Answer:
Suppose Jenna drives 41 miles on Monday. The Z-score when x - 41 is [tex]-0.943[/tex]. The mean is [tex]46[/tex] This z-score tells you that x = 41 is [tex]0.94[/tex] standard deviations to the left of the mean.
Step-by-step explanation:
From the question we are told that
The mean is [tex]\= x = 46\ miles / day[/tex]
The standard deviation is [tex]\sigma = 5.3 \ miles \ per \ day[/tex]
The value of = 41
Generally the z-score is mathematically represented as
[tex]z = \frac{x-\= x}{\sigma }[/tex]
substituting values
[tex]z = \frac{41-46}{5.3}[/tex]
[tex]z = - 0.943[/tex]
I need help! I don’t understand and need helping
Answer:
125
Step-by-step explanation:
30+25+x=180
55+x=180
x=180-55
x=125
Answer:
x = 64.3Step-by-step explanation:
To find x we use tan
tan ∅ = opposite / adjacent
From the question
x is the adjacent
30 is the hypotenuse
So we have
tan 25 = 30/x
x = 30/tan 25
x = 64.33
x = 64.3 to the nearest tenth
Hope this helps you
Can Someone plz help me with the question??
Answer:
[tex]\boxed{x^2+y^2 = 49}[/tex]
Step-by-step explanation:
First, we'll find the length of the radius using distance formula and the coordinates (0,0) and (7,0)
Distance Formula = [tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]
R = [tex]\sqrt{(7-0)^2+(0-0)^2}[/tex]
R = [tex]\sqrt{7^2}[/tex]
Radius = 7 units
Now, Equation of circle:
[tex](x-a)^2+(y-b)^2 = R^2[/tex]
Where (a,b) = (0,0) So, a = 0, b = 0 and R = 7 units
=> [tex](x-0)^2+(y-0)^2 = (7)^2[/tex]
=> [tex]x^2+y^2 = 49[/tex]
This is the required equation of the circle.
Answer:
x^2 + y^2 = 49
Step-by-step explanation:
We can write the equation of a circle as
( x-h) ^2 + ( y-k) ^2 = r^2
where ( h,k) is the center and r is the radius
The radius is the distance from the center to a point on the circle
(0,0) to (7,0) is 7 units
so the the radius is 7
( x-0) ^2 + ( y-0) ^2 = 7^2
x^2 + y^2 = 49
One bag of dog food has 13kg. Vet order dog to eat 683 grams a day. How many bags of dog for will you need to buy for 1yr.
Answer:
20 bags
Step-by-step explanation:
683✖️19=12977
683✖️365=249295
249295/13000=19.17
--> 20 bags
The center of a circle is at the origin on a coordinate grid. A line with a positive slope intersects the circle at (0,7).
Which statement must be true?
The circle has a radius greater than 7.
The circle has a radius equal to 7.
The slope of the line is equal to 7.
The slope of the line is not equal to 7.
Save and Exit
Next
Submit
Answer:
the radius of the circle =7
Step-by-step explanation:
the function of a circle:(x – h)^2 + (y – k)^2 = r^2
center(0,0) because the center of a circle is at the origin (h,k)
a line intersect at (0,7)
(0-0)^+7-0)^2=r^2
r^2=49 , r=√49
radius r=7
Which of the following lines are parallel to 2Y - 3X = 4?
A. Y = 2/3 X + 4
B. Y = 6/4 X
C. 2Y=8-3X
Answer:
B. Y = 6/4 X
Step-by-step explanation:
Well to find its parallel line we need to put,
2y - 3x = 4 into slope-intercept.
+3x to both sides
2y = 3x + 4
Now we divide everything by 2,
y = 3/2x + 2
So a line that is parallel to the given line will have the same slope but different y intercept, meaning we can cross out choices A and C.
To check look at the image below ↓
Thus,
answer choice B. Y = 6/4 X is correct.
Hope this helps :)
A large sample of men, aged 48 was studied for 18 years. For unmarried men, approximately 70% were alive at age 65. For married men 90% were alive at 65%. Is this a sample or population?
Simplify the expression:
3+ – 5(4+ – 3v)
Answer:
The answer is
15v - 17Step-by-step explanation:
3+ – 5(4+ – 3v) can be written as
3 - 5( 4 - 3v)
Expand and simplify
That's
3 - 20 + 15v
15v - 17
Hope this helps you
Find the average rate of change of the function f(x), represented by the graph, over the interval [-4, -1]. Calculate the average rate of change of f(x) over the interval [-4, -1] using the formula . The value of f(-1) is . The value of f(-4) is . The average rate of change of f(x) over the interval [-4, -1] is .
