Answer:
O B. Positive integers only
Step-by-step explanation:
You have that the temperature of a plate is measured respect to the number of hours that the plate has been left in the sun.
In this case you have that the independent variable is the number of hours and the dependent variable is the temperature.
Due to James would like to know how is changing the temperature of the plate, per hour, the best domain for the function, that is, the best available values for the time on which the temperature of the plate is measured, are the positive integers only.
O B. Positive integers only
NEED HELP ASAP!!
What is the equation of the line that is parallel to the
given line and has an x-intercept of -3?
O y = x + 3
O y = ?X + 2
Oy=-3x + 3
y=-3x+2
Answer:
B
Step-by-step explanation:
The equation of the line that is parallel to the given line and has an x-intercept of -3 is y= 2/3x + 2.
What is Slope?A line's slope is determined by how its y coordinate changes in relation to how its x coordinate changes. y and x are the net changes in the y and x coordinates, respectively. Therefore, it is possible to write the
change in y coordinate with respect to the change in x coordinate as,
m = Δy/Δx where, m is the slope
We have a graph.
So, slope of line in graph is
= (-1-1)/ (0.-3)
= -2/ (-3)
= 2/3
and, we know that two parallel line have same slope.
so, the slope of parallel line is 2/3 and the x intercept is -3.
So, the Equation line is y= 2/3 x + b
0 = 2/3 (-3) +b
b= 2
Thus, the required equation is y= 2/3x + 2.
Learn more about Slope here:
https://brainly.com/question/2863474
#SPJ5
find the coordinates of Q' after a reflection across parallel lines; first across the line y= -2 and then across the x-axis
Answer: new Q = (-4, 5)
Step-by-step explanation:
Given: Q = (-4, 1)
Reflected across y = -2:
Q is 3 units above y = -2 so a reflection is 3 units below y = -2 --> Q' = (-4, -5)
Reflected across x-axis:
Q' is 5 units below x-axis so a reflection is 5 units above x-axis --> Q'' = (-4, 5)
Help!! It’s much appreciated in this time
Answer: D. y = (x - 3)² + 2
Step-by-step explanation:
Inverse is when you swap the x's and y's and solve for y.
y = [tex]\sqrt{x-2}[/tex] + 3
Swap: x = [tex]\sqrt{y-2}[/tex] + 3
Solve: x - 3 = [tex]\sqrt{y-2}[/tex]
(x - 3)² = [tex](\sqrt{y-2})^2[/tex]
(x - 3)² = y - 2
(x - 3)² + 2 = y
In a survey of 2257 adults, 716 say they believe in UFOs.
Construct a 99% confidence interval for the population proportion of adults who believe in UFOs.
A 99% confidence interval for the population proportion is (0.292.0.3427)
(Round to three decimal places as needed.)
Interpret your results. Choose the correct answer below.
O A. With 99% confidence, it can be said that the sample proportion of adults who believe in UFOs is between the endpoints of the given confidence interval.
OB. The endpoints of the given confidence interval shows that 99% of adults believe in UFOs.
C. With 99% confidence, it can be said that the population proportion of adults who believe in UFOs is between the endpoints of the given confidence interval.
XD. With 99% probability, the population proportion of adults who do not believe in UFOs is between the endpoints of the given confidence interval.
Answer:
C. With 99% confidence, it can be said that the population proportion of adults who believe in UFOs is between the endpoints of the given confidence interval.
Step-by-step explanation:
A confidence interval let us make an inference about a population parameter from a sample statistic. In this case, a sample proportion let us infere aout the population proportion with a certain degree of confidence.
With this confidence interval, we are 99% confident that the polpulation proportion falls within this interval. This means that there is 99% chances of having the population proportion within this interval.
To estimate the population proportion of adults who do not believe in UFO's we should have to construct another confidence interval with the proportion (1-p), but this parameter can not be estimated from the confidence interval for p.
Please HELP best answer will receive a BRAINLIEST. Given the probability density function f ( x ) = 1/3 over the interval [ 4 , 7 ] , find the expected value, the mean, the variance and the standard deviation.
Answer:
[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]
[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]
Now we can find the second moment with this formula:
[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]
[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]
And the variance for this case would be:
[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]
And the standard deviation is:
[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]
Step-by-step explanation:
For this case we have the following probability density function
[tex] f(x)= \frac{1}{3}, 4 \leq x \leq 7[/tex]
And for this case we can find the expected value with this formula:
[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]
[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]
Now we can find the second moment with this formula:
[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]
[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]
And the variance for this case would be:
[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]
And the standard deviation is:
[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]
conditinal probability question. please help! :)
Answer:
P(A|B) = 1 / 6
Step-by-step explanation:
Assuming two fair sided dice with faces numbered 1 to 6.
