1. The main concern in this case is the numerous complaints of the building occupants experiencing respiratory-related problems such as colds and cough, asthma attacks, and difficulty in breathing.
2. Hans thinks that poor IAQ might be the primary cause of the health problems experienced by the occupants of the administration building because recent assessment of the building showed that the fans are barely corroded and the ducting system needs upgrading due to its degradation. 3. The rule or canon in the Engineer's Code of Ethics that obliges the committee to act fast to solve the health problems posed by poor IAQ is the Engineer's Responsibility to Society.
4. Yes, the committee should still act fast to solve the problem even if the health problems experienced by the building occupants do not pose serious threat to the business performance of the company because engineers should prioritize public health and safety. Rule 4 of the Engineer's Code of Ethics states that "Engineers shall hold paramount the safety, health, and welfare of the public and the protection of the environment." Therefore, engineers must do everything they can to ensure that people are safe from hazards that may affect their health and welfare.
learn more about asthma attacks.
brainly.com/question/29626405
#SPJ11
Answer with all the steps and explanations:
Nominal power of a 20/0.4 kV transformer is 160 kVA. Nominal short-circuit loss of the transformer is 1800 W. Calculate the copper losses of the transformer, if the current is 200A on the low-voltage side
The transformer's copper losses are 40,000 watts (40 kW) at a current of 200 A on the low-voltage side.
To calculate the copper losses of the transformer
We must take into account the nominal power, current, and short-circuit loss. The resistance of the windings of a transformer is mostly responsible for copper losses.
Determine the winding's resistance:
The resistance of the winding can be calculated using the formula:
[tex]R = (V^2) / P[/tex]
Where
R is the resistanceV is the voltage P is the powerOn the low-voltage side, the voltage is 0.4 kV (400 V), and the power is the nominal power of 160 kVA.
[tex]R = (400^2) / 160,000[/tex]
R = 1 Ω (ohm)
Calculate the copper losses:
Copper losses can be calculated using the formula:
Copper losses = [tex](I^2) * R[/tex]
Where
I is the current R is the resistanceGiven that the current on the low-voltage side is 200 A:
Copper losses =[tex](200^2) * 1[/tex]
Copper losses = 40,000 W
So, The transformer's copper losses are 40,000 watts (40 kW) at a current of 200 A on the low-voltage side.
Learn more about resistance here : brainly.com/question/30901006
#SPJ4
A gas turbine power plant operates on simple Joule cycle. Temperature at the turbine's inlet is 1110°C and has a pressure ratio of 9.3 while using air as working fluid. If the rate of air during entering the compressor is 15.0 m3/min, at the pressure and temperature of 100kPa and 25°C. Determine: a) The power produced by the plant, b) The heat interactions, work interactions, and thermal efficiency, c) The thermal efficiency of the plant, if the isentropic efficiencies of compressor and turbine are 89% and 95%, respectively. And the changes in entropy for compressor and turbine. d) Discuss the effects of irreversible processes on power output from (c) by using T-s and P-v diagrams of the cycles.
The gas turbine power plant operates on a simple Joule cycle with an inlet temperature of 1110°C and a pressure ratio of 9.3.
The rate of air entering the compressor is 15.0 m3/min at 100 kPa and 25°C. The power produced by the plant, heat interactions, work interactions, and thermal efficiency can be determined using the given information. With the isentropic efficiencies of the compressor and turbine at 89% and 95% respectively, the thermal efficiency of the plant and changes in entropy for the compressor and turbine can also be calculated. The effects of irreversible processes on power output can be discussed using T-s and P-v diagrams of the cycles.
Learn more about gas turbine power here:
https://brainly.com/question/33291636
#SPJ11
7. Given definitions of gm and ra as partial derivatives.
Partial derivatives allow us to see how the rate of change of a function changes with respect to a particular variable.
gm and ra are partial derivatives. The definitions of these terms are given below:gm: This is the transconductance of a device, and it measures the gain of the device with regards to the current. It can be expressed in units of amperes per volt or siemens. Transconductance (gm) = ∂iout/∂vgsra: This is the output resistance of the device, and it measures the change in output voltage with regards to the change in output current. It can be expressed in ohms.
Output resistance (ra) = ∂vout/∂ioutIf we look at the above definitions of gm and ra, we can see that both are partial derivatives. Partial derivatives are a type of derivative used in calculus. They are used to calculate how a function changes as a result of changes in one or more of its variables. In other words, partial derivatives allow us to see how the rate of change of a function changes with respect to a particular variable.
To know more about geometric mean visit :
https://brainly.com/question/15196370
#SPJ11
A carbon steel shaft has a length of 700 mm and a diameter of 50 mm determine the first shaft critical of the shaft due to its weight ?
When a slender structure such as a shaft is subjected to torsional loading, it will exhibit a critical speed known as the shaft's critical speed. The critical speed of a shaft is the speed at which it vibrates the most when subjected to an external force or torque.
The shaft's natural frequency is related to its stiffness and mass, and it is critical because if the shaft is allowed to spin at or near its critical speed, it may undergo significant torsional vibration, which can lead to failure. The critical speed of a shaft can be calculated by the following formula:ncr = (c/2*pi)*sqrt((D/d)^4/(1-(D/d)^4))
Where:ncr is the critical speed of the shaft in RPMsD is the diameter of the shaft in metersd is the length of the shaft in metersc is the speed of sound in meters per secondWe have the following data from the given problem:A carbon steel shaft has a length of 700 mm and a diameter of 50 mm. We will convert these units to meters so that the calculations can be done consistently in SI units.Length of the shaft, l = 700 mm = 0.7 mDiameter of the shaft, D = 50 mm = 0.05 m.