Answer:
2
Step-by-step explanation:
We are given that a graph which represents f(x).
Interval:[-4,-1]
We have to find the average rate of change of the function f(x).
From the graph we can see that
f(-4)=-3
f(-1)=3
We know that the average rate of change of the function
Average rate =[tex]\frac{f(b)-f(a)}{b-a}[/tex]
Using the formula
Average rate of change of f=[tex]\frac{3-(-3)}{-1-(-4)}[/tex]
Average rate of change of f=[tex]\frac{6}{3}=2[/tex]
The temperature is 58° F. It gets warmer by h degrees and reaches to 65° F. Find h.
Answer:
h = 7 degrees
Step-by-step explanation:
To find h, we know that it is positive because it increases in value, not decreases:
h = 65 - 58
h = 7
Answer:
h = 7°F
Step-by-step explanation:
58 + h = 65
h = 65 - 58
h = 7
Check:
68 + 7 = 65
Use the Quadratic Formula to solve the equation ? x^2-2x=-9
Answer:
x=(2+ √-32)/2 or x=(2- √-32)/2
Step-by-step explanation:
x^2 - 2x = -9
x^2 - 2x + 9 =0
x = 2± (√(-2)^2 - 4*1*9)/2*1
Use the quadratic formula in the expression using a=1, b= -2, c=9
x = 2±√4-36 /2
x = 2+√4-36 or x = 2 - √4 - 32 /2
x = (2+√-32) /2 or x=( 2 - √-32 )/2
The solution for the given quadratic equation are (2+i5.7)/2 or (2-i5.7)/2.
The given quadratic equation is x²-2x=-9.
What is the quadratic formula?Quadratic formula is the simplest way to find the roots of a quadratic equation.
The roots of a quadratic equation ax² + bx + c = 0 are given by x = [-b ± √(b² - 4ac)]/2a.
By comparing x²-2x+9=0 with ax² + bx + c = 0, we get a=1, b=-2 and c=9
Substitute a=1, b=-2 and c=9 in the quadratic formula, we get
x = [2±√(-2)²-4×1×9)]/2×1
= [2±√4-36]/2
= (2±i5.7)/2
x = (2+i5.7)/2 or (2-i5.7)/2
Therefore, the solution for the given quadratic equation are (2+i5.7)/2 or (2-i5.7)/2.
To learn more about the quadratic formula visit:
https://brainly.com/question/11540485.
#SPJ5
WHat is the answer to this?
Answer:
0.9
Step-by-step explanation:
First, convert them all into fractions:
[tex]2\frac{1}{3}=\frac{7}{3}[/tex]
[tex].5=\frac{1}{2}[/tex]
Now, we have:
[tex]\frac{4x+9}{\frac{7}{3} } =\frac{3x}{\frac{1}{2} }[/tex]
Cross multiply:
[tex]\frac{1}{2} (4x+9)=\frac{7}{3} (3x)[/tex]
On the left, distribute. On the right, notice that the 3 in the denominator and the coefficient 3 cancel:
[tex]2x+4.5=7x[/tex]
[tex]4.5=5x[/tex]
[tex]x=0.9=9/10[/tex]
Answer and step-by-step explanation:
Photo
The letters G, E, N, I, D, S are placed in a bag. What is the probability that the letters are randomly pulled from the bag in the order that spells DESIGN?
Answer as a fraction = 1/5040
Answer in decimal form (approximate) = 0.000198
Answer in percentage form (approximate) = 0.0198%
=========================================================
Explanation:
There is only one ordering of the letters to get DESIGN out of 5040 different permutations. The 5040 comes from the fact that 7*6*5*4*3*2*1 = 5040. In shorthand notation, use factorials to say 7! = 5040. Notice how we started with 7 and counted down until reaching 1, multiplying all along the way. You could use the nPr permutation formula to get the same result of 5040 (use n = 7 and r = 7).