By intuition, there can only be 6 possible outcomes, so probability is 1/6.
Illustration how to use conditional probability.
Given two events A, B, following is the equation of conditional probability
that A happens given B has already happened and observed.
P(A|B) = P( A intersect B ) / P(B)
In the given problem,
A = casting a double-six
B = casting a double
P(A) = (1 / 6) * (1 / 6) = 1/36
P(B) = (6/6) * (1/6) = 1/6
P(A|B) = 1/36 / (1/6) = 1/6
The winery sold 81 cases of wine this week. If twice
as many red cases were sold than white, how many
white cases were sold this week?
A. 32 cases
B. 61 cases
C. 27 cases
D. 54 cases
Answer:
Option (C)
Step-by-step explanation:
Let the red cases sold = r
and the number of white cases sold = w
Total number of cases sold by the winery = 81
r + w = 81 -------(1)
If number of red cases sold is twice of white cases sold,
r = 2w ------- (2)
By substituting the value of r from equation (2) to equation (1),
2w + w = 81
3w = 81
w = 27 cases
From equation (1),
r + 27 = 81
r = 54 cases
Therefore, number of white cases sold are 27 cases
Option (C) is he answer.
The valve was tested on 240240 engines and the mean pressure was 7.57.5 pounds/square inch (psi). Assume the population standard deviation is 1.01.0. The engineer designed the valve such that it would produce a mean pressure of 7.67.6 psi. It is believed that the valve does not perform to the specifications. A level of significance of 0.10.1 will be used. Find the P-value of the test statistic. Round your answer to four decimal places.
Answer:
z = 1.55
Step-by-step explanation:
The answer is attached.
amanda teaches the art of quilling to 4 students. These students each teach art of quilling to 4 other students. If this process continues for 5 generation after amanda, BLANK people other than amanda will know the art of qiulling
Answer:
1024
Step-by-step explanation:
4 * 4 * 4 * 4 * 4
Construct the confidence interval for the population mean mu. c = 0.90, x = 16.9, s = 9.0, and n = 45. A 90% confidence interval for mu is:______.
Answer:
The 90% confidence interval for population mean is [tex]14.7 < \mu < 19.1[/tex]
Step-by-step explanation:
From the question we are told that
The sample mean is [tex]\= x = 16.9[/tex]
The confidence level is [tex]C = 0.90[/tex]
The sample size is [tex]n = 45[/tex]
The standard deviation
Now given that the confidence level is 0.90 the level of significance is mathematically evaluated as
[tex]\alpha = 1-0.90[/tex]
[tex]\alpha = 0.10[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the standardized normal distribution table. The values is [tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]
The reason we are obtaining critical values for [tex]\frac{\alpha }{2}[/tex] instead of that of [tex]\alpha[/tex] is because [tex]\alpha[/tex] represents the area under the normal curve where the confidence level 1 - [tex]\alpha[/tex] (90%) did not cover which include both the left and right tail while [tex]\frac{\alpha }{2}[/tex] is just considering the area of one tail which is what we required calculate the margin of error
Generally the margin of error is mathematically evaluated as
[tex]MOE = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]MOE = 1.645* \frac{ 9 }{\sqrt{45} }[/tex]
[tex]MOE = 2.207[/tex]
The 90% confidence level interval is mathematically represented as
[tex]\= x - MOE < \mu < \= x + MOE[/tex]
substituting values
[tex]16.9 - 2.207 < \mu < 16.9 + 2.207[/tex]
[tex]16.9 - 2.207 < \mu < 16.9 + 2.207[/tex]
[tex]14.7 < \mu < 19.1[/tex]
(a) Plot the following function ona Karnaugh map.(Do not expand to minterm form before plotting.)
F(A,B,C,D)=A‘B’+CD’+ABC +A’B’CD’+ABCD’
(b) Find the minimum sum of products.