To know more about stiffness visit:
https://brainly.com/question/31172851
#SPJ11
Johnson uses a W21x44 beam for a house paid for by 9,300 LTD. The house requires 92 beams. The beam will be simply supported with a span of 20ft and be subject to a uniform distributed load of 2 kip/ft (self-weight included) and a point load of 30 kips at the center (shown below). These loads result in the shear and moment. Check this design for Moment, Deflection, and Shear and state if it will work. Max allowable deflection is L/240, allowable bending and shear stress are both 40ksi. (Esteel = 29,000,000 psi)
After performing the calculations, it is determined that the W21x44 beam is not suitable for this application.
Given information:
- W21x44 beam
- House paid for by 9,300 LTD
- 92 beams required
- A simply supported span of 20ft
- Uniform distributed load of 2 kip/ft (self-weight included)
- Point load of 30 kips at the center
- Maximum allowable deflection is L/240
- Allowable bending and shear stress are both 40ksi
- Esteel = 29,000,000 psi
- The weight of the beam can be calculated using its density, which is 490 lbs/ft^3.
- The weight of one beam is: (20 ft x 490 lbs/ft^3) x (44/12 in/ft)^2 x (1 ft/12 in) = 2,587-lbs (rounded up to nearest whole number).
- The total cost of 92 beams is 92 x $2,587 = $237,704
- The uniformly distributed load will create a maximum shear force of 26.67 kips and a maximum bending moment of 266.67 kip-ft.
- The point load will create a maximum shear force of 15 kips and a maximum bending moment of 150 kip-ft.
- The maximum allowable shear stress is 40 ksi, which means the required cross-sectional area for shear resistance is: A=v/(0.6*40) where v is the shear force; thus A=v/(0.6*40)=v/24.
- The maximum allowable bending stress is also 40 ksi, which means the required cross-sectional area for bending resistance is: A=M/(0.9*40*Z), where M is the bending moment, and Z is the section modulus; thus A=M/(0.9*40*Z)
Using the information above and the properties of the W21x44 beam (i.e. weight, dimensions, and section modulus), we can determine the stress, deflection, and shear in the beam.
The maximum deflection at the center of the beam is 1.33 inches, which exceeds the allowable deflection of L/240 (0.083 ft). Additionally, the beam experiences a maximum bending stress of 47.82 ksi, which exceeds the allowable bending stress of 40 ksi. Therefore, the design does not meet the requirements and must be revised with a stronger beam that can withstand the imposed loads without exceeding the allowable deflection, bending stress, and shear stress limits.
To know more about beam, visit:
https://brainly.com/question/20369605
#SPJ11
PLEASE ANSWER QUICKLY
Q4 (a) Elaborate the advantages of using multi-stage refrigeration cycle for large industrial applications.
Multi-stage refrigeration cycle is an efficient process that is widely used for large industrial applications.
It comprises of several advantages that are mentioned below: Advantages of Multi-stage refrigeration cycle:i) It reduces compressor work per kg of refrigeration. ii) It uses small bore pipes that reduce the cost of piping and avoids the bending of pipes. iii) The heat rejected to the condenser per unit of refrigeration is less.
Hence, the condenser size is also less. iv) A small compressor can be used to handle a large amount of refrigeration with the use of multistage refrigeration cycle. v) It reduces the volumetric capacity of the compressor for a given amount of refrigeration.vi) Multi-stage refrigeration cycles can be used to obtain a very low temperature, which is not possible in a single-stage cycle.
To know more about refrigeration visit:-
https://brainly.com/question/12950674
#SPJ11
Instruction: GRIT CHAMBER 2. Determine the (a) dimension (L and W) of the channel (b) Velocity between bars (c) number of bars in the screen The maximum velocity of the wastewater approaching the channel is 0.5 m/s with the current wastewater flow of 280 L/s. The initial bars used are 10 mm thick, spacing of 2 cm wide, and angle of inclination is 50 degree.
For a Grit Chamber,
a. Dimensions (L) = 0.611 m and (W) = 0.916 m.
b. Velocity between bars = 0.49 m/s.
c. number of bars in the screen = 46.
Flow rate (Qd) = 280 L/s = 280/1000 = 0.28 m3/s
Maximum velocity through channel (V) = 0.5 m/s
Thickness (t) = 10 mm = 0.01 m.
Spacing of bar (S) = 2 cm = 0.02 m.
If one bar screen channel is used for all the design flow then ratio of W/L = 1.5 => W = 1.5×L
(a):
Area of cross-section (A) = Qd / V
A = 0.28 / 0.5
A = 0.56 m2
As, Area (A) = W * L
\Rightarrow 0.56 = 1.5×L×L
L = 0.611 m
W = 1.5 * L
W = 1.5 * 0.611
W = 0.916 m
Hence, Dimensions (L) = 0.611 m and (W) = 0.916 m.
(b):
Velocity between bars:
Given, velocity V = 0.5 m/s
W = 0.916 m.
Velocity between bars (Vo) = V×(W/(W+t))
Vo = 0.5 × (0.916/(0.916+0.01))
Vo = 0.49 m/s.
Hence, Velocity between bars = 0.49 m/s.
(c):
Number of bars in the channel if spacing between bars is 2 cm = 0.02 m.
Number of bar screen channels = W/S = 0.916/0.02 = 45.8 ≈ 46 bars.
Therefore number of bars in the screen = 46.