So because we have 1 way to order the letters (getting DESIGN) out of 5040 ways total, this means the probability is the fraction 1/5040. Use your calculator to find that 1/5040 = 0.000198 approximately. Move the decimal over 2 spots to the right to convert 0.000198 to 0.0198%
Global Airlines operates two types of jet planes: jumbo and ordinary. On jumbo jets, 25% of the passengers are on business while on ordinary jets 30% of the passengers are on business. Of Global's air fleet, 40% of its capacity is provided on jumbo jets. (Hint: The 25% and 30% values are conditional probabilities stated as percentages.) What is the probability a randomly chosen business customer flying with Global is on a jumbo jet?
Answer:
Answer:
The probability is [tex]P(J|B) = 0.36[/tex]
Step-by-step explanation:
B =business
J=jumbo
Or =ordinary
From the question we are told that
The proportion of the passenger on business in the ordinary jet is [tex]P(B| Or) = 0.25[/tex]
The proportion of the passenger on business in the jumbo jet is [tex]P(B|J) = 0.30[/tex]
The proportion of the passenger on jumbo jets is [tex]P(j) = 0.40[/tex]
The proportion of the passenger on ordinary jets is evaluated as
[tex]1 - P(J) = 1- 0.40 = 0.60[/tex]
According to Bayer's theorem the probability a randomly chosen business customer flying with Global is on a jumbo jet is mathematically represented as
[tex]P(J|B) = \frac{P(J) * P(B|J)}{P(J ) * P(B|J) + P(Or ) * P(B|Or)}[/tex]
substituting values
[tex]P(J|B) = \frac{ 0.4 * 0.25}{0.4 * 0.25 + 0.6 * 0.3}[/tex]
[tex]P(J|B) = 0.36[/tex]
Step-by-step explanation:
Brainliest for the correct awnser!!! Which of the following is the product of the rational expressions shown below?
Answer:
[tex] \frac{ {x}^{2} - 1 }{ {x}^{2} - 25 } [/tex]Step-by-step explanation:
[tex] \frac{x - 1}{x + 5} \times \frac{x + 1}{x - 5} [/tex]
To multiply the fraction, multiply the numerators and denominators separately
[tex] \frac{(x - 1) \times (x + 1)}{(x + 5) \times (x - 5)} [/tex]
Using [tex] {a}^{2} - {b}^{2} = (a - b)(a + b)[/tex] simplify the product
[tex] = \frac{ {x}^{2} - 1 }{ {x}^{2} - 25 } [/tex]
Hope this helps..
Best regards!!
A drawer is filled with 3 black shirts, 8 white shirts, and 4 gray shirts. One shirt is chosen at random from the drawer. Find the probability that it is not a white shirt. Write your answer as a fraction.
The probability that the shirt that is chosen at random from the drawer is not a white shirt, can be found to be 47 %
How to find the probability ?The probability that the shirt picked is not a white shirt can be found by first finding the number of shirts that are not white shorts in the drawer. This number is :
= Number of black shirts + Gray shirts
= 3 + 4
= 7 shirts
Then, find the total number of shirts in the drawer, including the white shirts :
= Number of black shirts + Gray shirts + White shirts
= 3 + 8 + 4
= 15 shirts
The probability that when a shirt is chosen at random, that it is not a white shirt is :
= Number of shirts that are not white / Total number of shirts
= 7 / 15
= 47 %
Find out more on probability at https://brainly.com/question/27831410
#SPJ1
The assistant principal set up chairs in the auditorum for graduation. She placed
the chairs in 24 rows with 28 chairs in each row. How many chairs are set up in
the auditorium
Answer:
672 chairs
Step-by-step explanation:
24 × 28 = 672
hope this helps
Mike can stitch 7 shirts in 42 hours
He can stitch 1 shirt in hours, and in 1 hour he can stitch of a shirt
Answer:
He stitched 1 shirt in 6 hours.
He can stitch 1/6 of a shirt in one hour
Step-by-step explanation:
Given Mike can stitch 7 shirts in 42 hours
No. of shirt stitch in one hour = total no of shirt stitch/total time taken
No. of shirt stitch in one hour = 7/42 = 1/6
Thus, he can stitch 1/6 of a shirt in one hour
Time taken to stitch 1 shirt = total time taken by him to stitch 7 shirts/ total no. of shirt stitch(i.e 7) = 42/6 = 6 hours.
Thus, he stitched 1 shirt in 6 hours.