(c) Find the minimum product of sums
Answer:
a) the K-map is in the attachment
f = Σm(0,1,2,3,6,10,14,15)
b) from the k-map, the minimum sum of products is
F = A'B' + CD' + ABC
c) the minimum product of sums is
F = (B' + C)(A' + C)(A+ B' +D')(A' + B + D')
Step-by-step explanation:
A Karnaugh map (K-map) is a pictorial framework used to limit the Boolean expressions without utilizing Boolean algebra theorems and equation controls.
a) the given function is f(A,B,C,D)=A‘B’+CD’+ABC +A’B’CD’+ABCD’
expanding the function as four variable terms
f(A,B,C,D)=A‘B’+CD’+ABC +A’B’CD’+ABCD’
= A'B'(C + C')(D + D')+(A + A')(B + B")CD' + ABC(D + D') + A'B'CD' + ABCD'
= A'B'CD + A'B'CD' + A'B'C'D' + ABCD' +AB'CD' + A'BCD' + A'B'CD' + ABCD +ABCD' + A'B'CD' + ABCD'
=A'B'CD + A'B'CD' + A'B'C'D + A'B'C'D' + ABCD' + AB'CD' + A'BCD' +ABCD
f = Σm(0,1,2,3,6,10,14,15)
note: diagram is in the attachment
b) the minterms for the minimum sum of product are
f = Σm(0,1,2,3,6,10,14,15)
simplifying the K-map(done in the attachment)
from the k-map, the minimum sum of products is
F = A'B' + CD' + ABC
c) the maxterms for the minimum product of sums are
f = ПM(4,5,7,8,9,11,12,13)
plot the K-map to find minimum product of sums(done in the attachment)
the minimum product of sums is
F = (B' + C)(A' + C)(A+ B' +D')(A' + B + D')
A candy store called "Sugar" built a giant hollow sugar cube out of wood to hang above the entrance to their store. It took 13.5\text{ m}^213.5 m 2 13, point, 5, start text, space, m, end text, squared of material to build the cube. What is the volume inside the giant sugar cube?
Answer:
3.375
Step-by-step explanation:
Answer:
3.375
Step-by-step explanation:
Had it on Khan
A crew clears brush at a rate 2/3 acre in 2 days. How long will it take the same crew to clear the entire plot of 4 acres?
Answer:
It takes the crew 12 days to clear the bush.
Step-by-step explanation:
Given clears 2/3 acres / 2 days, or 1/3 acre per day
Time to clear 4 acres
= 4 / (1/3)
= 4 * (3/1)
= 12 days
Use the Chain Rule to find ∂z/∂s and ∂z/∂t. (Enter your answer only in terms of s and t. Please use * for multiplication between all factors.)
z = x8y9, x = s cos(t), y = s sin(t)
∂z/∂s =
∂z/∂t =
Answer:
Step-by-step explanation:
Using chain rule to find the partial deriviative of z with respect to s and t i.e ∂z/∂s and ∂z/∂t, we will use the following formula since it is composite in nature;
∂z/∂s = ∂z/∂x*∂x/∂s + ∂z/∂y*∂y/∂s
Given the following relationships z = x⁸y⁹, x = s cos(t), y = s sin(t)
∂z/∂x = 8x⁷y⁹, ∂x/∂s = cos(t), ∂z/∂y = 9x⁸y⁸ and ∂y/∂s = sin(t)
On substitution;
∂z/∂s = 8x⁷y⁹(cos(t)) + 9x⁸y⁸ sin(t)
∂z/∂s = 8(scost)⁷(s sint)⁹(cos(t)) + 9(s cost)⁸(s sint)⁸ sin(t)
∂z/∂s = (8s⁷cos⁸t)s⁹sin⁹t + (9s⁸cos⁸t)s⁸sin⁹t
∂z/∂s = 8s¹⁶cos⁸tsin⁹t + 9s¹⁶cos⁸tsin⁹t
∂z/∂s = 17s¹⁶cos⁸tsin⁹t
∂z/∂t = ∂z/∂x*∂x/∂t + ∂z/∂y*∂y/∂t
∂x/∂t = -s sin(t) and ∂y/∂t = s cos(t)
∂z/∂t = 8x⁷y⁹*(-s sint) + 9x⁸y⁸* (s cos(t))
∂z/∂t = 8(scost)⁷(s sint)⁹(-s sint) + 9(s cost)⁸(s sint)⁸(s cos(t))
∂z/∂t = -8s¹⁷cos⁷tsin¹⁰t + 9s¹⁷cos⁹tsin⁸t
∂z/∂t = -s¹⁷cos⁷tsin⁸t(8sin²t-9cos²t)
Find m2WXY
59
X
D
24°
A 250
B. 26
C. 81
D. 839
Answer: d. 83
Step-by-step explanation: 59+ 24 = 83
Answer:
D. 83 degrees
Step-by-step explanation:
Angle WXY is made up of two angles, angle WXD and angle YXD.