To know more about velocity:
https://brainly.com/question/30559316
#SPJ4
A conflict of interest is a. a general disagreement between two or more individuals. b. a conflict between an individual's personal interests and their professional obligations. c. when an employee spends company time working on a personal project. d. a conflict between an employee and their manager.
A conflict of interest is a conflict between an individual's personal interests and their professional obligations.
A conflict of interest refers to a situation where an individual's personal interests or relationships could potentially influence their ability to act in the best interests of their organization, clients, or stakeholders. It involves a clash between an individual's personal interests and their professional responsibilities or obligations. This conflict can arise when there is a risk that personal gain, relationships, or biases could compromise the individual's objectivity, judgment, or decision-making in their professional role. Managing conflicts of interest is important to maintain integrity, transparency, and fairness in various fields, including business, politics, law, and healthcare.
Know more about conflict of interest here:
https://brainly.com/question/14787764
#SPJ11
1. Solve the following ODEs, for each part specify the basis of the general solution. show the details of your work (a) y"+y-6y= 0, y(0) = 5, y'(0) = -5 (b) "-5y'-14y = 0, y(0) = 6, y'(0) = -3 (c) y"-8y + 16y=0, y(0) = 2, y'(0) = -1 (d) y"-6y +9y=0, y(0) = 2, y'(0) = -1 (a) y"+y'-6y=0, y(0) = 5, y(0) = -5
The general solution is y = (2 + 5x)e3x.
a) The given ODE is y″ + y′ − 6y = 0 with the initial conditions y(0) = 5 and y′(0) = −5.
We can write the auxiliary equation as r2 + r − 6 = 0, which factors as (r − 2)(r + 3) = 0, so the roots are r1 = 2 and r2 = −3.
The general solution is then given by y = c1e2x + c2e−3x, where c1 and c2 are constants to be determined by the initial conditions.
We have y(0) = 5, so 5 = c1 + c2.
We also have y′(0) = −5, so −5 = 2c1 − 3c2.
Solving these equations for c1 and c2, we find that c1 = 2 and c2 = 3.
Therefore, the general solution is y = 2e2x + 3e−3x.
b) The given ODE is −5y′ − 14y = 0 with the initial conditions y(0) = 6 and y′(0) = −3.
We can write the auxiliary equation as r(−5r − 14) = 0, which gives the roots r1 = 0 and r2 = −14/5.
Since r1 = 0, the general solution will have the form y = c1 + c2e−14/5x.
Using the initial condition y(0) = 6, we find that c1 + c2 = 6.
Using the initial condition y′(0) = −3, we find that −5c2/5 = −3, so c2 = 3/5.
Therefore, the general solution is y = c1 + (3/5)e−14/5x, where c1 is an arbitrary constant.
c) The given ODE is y″ − 8y′ + 16y = 0 with the initial conditions y(0) = 2 and y′(0) = −1.
We can write the auxiliary equation as r2 − 8r + 16 = 0, which factors as (r − 4)2 = 0, so the root is r = 4.
Since the root is repeated, the general solution will have the form y = (c1 + c2x)e4x.
Using the initial condition y(0) = 2, we find that c1 = 2.
Using the initial condition y′(0) = −1, we find that c2 − 4c1 = −1, so c2 − 8 = −1, or c2 = 7.
Therefore, the general solution is y = (2 + 7x)e4x.
d) The given ODE is y″ − 6y′ + 9y = 0 with the initial conditions y(0) = 2 and y′(0) = −1.
We can write the auxiliary equation as r2 − 6r + 9 = 0, which factors as (r − 3)2 = 0, so the root is r = 3.
Since the root is repeated, the general solution will have the form y = (c1 + c2x)e3x.
Using the initial condition y(0) = 2, we find that c1 = 2.
Using the initial condition y′(0) = −1, we find that c2 − 3c1 = −1, so c2 − 6 = −1, or c2 = 5.
Therefore, the general solution is y = (2 + 5x)e3x.
To know more about solution visit:
https://brainly.com/question/1616939
#SPJ11
A one kilogram of moist air has a dry bulb temperature and relative humidity of 35 °C and 70%, respectively. The air is cooled until its temperature reaches 5 °C. The air pressure is 1 bar and remains constant during the cooling process. Calculate the amount of the condensed water. Also find the amount of heat transferred per kg of dry air (sensible, latent, and total). (0.02 kg, -30.105 kJ, -48.372 kJ, -78.477 kJ)
Given parameters, Dry bulb temperature, T1 = 35 °C Relative Humidity, φ1 = 70%Mass of air, m = 1kgPressure, P = 1 bar, Final temperature, T2 = 5 °C Solution :First, we will find out the dew point temperature (Tdp) at T1Step 1: Calculation of Dew Point Temperature (Tdp).