Answer:
He can stitch 1/6 of a shirt in one hour
Step-by-step explanation:
Because he stitched 7 shirts in 42 hours
42/7 = 6
so 6 hours per shirt
In one hour:
1/6
According to the World Health Organization (WHO) Child Growth Standards, the head circumference for boys at birth is normally distributed with a mean of 34.5cm and a standard deviation of 1.3cm. What is the probability that a boy has a head circumference greater than 36.32cm at birth
Answer:
0.081
Step-by-step explanation:
To solve this question, we would use the z score formula
z score = (x-μ)/σ, where
x is the raw score = 36.32cm
μ is the population mean = 34.5 cm
σ is the population standard deviation = 1.3cm
z score = (36.32cm - 34.5cm)/1.3cm
z = 1.4
Using the normal distribution to find the z score for 1.4
P(z = 1.4) = 0.91924
Therefore, the probability that a boy has a head circumference greater than 36.32cm at birth is
P(x>36.32) = 1 - P(z = 1.4)
= 1 - 0.91924
= 0.080757
Approximately ≈ 0.081
An entertainment company specifies that its employees must weigh between 40 kgs - 50 kgs. If X is the random variable denoting the weights of employees, X is a __________ random variable.
Answer: Continuous
If X is the random variable denoting the weights of employees, X is a continuous random variable.
Step-by-step explanation:
Given: An entertainment company specifies that its employees must weigh between 40 kgs - 50 kgs.
here weights of the employees vary.
Also, weight is measured not counted , that means weight is a continuous variable.
If X is the random variable denoting the weights of employees, X is a continuous random variable.
The weights of employees, X, is a: continuous random variable.
Facts about Random Continuous VariableA continuous variable is obtained simply through measuring.Examples of continuous variable are: weight of students, distance travelled.A continuous random variable are values given for an interval of numbers.Therefore, the weights of employees, X, is a: continuous random variable.
Learn more about continuous random variable on:
https://brainly.com/question/15238425
If the code for CAB is DEK, what is the code for BED?
Answer:
CIM
Step-by-step explanation:
C is the 3rd letter of the alphabet, A is the 1st, and B is the 2nd.
CAB = 3,1,2
Repeating for DEK:
DEK = 4,5,11
Comparing:
4−3 = 1
5−1 = 4
11−2 = 9
BED = 2,5,4, so adding the corresponding numbers:
2+1 = 3
5+4 = 9
4+9 = 13
So the code is CIM.
The code for BED is CIM. A further explanation is below.
As we know that,
"C" is the third letter of the alphabet"A" is the first letter of the alphabet."B" is the Second letter of the alphabet.then,
→ CIB = 3, 1, 2
Same as above,
→ DEK = 4, 5, 11
By comparing the values, we get
[tex]4-3 =1[/tex][tex]5-1 =4[/tex][tex]11-2 =9[/tex]Same as above,
→ BED = 2, 5, 4
then,
[tex]2+1=3[/tex][tex]5+4 =9[/tex][tex]4+9 =13[/tex]Thus the above approach is appropriate.
Learn more:
https://brainly.com/question/18804431
Two ballpoint pens are selected at random from a box that contains3 blue pens, 2 red pensand 3 green pens. If X is the number of blue pens
Answer: 3/(28) ≈ 10.7%
Step-by-step explanation:
3 blue + 2 red + 3 green = 8 total pens
First pick and Second pick
[tex]\dfrac{3\ blue\ pens}{8\ total\ pens}\quad \times \quad \dfrac{2\ remaining\ blue\ pens}{7\ remaining\ total\ pens}\quad =\large\boxed{\dfrac{3}{28}}[/tex]
In a Gallup poll of randomly selected adults, 66% said that they worry about identity theft. For a group of 1013 adults, the mean of those who do not worry about identify theft is closest to:
Answer:
[tex]Mean = 344[/tex]
Step-by-step explanation:
Given
[tex]Population = 1013[/tex]
Let p represents the proportion of those who worry about identity theft;
[tex]p = 66\%[/tex]
Required
Mean of those who do not worry about identity theft
First, the proportion of those who do not worry, has to be calculated;
Represent this with q
In probability;
[tex]p + q = 1[/tex]
Make q the subject of formula
[tex]q = 1 - p[/tex]
Substitute [tex]p = 66\%[/tex]
[tex]q = 1 - 66\%[/tex]
Convert percentage to fraction
[tex]q = 1 - 0.66[/tex]
[tex]q = 0.34[/tex]
Now, the mean can be calculated using:
[tex]Mean = nq[/tex]
Where n represents the population
[tex]Mean = 1013 * 0.34[/tex]
[tex]Mean = 344.42[/tex]
[tex]Mean = 344[/tex] (Approximated)
For the functions f(x)=2x−5 and g(x)=3x2−x, find (f∘g)(x) and (g∘f)(x).