Therefore, angle WXY will be equal to the sum of angle WXD and YXD.
So, we can add angles WXD and YXD together to find out what the measure of angle WXY is.
<WXY= <WXD + <YXD
We know that angle WXD is 24 degrees and angle YXD is 59 degrees.
<WXD= 24
<YXD= 59
<WXY= 24+59
Add 24 and 59
<WXY=83
The measure of angle WXY is 83 degrees, so choice D is correct.
Data was collected for a sample of organic snacks. The amount of sugar (in mg) in each snack is summarized in the histogram below. 2 4 6 8 10 amount of sugar (mg) 180 182 184 186 188 190 192 194 Frequency What is the sample size for this data set?
Answer:
The sample size is 30.
Step-by-step explanation:
The sample size of a histogram can be calculated by summing up all the frequencies of all the occurrences in the data set
From the question the frequency is given as
Frequency = 2 4 6 8 10
The sample size n =
2 + 4 + 6 + 8 + 10
= 30
Therefore the sample size n of the data set = 30
At a deli counter, there are sandwiches with meat and vegetarian sandwiches. Kira is at the counter buying sandwiches for a picnic. In how many ways can she choose sandwiches if fewer than must be vegetarian sandwiches
Answer:
The number ways to choose between meat and vegetarian sandwiches can be computed using computation technique.
Step-by-step explanation:
There are two types of sandwiches available at the deli counter. The possibility of combinations can be found by computation technique of statistic. It is assumed that order does not matter and sandwiches will be selected at random. The sandwiches can be arranged in any order and number ways can be found by 2Cn.
Solve the given systems of equations:
x-y+z=1
-3x+2y+z=1
2x-3y+4z=3
Answer:
x = 3/2
y = 2
z = 3/2
Step-by-step explanation:
There are multiple methods to solve these. Message me for the method you need to see step by step.
How do you make a table of value for the following equation? 3x=y
Answer:
Step-by-step explanation:
y= 3x
x y
0 0
1 3
2 6
3 9
-1 -3
-2 -6
PLEASE HELP!!! Find the area of the shaded polygon:
Answer:
147
Step-by-step explanation:
50 points + brainliest!
Answer:
( x+2) ^2 = 11
x =1.32,-5.32
Step-by-step explanation:
x^2 + 4x -7 = 0
Add the constant to each side
x^2 + 4x -7+7 = 0+7
x^2 + 4x = 7
Take the coefficient of the x term
4
Divide by 2
4/2 =2
Square it
2^2 = 4
Add this to each side
x^2 + 4x +4 = 7+4
Take the 4/2 as the term inside the parentheses
( x+2) ^2 = 11
Take the square root of each side
sqrt( ( x+2) ^2) =±sqrt( 11)
x+2 = ±sqrt( 11)
Subtract 2 from each side
x = -2 ±sqrt( 11)
To the nearest hundredth
x =1.32
x=-5.32
Answer:
[tex](x+2)^2=11[/tex]
[tex]x=-2 \pm \sqrt{11}[/tex]
Step-by-step explanation:
[tex]x^2+4x-7=0[/tex]
[tex]x^2+4x=7[/tex]
[tex]x^2+4x+4=7+4[/tex]
[tex](x+2)^2=11[/tex]
[tex]x+2=\pm\sqrt{11}[/tex]
[tex]x=-2 \pm \sqrt{11}[/tex]
Find the value of annuity if the periodic deposit is $400 at 4% compounded monthly for 18 years
Answer:
~820.8$
Step-by-step explanation:
The total money (M) after 18 years could be calculated by:
M = principal x (1 + rate)^time
with
principal = 400$
rate = 4% compounded monthly = 0.04/12
time = 18 years = 18 x 12 = 216 months (because of compounded monthly rate)
=> M = 400 x (1 + 0.04/12)^216 = ~820.8$
If jimmy has 15 apples and give 7 to gohn how many does jimmy have?
Answer:
Hey there!
Jimmy has 15-7, or 8 apples left.
Hope this helps :)
Please help, much needed. A lot of points
Answer:
A. -9
Step-by-step explanation:
If one of the variables were negative than, it would not be able to equal 2/7.
Pls help asap What is the number of degrees in the acute angle formed by the hands of a clock at 6:44?
