear objective function, then the primal problem would likely be solved.
If the problem involves minimizing a linear objective function, then the dual problem would likely be solved.
Read more about the Matrix.
https://brainly.com/question/31017647
#SPJ11
use the direct comparison test to determine the convergence or divergence of the series. [infinity]Σn=1 sin^2(n)/n^8sin^2(n)/n^8 >= converges diverges
The series Σn=1 sin^2(n)/n^8 diverges.
To use the direct comparison test, we need to find a series with positive terms that is smaller than the given series and either converges or diverges. We can use the fact that sin^2(n) <= 1 to get:
0 <= sin^2(n)/n^8 <= 1/n^8
Now, we know that the series Σn=1 1/n^8 converges by the p-series test (since p=8 > 1). Therefore, by the direct comparison test, the series Σn=1 sin^2(n)/n^8 also converges.
However, the inequality we used above is not strict, so we can't use the direct comparison test to show that the series diverges. In fact, we can show that the series does diverge by using the following argument:
Consider the partial sums S_k = Σn=1^k sin^2(n)/n^8. Note that sin^2(n) is periodic with period 2π, and that sin^2(n) >= 1/2 for n in the interval [kπ, (k+1/2)π). Therefore, we can lower bound the sum of sin^2(n)/n^8 over this interval as follows:
Σn=kπ^( (k+1/2)π) sin^2(n)/n^8 >= (1/2)Σn=kπ^( (k+1/2)π) 1/n^8
Using the integral test (or comparison with a Riemann sum), we can show that the sum on the right-hand side is infinite. Therefore, the sum on the left-hand side is also infinite, and the series Σn=1 sin^2(n)/n^8 diverges.
For more questions like Series click the link below:
https://brainly.com/question/28167344
#SPJ11
8. Max is remodeling his house and is trying to come up with dimensions for his
bedroom. The length of the room will be 5 feet longer than his bed, and the
width of his room will be 7 feet longer than his bed. The area of his bed and the
room together is given by the function:
A(x) = (x + 5) (x + 7)
Part A: Find the standard form of the function A(x) and the y-intercept. Interpret
the y-intercept in the context.
Standard Form: A(x)
y- intercept:
Interpret the y-intercept:
=
The y-intercept represents the area of the bed and room together when the length and width of the bed are both zero and the function is given by the relation A(x) = x² + 12x + 35
Given data ,
To find the standard form of the function A(x), we first expand the expression:
A(x) = (x + 5) (x + 7)
A(x) = x² + 7x + 5x + 35
A(x) = x² + 12x + 35
So the standard form of the function A(x) is:
A(x) = x² + 12x + 35
To find the y-intercept, we set x = 0 in the function:
A(0) = 0² + 12(0) + 35
A(0) = 35
So the y-intercept is 35. In the context of the problem, the y-intercept represents the area of the bed and room together when the length and width of the bed are both zero.
Hence , the function is solved
To learn more about function rule click :
https://brainly.com/question/3760195
#SPJ1
x p(x) 2 0.84 3.28 51.2 13 1638.4 ? 6553.6 What is x such that p(x) = 6553.6?
Based on the information provided, we have a set of values for x and the corresponding probability density function p(x). We are looking for the value of x that corresponds to p(x) = 6553.6.
One way to approach this problem is to use interpolation. We can see that the values of p(x) are increasing rapidly as x increases, which suggests that the function is likely to be smooth and continuous. Therefore, we can use a method such as linear interpolation to estimate the value of x that corresponds to p(x) = 6553.6.To do this, we need to find two adjacent values of x that bracket the target value of p(x). Looking at the table, we can see that the values of p(x) increase by a factor of 4 each time x increases by 1. Therefore, we can estimate that p(13) < 6553.6 < p(51.2).We can now use linear interpolation to estimate the value of x that corresponds to p(x) = 6553.6. The formula for linear interpolation is:
x = x1 + (x2 - x1) * (y - y1) / (y2 - y1)
where x1 and x2 are the two adjacent values of x, y1 and y2 are the corresponding values of p(x), and y is the target value of p(x). Plugging in the values we have:
x = 13 + (51.2 - 13) * (6553.6 - 1638.4) / (51.2 - 1638.4)
x ≈ 20.865
Therefore, the value of x that corresponds to p(x) = 6553.6 is approximately 20.865.
Learn more about density here
https://brainly.com/question/1354972
#SPJ11
find the primary shear (′) in the weld as a function of the force f.
The primary shear (′) in the weld can be expressed as a function of the force f using the formula ′ = f / (t * L), where t is the thickness of the weld and L is the length of the weld.
The formula ′ = f / (t * L), where t is the weld's thickness and L is its length, can be used to express the primary shear (′) in a weld as a function of the force f.
Therefore, as the force f increases, the primary shear in the weld will increase proportionally.
Primary shear, a type of stress that develops when pressures are applied in opposition to one another along parallel planes or parallel surfaces, describes the deformation of a material under shear stress. Prior to other types of deformation, like bending or twisting, becoming substantial, primary shear is the sort of shear deformation that first takes place in a material. The material fails along planes that are perpendicular to the direction of the shear stress as a result of primary shear, which causes the material to deform. In engineering and materials science, a material's capacity to withstand primary shear is a crucial characteristic that impacts its strength and toughness.
Learn more about shear here:
https://brainly.com/question/31855625
#SPJ11