Hi,
f°g means : apply first g then f . so calculate "g" and then use result as "x" in f.
g°f means : you apply first f then g
so : f°g = 2(3x²-x) -5 = 6x²-2x- 5
To improve in math, you need practice. have a try with g°f :)
give the answer in comments, and I will tell you if you are correct.
good luck.
Transformations of exponential functions
Answer:
It's the last one. We know it's to the right because the -8 is in the exponent and also, it's -8 not +8.
A salesperson earns 6% commission on $25.000. How much
commission was earned?
The commission earned was $
Answer: $1500
Step-by-step explanation:
6% commission on $25,000
= 25000 x .06
= 1500
For the following information, determine whether a normal sampling distribution can be used, where p is the population proportion, is the level of significance, p is the sample proportion, and n is the sample size.
Claim: p >=0.28; α:0.08. Sample statistics: p=0.20, n= 180
Required:
If a normal sampling distribution can be used, decide whether to reject or fail to reject the null hypothesis and interpret the decision.
Answer:
The Central Limit Theorem says that if the sample size is more than 30, the data follows a normal sampling distribution. Since the sample size is 180, and that is more than 30, a Normal sampling distribution can be used.
Since a normal sampling distribution can be used, we should FAIL TO REJECT the null hypothesis because p = 0.20, which is more than the significance level of α = 0.08. There is NOT sufficient evidence to suggest that the alternative hypothesis is true.
Hope this helps!
a student showed the steps below while solving the equation 14=log5(2x-3) by graphing. which step did the student make the 1sr error
Answer:
[tex]x= \frac{5^{14}+3}{2}[/tex]
Step-by-step explanation:
The correct steps to solve the equation are:
[tex]14=log_5(2x-5)[/tex]
[tex]5^{14}=5^{log_5(2x-3)}[/tex]
Because [tex]a^{log_am}=m[/tex]
So, solving we get:
[tex]5^{14}=2x-3[/tex]
Sum 3 on every side:
[tex]5^{14}+3=2x-3+3\\5^{14}+3=2x[/tex]
Dividing by 2 into both sides:
[tex]\frac{5^{14}+3}{2}=\frac{2x}{2}\\\frac{5^{14}+3}{2}=x[/tex]
So, the answer is [tex]x= \frac{5^{14}+3}{2}[/tex]
Answer: Step 2
Step-by-step explanation:
This is correct according to Edge 2021
Which of these descriptions matches the graph?
Jimmy is walking to a friend's house at a constant
rate.
Jimmy is running late, so he starts to run to school
but needs to take breaks.
Jimmy is riding the bus to school at a decreasing
rate.
Jimmy's bus drives at the same speed for parts A
and C.
Answer:
Step-by-step explanation:
121212121211212 its B
Answer:
answer is B
Step-by-step explanation:
The snowfall from this snowstorm above covered most of IA, northern IL, northern IN, and southern MI. While some locations in that swath saw over a foot of snow, let’s assume the average depth of the snow over this area was 8 inches. If the total area covered by the 8 inch average depth was 72,150 square miles, what percentage of the volume of the Grand Canyon would this amount of snow fill?
Answer:
Percentage volume of the Grand Canyon filled by the snow = 0.911 %
Step-by-step explanation:
This question is incomplete; please find the complete question in the attachment.
Given :
Area of the snow cover = 72150 square miles
Depth of the snow = 8 inches
Volume of the Grand Canyon = 4.166 × 101² m³
Solution:
Area of the snow cover = 72150 square miles
≈ 72150 × 2589988 square meter
≈ 1.868 × 10¹¹ square meter
Depth of the snow = 8 inches ≈ 0.2032 m
Volume of the snow on this area = Area × depth of the snow
= 1.868 × 10¹¹ × 0.2032
= 3.796 × 10¹⁰ m³
Volume of the Grand Canyon = 4.166 × 10¹² m³
Percentage volume of the Grand Canyon filled by the snow
= [tex]\frac{\text{Volume of the snow}}{\text{Volume of the Grand Canyon}}\times 100[/tex]
= [tex]\frac{3.796\times 10^{10} }{4.166\times 10^{12} }\times 100[/tex]
= 0.911%
Quick!!! Urgent!!!!!!!!!
Answer:
my best answer for this is B. False.
I calculated as fast as i can.