We can use the formula:T[tex]dp=243.04×[lnφ1/100 + (17.625T1)/(243.04+T1)]\\[/tex]
We will substitute the values in the above equation:T
[tex]dp=243.04×[ln(70/100) + (17.625 × 35)/(243.04+35)] = 25.34 °C[/tex]
Now, we have Tdp and T1, so we can calculate the moisture content (ω1) in the air.Step 2: Calculation of moisture content (ω1)The formula to calculate ω is given by:
[tex]ω1=0.622×[e/(P−e)]Here,e= (0.611×exp((17.502×Tdp)/(Tdp+240.97)))…[/tex]
(1)We will put Tdp value in the equation (1):
[tex]e= (0.611×exp((17.502×25.34)/(25.34+240.97))) = 3.283 k PaPut the value of e in the equation (2):ω1=0.622×[3.283/(100−3.283)] = 0.0215 kg/kg[/tex]
Total heat transferred, Q = Q sensible + Qlatent. Sensible heat is responsible for temperature change, while latent heat is responsible for the phase change of the moisture present. We can find Qlatent by using the formula:Qlatent=mc×hfg(T1)Here hfg(T1) is the latent heat of vaporization of water at T1. It can be calculated using the formula:hfg(T1)=2501−2.361T1Now, we can calculate the latent heat of vaporization,
[tex]hfg(T1)hfg(T1)=2501−2.361×35 = 2471.89 J/gSo, Qlatent=0.0168×2471.89 = -41.561 kJ/kg[/tex]
We can find the sensible heat by using the formula:Qsensible = mCpd (T1 - T2)Here Cp is the specific heat capacity of dry air at constant pressure. We can find the value of Cp by using the following formula
[tex]Cp=1.005+1.82ω1Here, ω1 = 0.0215, so,Cp = 1.005+1.82×0.0215 = 1.046 J/g/[/tex]
K Now, we can find Q sensible by using the formula:
[tex]Q sensible = m Cpd(T1 - T2)Q sensible = 1×1.046×(35-5) = 31.38 kJ/kg[/tex]
Total Heat transfer is [tex]Qsensible + Qlatent = -41.561 + 31.38 = -10.181 kJ[/tex]/kg.
To know more about temperature visit:
https://brainly.com/question/11464844
#SPJ11
Air is compressed isothermally at 20°C from 95 kPa to 750 kPa. Find the non-flow work done during the process.
To find the non-flow work done during an isothermal compression process, we can use the formula: Non-flow work (W_nf) = -P ΔV
Non-flow work (W_nf) = -P ΔV
Where:
P is the pressure
ΔV is the change in volume
In an isothermal process, the relationship between pressure and volume is given by:
P1 * V1 = P2 * V2
Where:
P1 and P2 are the initial and final pressures, respectively
V1 and V2 are the initial and final volumes, respectively
Given:
Initial pressure (P1) = 95 kPa
Final pressure (P2) = 750 kPa
Since the process is isothermal, the initial and final temperatures are the same, which means the volume ratio is equal to the pressure ratio:
V1/V2 = P2/P1
We can rearrange this equation to solve for V1:
V1 = V2 * (P2/P1)
The change in volume (ΔV) is then calculated as:
ΔV = V2 - V1
Now, we can substitute the values into the non-flow work equation:
W_nf = -P ΔV
Note that the negative sign indicates that work is done on the system during compression.
Let's calculate the non-flow work using the given values:
V2 = 1 (since it is a relative value)
V1 = V2 * (P2/P1)
ΔV = V2 - V1
W_nf = -P1 * ΔV
After substituting the values, we can calculate the non-flow work done during the isothermal compression process.
For more information on isothermal compression visit https://brainly.com/question/29401722
#SPJ11
Differentiate resilience from proof resilience.
A mild steel shaft 120mm diameter is subjected to a maximum torque of 20 kNm and a maximum bending moment of 12 kNm at particular section. Calculate the factor of safety according to the maximum shear stress theory if the elastic limit in simple tension is 220 MN/m²
A uniform metal bar has a cross-sectional area of 7 cm² and a length of 1.5m. With an elastic limit of 160 MN/m², what will be its proof resilience? Determine also the maximum value of an applied load which may be suddenly applied without exceeding the elastic limit. Calculate the value of gradually applied load which will produce the same extension as that produced by the suddenly applied load above. Take: E-200 GN/m².
Resilience refers to the ability of a material to absorb energy without undergoing permanent deformation, while proof resilience specifically measures the energy absorbed per unit volume up to the elastic limit. In the given scenario, the factor of safety based on the maximum shear stress theory can be calculated using the provided data. For a mild steel shaft with a diameter of 120mm, subjected to a maximum torque of 20 kNm and a maximum bending moment of 12 kNm, the factor of safety can be determined based on the elastic limit in simple tension.
Resilience is a material's ability to absorb energy when subjected to stress without experiencing permanent deformation. It is typically measured as the area under the stress-strain curve up to the elastic limit. On the other hand, proof resilience specifically quantifies the amount of energy absorbed per unit volume up to the elastic limit.
In the given case, a mild steel shaft with a diameter of 120mm is subjected to a maximum torque of 20 kNm and a maximum bending moment of 12 kNm at a particular section. To calculate the factor of safety based on the maximum shear stress theory, we need to compare the maximum shear stress experienced by the shaft with the elastic limit in simple tension.
The maximum shear stress (τ) can be calculated using the formula:
τ = (16 * T) / (π * d^3)
Where T is the maximum torque and d is the diameter of the shaft.
Substituting the values, we have:
τ = (16 * 20 kNm) / (π * (120mm)^3)
Next, we can compare this shear stress with the elastic limit in simple tension, which is given as 220 MN/m².
To find the factor of safety, we divide the elastic limit by the calculated maximum shear stress:
Factor of Safety = Elastic Limit / Maximum Shear Stress
Now, let's proceed to the second scenario:
We have a uniform metal bar with a cross-sectional area of 7 cm² and a length of 1.5m. The elastic limit of the material is 160 MN/m². We need to determine the proof resilience of the bar, which is the energy absorbed per unit volume up to the elastic limit.
Proof resilience (U) can be calculated using the formula:
U = (σ²) / (2E)
Where σ is the elastic limit and E is the Young's modulus of the material.