Answer:
264 degree angle
Step-by-step explanation:
Tosh. Inc.'s bonds currently sell for $980 and have a par value of $1,000. They pay a $95 annual coupon and have a 12-year maturity, but they can be called in 3 years at $1,150. What is their yield to call (YTC)?
Answer:
14.24%
Step-by-step explanation:
We have found that the yield to call (YTC) formula is:
YTC = [C + (F-P) / N] / [(F + P) / 2]
Where:
C = Periodic coupon amount = 95
P = Current Price = 980
F = Redemption amount = 1150
N = time left to redemption = 3
We replace:
YTC = [95 + (1150-980) / 3] / [(1150 + 980) / 2]
YTC = 0.1424
In other words, the yield to call (YTC) is equal to 14.24%
Lengths of pregnancies (in humans) have a mean of 267.6 days and a standard deviation of 15.4 days. A woman tracked her pregnancy and found it to be 309 days. Find the z score for 309 days. Is such a length unusual?
Answer:
The z-score is [tex]z = 2.65[/tex]
The length of days is not unusual
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 267.6 \ days[/tex]
The standard deviation is [tex]\sigma = 15.4 \ days[/tex]
The value considered is [tex]x = 309 \ days[/tex]
The z-score is mathematically represented as
[tex]z = \frac{x - \mu}{\sigma }[/tex]
[tex]z = \frac{309 - 267.6}{15.6 }[/tex]
[tex]z = 2.65[/tex]
Now given that the z-score is not greater than 3 then we can say that the length of days is not unusual
(reference khan academy)
Find the missing length
Answer:
x = 25
Step-by-step explanation:
We have 2 similar triangles:
1) with hypotenuse 15 and short leg 9,
2) with hypotenuse x and short leg 15.
For similar triangles we can write a proportion for corresponding sides.
hypotenuse 1: leg1 = hypotenuse 2 : leg 2
15 : 9 = x : 15
9x = 15 * 15
x = 15*15/9
x = 25
Player A finished first in a tournament at a golf club with a score of −9, or nine strokes under par. Tied for 46th place was player B, with a score of +9, or 9 strokes over par. What was the difference in scores between Player A and Player B?
Answer:
18
Step-by-step explanation:
since you want the difference in scores, you want to take the absolute value of the difference
9 - (-9) = 9+9 = 18
The difference in scores between Player A and Player B is 18.
How do we calculate the difference?The difference between two numbers is found by subtracting the smaller number from the greater number.
How do we solve the given question?We are informed that Player A finished first in a tournament at a golf club with a score of −9 or nine strokes under par. Tied for 46th place was player B, with a score of +9, or 9 strokes over par.
We are asked for the difference in scores between Player A and Player B.
The score of Player A = -9.
The score of Player B = 9
Since Player B's score > Player A's score,
To calculate the difference in their scores, we subtract player A's score from player B's score.
∴ Difference = 9 - (-9)
or, Difference = 9 + 9
Difference = 18.
∴ The difference in scores between Player A and Player B is 18.
Learn more about the difference at
https://brainly.com/question/25421984
#SPJ2
Construct a frequency distribution and a frequency histogram for the given data set using the indicated number of classes. Describe any patterns.
Number of classes: 8
Data set: Reaction times (in milliseconds) of 30 adult females to an auditory stimulus.
430 386 352 301 450 291 429 467 454 385 380
373 386 307 321 336 310 413 306 357 514 443
442 326 508 424 386 429 412 418
Answer:
The histogram for the data is attached below.
Step-by-step explanation:
Arrange the data in ascending order as follows:
S = {291 , 301 , 306 , 307 , 310 , 321 , 326 , 336 , 352 , 357 , 373 , 380 , 385 , 386 , 386 , 386 , 412 , 413 , 418 , 424 , 429 , 429 , 430 , 442 , 443 , 450 , 454 , 467 , 508 , 514}
Compute the range:
[tex]Range=Max.-Min.\\=514-291\\=223[/tex]
Compute the class width:
[tex]Class\ Width =\frac{Range}{No.\ of\ classes}=\frac{223}{8}=27.875\approx 28[/tex]
The classes are as follows:
290 - 318
319 - 347
348 - 376
377 - 405
406 - 434
435 - 463
464 - 492
493 - 521
Compute the frequency distribution as follows:
Class Interval Frequency
290 - 318 5
319 - 347 3
348 - 376 3
377 - 405 5
406 - 434 7
435 - 463 4
464 - 492 1
493 - 521 2
The histogram for the data is attached below.