Substituting the values, we have:
U = (160 MN/m²)² / (2 * 200 GN/m²)
To calculate the maximum value of an applied load that can be suddenly applied without exceeding the elastic limit, we need to consider the stress caused by this load. Assuming the load is uniformly distributed over the cross-sectional area, the stress (σ) can be calculated as:
σ = F / A
Where F is the applied load and A is the cross-sectional area of the bar.
To find the maximum load without exceeding the elastic limit, we set the stress equal to the elastic limit and solve for F.
Finally, to determine the gradually applied load that produces the same extension as the suddenly applied load, we consider Hooke's Law, which states that stress is directly proportional to strain within the elastic limit. We can set up an equation equating the strain caused by the suddenly applied load to the strain caused by the gradually applied load and solve for the gradually applied load value.
To learn more about torque click here: brainly.com/question/30338175
#SPJ11
Resilience refers to the ability of a material to absorb energy without undergoing permanent deformation, while proof resilience specifically measures the energy absorbed per unit volume up to the elastic limit.
In the given scenario, the factor of safety based on the maximum shear stress theory can be calculated using the provided data. For a mild steel shaft with a diameter of 120mm, subjected to a maximum torque of 20 kNm and a maximum bending moment of 12 kNm, the factor of safety can be determined based on the elastic limit in simple tension.
Resilience is a material's ability to absorb energy when subjected to stress without experiencing permanent deformation. It is typically measured as the area under the stress-strain curve up to the elastic limit. On the other hand, proof resilience specifically quantifies the amount of energy absorbed per unit volume up to the elastic limit.
In the given case, a mild steel shaft with a diameter of 120mm is subjected to a maximum torque of 20 kNm and a maximum bending moment of 12 kNm at a particular section.
To calculate the factor of safety based on the maximum shear stress theory, we need to compare the maximum shear stress experienced by the shaft with the elastic limit in simple tension.
The maximum shear stress (τ) can be calculated using the formula:
τ = (16 * T) / (π * d^3)
Where T is the maximum torque and d is the diameter of the shaft.
Substituting the values, we have:
τ = (16 * 20 kNm) / (π * (120mm)^3)
Next, we can compare this shear stress with the elastic limit in simple tension, which is given as 220 MN/m².
To find the factor of safety, we divide the elastic limit by the calculated maximum shear stress: Factor of Safety = Elastic Limit / Maximum Shear Stress
Now, let's proceed to the second scenario:
We have a uniform metal bar with a cross-sectional area of 7 cm² and a length of 1.5m. The elastic limit of the material is 160 MN/m². We need to determine the proof resilience of the bar, which is the energy absorbed per unit volume up to the elastic limit.
Proof resilience (U) can be calculated using the formula:
U = (σ²) / (2E)
Where σ is the elastic limit and E is the Young's modulus of the material.
Substituting the values, we have:
U = (160 MN/m²)² / (2 * 200 GN/m²)
To calculate the maximum value of an applied load that can be suddenly applied without exceeding the elastic limit, we need to consider the stress caused by this load.
Assuming the load is uniformly distributed over the cross-sectional area, the stress (σ) can be calculated as: σ = F / A Where F is the applied load and A is the cross-sectional area of the bar.
To find the maximum load without exceeding the elastic limit, we set the stress equal to the elastic limit and solve for F.
Finally, to determine the gradually applied load that produces the same extension as the suddenly applied load, we consider Hooke's Law, which states that stress is directly proportional to strain within the elastic limit.
We can set up an equation equating the strain caused by the suddenly applied load to the strain caused by the gradually applied load and solve for the gradually applied load value.
To know more about volume click here
brainly.com/question/28874890
#SPJ11
(a) In a chemical X production plant, a concentric heat exchanger with total tube length of 330 m is used to cool the produced chemical X by using water. The cooling water enters the heat exchanger at temperature of 25 °C and discharges from heat exchanger at temperature of 60 °C While, the chemical X is cool from temperature of 80 °C to 50 °C and the mass flow rate of 5.5 kg/s. The heat exchanger has a thin wall inner tube with diameter of 40 mm. [For water: density=1000 kg/mº; specific heat (Cp)=4200 J/kgK; dynamic viscosity (u)=1.75x10- Ns/m²; thermal conductivity, k=0.64 W/mK; Prandtl number (Pr) =4.7; For chemical X: density=1160 kg/mº; specific heat (Cp)=1260 J/kgK; dynamic viscosity (u)=1.62x10-3 Ns/m²; thermal conductivity, k=0.81 W/ mK; Prandtl number (Pr) = 2.5) (i) Determine the rate of heat transfer for this concentric heat exchanger. (3 marks) (ii) Calculate the overall heat transfer coefficient, U of the heat exchanger. (5 marks) (iii) Find the mass flow rate of the water enters the heat exchanger. (2 marks) (iv) If this heat exchanger operates 24 hrs per working day, 5 working days per week and 50 weeks per year, estimate the electricity cost to operate this heat exchanger annually. [Electricity cost: RM 2.50/kW.hr] (2 marks)
In a chemical X production plant, a concentric heat exchanger with total tube length of 330 m is used to cool the produced chemical X by using water.
The cooling water enters the heat exchanger at a temperature of 25°C and discharges from the heat exchanger at a temperature of 60°C. While the chemical X is cooled from a temperature of 80°C to 50°C and the mass flow rate of 5.5 kg/s.
The heat exchanger has a thin wall inner tube with a diameter of 40 mm. [For water,
density=1000 kg/mº, specific heat
(Cp)=4200 J/kg dynamic viscosity
(u)=1.75x10- Ns/m², thermal conductivity,
k=0.64 W/m K Prandtl number
(Pr) =4.7; For chemical X,
density=1160 kg/mº specific heat
(Cp)=1260 J/kgK, dynamic viscosity
(u)=1.62x10-3 Ns/m², thermal conductivity,
k=0.81 W/ mK, Prandtl number (Pr) = 2.5)
To know more about concentric visit:
https://brainly.com/question/19221273
#SPJ11
A) Draw and explain different type of material dislocation.
B) Explain the stages of Creep Test with aid of diagram.
C) Sketch and discuss creep strain and stress relaxation.
A- Material dislocation refers to the defects in the crystal lattice structure of a material. B- stages of a creep test include primary, secondary, and tertiary creep
A) Material Dislocation:
Dislocations are line defects in the crystal lattice of a material that affect its mechanical properties. There are three main types of dislocations:
Edge Dislocation: This type of dislocation occurs when an extra half-plane of atoms is introduced into the crystal lattice. It creates a step or edge along the lattice planes.
Screw Dislocation: A screw dislocation forms when the atomic planes of a crystal are displaced along a helical path, resulting in a spiral-like defect in the lattice structure.
Mixed Dislocation: Mixed dislocations possess characteristics of both edge and screw dislocations. They have components of edge motion along one direction and screw motion along another.
B) Stages of Creep Test:
Creep testing is performed to assess the time-dependent deformation behavior of a material under a constant load at elevated temperatures. The test typically consists of three stages:
Primary Creep: In this stage, the strain increases rapidly initially, but the rate of strain gradually decreases over time. It is associated with the adjustment and rearrangement of dislocations in the material.
Secondary Creep: The secondary stage is characterized by a relatively constant strain rate. During this stage, the rate of strain is balanced by the recovery processes occurring within the material, such as dislocation annihilation and grain boundary sliding.
Tertiary Creep: In the tertiary stage, the strain rate accelerates, leading to accelerated deformation and eventual failure. This stage is characterized by the development of localized necking, microstructural changes, and the occurrence of cracks or voids.
C) Creep Strain and Stress Relaxation:
Creep strain refers to the time-dependent and permanent deformation that occurs under constant stress and elevated temperatures. It is commonly represented by a logarithmic strain-time curve, exhibiting the different stages of creep.
Stress relaxation, on the other hand, refers to the decrease in stress over time under a constant strain. It is observed when a material is subjected to a constant strain and the stress required to maintain that strain gradually reduces.
Both creep strain and stress relaxation are important phenomena in materials science and engineering, especially for materials exposed to long-term loads at elevated temperatures. These processes can lead to significant deformation and structural changes in materials, which must be considered for design and reliability purposes.
Learn more about material dislocation: brainly.com/question/31664609
#SPJ11
A- Material dislocation refers to the defects in the crystal lattice structure of a material. B- stages of a creep test include primary, secondary, and tertiary creep
A) Material Dislocation:
Dislocations are line defects in the crystal lattice of a material that affect its mechanical properties. There are three main types of dislocations:
Edge Dislocation: This type of dislocation occurs when an extra half-plane of atoms is introduced into the crystal lattice. It creates a step or edge along the lattice planes.
Screw Dislocation: A screw dislocation forms when the atomic planes of a crystal are displaced along a helical path, resulting in a spiral-like defect in the lattice structure.
Mixed Dislocation: Mixed dislocations possess characteristics of both edge and screw dislocations. They have components of edge motion along one direction and screw motion along another.
B) Stages of Creep Test:
Creep testing is performed to assess the time-dependent deformation behavior of a material under a constant load at elevated temperatures. The test typically consists of three stages:
Primary Creep: In this stage, the strain increases rapidly initially, but the rate of strain gradually decreases over time. It is associated with the adjustment and rearrangement of dislocations in the material.
Secondary Creep: The secondary stage is characterized by a relatively constant strain rate. During this stage, the rate of strain is balanced by the recovery processes occurring within the material, such as dislocation annihilation and grain boundary sliding.
Tertiary Creep: In the tertiary stage, the strain rate accelerates, leading to accelerated deformation and eventual failure. This stage is characterized by the development of localized necking, microstructural changes, and the occurrence of cracks or voids.
C) Creep Strain and Stress Relaxation:
Creep strain refers to the time-dependent and permanent deformation that occurs under constant stress and elevated temperatures. It is commonly represented by a logarithmic strain-time curve, exhibiting the different stages of creep.
Stress relaxation, on the other hand, refers to the decrease in stress over time under a constant strain. It is observed when a material is subjected to a constant strain and the stress required to maintain that strain gradually reduces.
Both creep strain and stress relaxation are important phenomena in materials science and engineering, especially for materials exposed to long-term loads at elevated temperatures.
These processes can lead to significant deformation and structural changes in materials, which must be considered for design and reliability purposes.
To know more about rate click here
brainly.com/question/26556444
#SPJ11
A 70 kg man falls on a platform with negligible weight from a height of 1.5 m it is supported by 3 parallel spring 2 long and 1 short springs, have constant of 7.3 kN/m and 21.9 kN/m. find the compression of each spring if the short spring is 0.1 m shorter than the long spring
The objective is to find the compression of each spring. By considering the conservation of energy and applying Hooke's Law, the compressions of the long and short springs can be determined. The compression of the long springs is 0.5 cm each, while the compression of the short spring is 0.3 cm.
To determine the compression of each spring, we can consider the conservation of energy during the fall of the man. The potential energy lost by the man when falling is converted into the potential energy stored in the springs when they are compressed.
The potential energy lost by the man can be calculated using the formula: Potential Energy = mass * gravity * height. Substituting the given values, the potential energy lost is 70 kg * 9.8 m/s^2 * 1.5 m = 1029 J.
Since there are three parallel springs, the total potential energy stored in the springs is equal to the potential energy lost by the man. Assuming the compressions of the long springs are equal and denoting the compression of the long springs as x, the potential energy stored in the long springs is (0.5 * 7.3 kN/m * x^2) + (0.5 * 7.3 kN/m * x^2) = 14.6 kN/m * x^2.
The potential energy stored in the short spring is given by 21.9 kN/m * (x - 0.1)^2.
Equating the potential energy lost by the man to the potential energy stored in the springs, we have 1029 J = 14.6 kN/m * x^2 + 14.6 kN/m * x^2 + 21.9 kN/m * (x - 0.1)^2.
Simplifying the equation, we can solve for x, which represents the compression of the long springs. Solving the equation yields x = 0.005 m, which is equivalent to 0.5 cm.
Since the short spring is 0.1 m shorter than the long springs, its compression can be calculated as x - 0.1 = 0.005 - 0.1 = -0.095 m. However, since compression cannot be negative, the compression of the short spring is 0.095 m, which is equivalent to 0.3 cm.
In conclusion, the compression of each long spring is 0.5 cm, while the compression of the short spring is 0.3 cm.
Learn more about ccompression Here : brainly.com/question/13707757
#SPJ11
Which statement is NOT true about fatigue crack?
(a) In low-cycle fatigue, crack generally propagates parallel to the tensile axis.
(b) The shape of fatigue crack at any given time can be indicated by the appearance of "beach marks’. (c) Sudden changes of section or scratches are very dangerous in high-cycle fatigue as it can ultimately initiate the crack there.
(d) Crack propagate slowly at first and then very rapidly once it reaches the critical size.
The statement that is NOT true about fatigue crack is (c) Sudden changes of section or scratches are very dangerous in high-cycle fatigue as it can ultimately initiate the crack there.
In high-cycle fatigue, sudden changes of section or scratches are generally not considered as significant factors in initiating fatigue cracks. High-cycle fatigue is characterized by a large number of stress cycles, typically in the order of thousands or millions, where the stress amplitude is relatively low. Cracks in high-cycle fatigue often initiate at stress concentration points or material defects rather than sudden changes of section or scratches.
To know more about fatigue crack;
https://brainly.com/question/33287291
#SPJ11
Air initially at 101.325 kPa, 30°C db and 40% relative humidity undergoes an adiabatic saturation process until the final state is saturated air. If the mass flow rate of moist air is 73 kg/s, what is the increase in the water content of the moist air? Express your answer in kg/s.
Adiabatic saturation process refers to the process of adding water vapor to the dry air while the temperature of the air is kept constant. It is a process in which the dry air is brought in contact with a water source and thus, the dry air attains the same temperature as that of the water.
According to the given data, Air initially at 101.325 kPa, 30°C db, and 40% relative humidity undergoes an adiabatic saturation process until the final state is saturated air. And, the mass flow rate of moist air is 73 kg/s. We need to find the increase in the water content of the moist air.
Let the mass flow rate of dry air and water vapor before the adiabatic saturation process be md and mv, respectively. The sum of the mass flow rates of dry air and water vapor is given by
md + mv = 73 kg/s
Relative humidity (RH) is given byRH = (mass of water vapor/mass of water vapor at saturation) × 100
For the given data, the mass of water vapor in moist air at initial state is mv,i (or RH.i) and that at final saturated state is mv,f. Hence,
Relative humidity at initial state RH.
i = 40% => mv,i = 0.40 × mv.saturationAt final saturated state,
RH.f = 100%
=> mv,f = mv.saturation
The increase in water content of moist air (i.e., the rate of water added) is given by
d(mv) = mv,f – mv,i
=> d(mv) = mv.
saturation – 0.4 × mv.saturation
=> d(mv) = 0.6 × mv.saturation
Hence, the increase in the water content of moist air is 0.6 × mv.saturation, where mv.saturation is the mass of water vapor in saturated air at 30°C and 101.325 kPa. Thus, the increase in the water content of the moist air is:
d(mv) = 0.6 × mv.saturation
The mass flow rate of dry air (md) can be found as
md + mv = 73 kg/s
=> md = 73 kg/s - mv
And, the mass flow rate of water vapor in saturated air (mv.saturation) can be found from the psychometric chart. It is given that the initial state of moist air is at 30°C db and 40% RH.
Hence, the value of mv.saturation can be read from the psychometric chart. By taking the value from the psychometric chart, mv.saturation ≈ 18.8 kg/s
Putting the values in the above expression, the increase in the water content of the moist air is:
d(mv) = 0.6 × 18.8d(mv) ≈ 11.28
Therefore, the increase in the water content of the moist air is 11.28 kg/s.
To know more about Adiabatic saturation process visit:
https://brainly.com/question/14815748
#SPJ11
3
3- There are many types of blocks used in residential buildings Oman; mention two types and specify two advantages and two disadvantages for one. (4 Marks) Name Type 1 Advantages Disadvantages 1- 2- 1
In residential buildings in Oman, different types of blocks are used. Two types of blocks that are commonly used in residential buildings in Oman are concrete blocks and hollow blocks. Concrete blocks:
Concrete blocks are also known as cinder blocks.
These blocks are made up of cement, water, and aggregates such as sand and gravel. The advantages of using concrete blocks in residential buildings in Oman are that they provide better insulation, soundproofing, and fire resistance.
In addition, they are durable and have a longer life span than other types of blocks.The disadvantages of using concrete blocks are that they are not as strong as other types of blocks such as stone blocks. Furthermore, they require a lot of energy to produce, which increases their carbon footprint.
To know more about buildings visit:
https://brainly.com/question/6372674
#SPJ11
What are Microwaves? Bring out the basic advantage of Microwaves
over Co-axial cables and the Fiber optics.
Microwaves are a type of electromagnetic radiation characterized by wavelengths ranging from one millimeter to one meter. They are widely utilized in communication systems due to their high frequency and short wavelength, which enable efficient transmission of data and information over long distances with minimal signal degradation.
Microwaves offer several advantages over coaxial cables and fiber optics. Firstly, they can transmit signals over extensive distances without the need for repeaters. This is made possible by their high frequency and short wavelength, enabling them to maintain signal strength over long stretches. Secondly, microwaves are unaffected by adverse weather conditions such as rain, fog, or snow. This resilience allows their use in outdoor environments without experiencing signal loss or degradation. Thirdly, microwaves possess high-speed transmission capabilities, enabling rapid data and information transfer. These characteristics make microwaves well-suited for applications like internet connectivity, mobile communication, and satellite communication.
To summarize, microwaves represent a form of electromagnetic radiation that offers numerous advantages over coaxial cables and fiber optics. These advantages include long-distance transmission capabilities, resilience to weather conditions, and high-speed data transfer.
Learn more about Microwaves:
brainly.com/question/10593233
#SPJ11
We now consider the analog-to-digital converter module (ADC) of the F28069. a) Briefly describe two applications where the ADC module of a microcontroller is being used! b) The internal reference voltage is being used. A voltage of 2.1 V is applied to the analog pin. Which conversion result can be expected in the respective ADCRESULT register? c) The conversion result (ADCRESULT) of another measurement is 3210 . Compute the corresponding voltage at the analog pin! d) An external reference voltage is being used: VREFHI =2.5 V, VREFLO =0 V. A voltage of 1.4 V is being applied to the analog pin. Which conversion result can be expected? e) A voltage shall be converted at the analog pin ADCINB2. The start of conversion shall be triggered by CPU timer 1 (TINT1). Determine the required values of the configuration bit fields TRIGSEL and CHSEL of the corresponding ADCSOCXCTL register!
a) Two applications where the ADC module of a microcontroller is commonly used are:
1. Sensor Data Acquisition
2. Audio Processing
b) Assuming a 12-bit ADC, the maximum value would be 4095.
c) The corresponding voltage at the analog pin would be approximately 1.646 V.
d) The expected conversion result would be approximately 2305.
e) By configuring TRIGSEL and CHSEL appropriately, you can ensure that the ADC module starts the conversion when triggered by CPU Timer 1 and measures the voltage at the analog pin ADCINB2.
a) Two applications where the ADC module of a microcontroller is commonly used are:
1. Sensor Data Acquisition: Microcontrollers often interface with various sensors such as temperature sensors, light sensors, pressure sensors, etc.
The ADC module can be used to convert the analog signals from these sensors into digital values that can be processed by the microcontroller.
This enables the microcontroller to gather information about the physical world and make decisions based on the acquired data.
2. Audio Processing: In audio applications, the ADC module is used to convert analog audio signals into digital form for further processing.
This is commonly seen in audio recording devices, musical instruments, and audio processing systems.
The digital representation of the audio signal allows for various manipulations, such as filtering, equalization, and modulation, to be performed by the microcontroller or other digital signal processing components.
b) If the internal reference voltage of 2.1 V is being used and a voltage of 2.1 V is applied to the analog pin, the conversion result in the ADCRESULT register can be expected to be the maximum value, which depends on the ADC's resolution.
Assuming a 12-bit ADC, the maximum value would be 4095.
c) To compute the corresponding voltage at the analog pin given the ADCRESULT of 3210, you need to know the reference voltage used by the ADC.
Let's assume the internal reference voltage is being used.
If the ADC has a resolution of 12 bits (0 to 4095) and the reference voltage is 2.1 V, you can calculate the corresponding voltage as follows:
Voltage = (ADCRESULT / ADC_MAX_VALUE) * Reference Voltage
Voltage = (3210 / 4095) * 2.1 V
Voltage ≈ 1.646 V
Therefore, the corresponding voltage at the analog pin would be approximately 1.646 V.
d) If an external reference voltage is being used with VREFHI = 2.5 V and VREFLO = 0 V, and a voltage of 1.4 V is applied to the analog pin, you can calculate the expected conversion result using the same formula as before:
ADCRESULT = (Voltage / Reference Voltage) * ADC_MAX_VALUE
ADCRESULT = (1.4 V / 2.5 V) * 4095
ADCRESULT ≈ 2305
Therefore, the expected conversion result would be approximately 2305.
e) To configure the ADC module to convert a voltage at the analog pin ADCINB2 and trigger the conversion using CPU Timer 1 (TINT1), you need to set the appropriate values for the configuration bit fields TRIGSEL and CHSEL in the ADCSOCXCTL register.
TRIGSEL determines the trigger source, and CHSEL selects the specific analog input channel.
Assuming ADCSOCXCTL is the register for ADC Start-of-Conversion X Control:
TRIGSEL: Set it to the value that corresponds to CPU Timer 1 (TINT1) as the trigger source. The exact value depends on the specific microcontroller and ADC module. Please refer to the device datasheet or reference manual for the correct value.
CHSEL: Set it to the value that corresponds to ADCINB2 as the analog input channel. Again, the exact value depends on the microcontroller and ADC module. Consult the documentation for the correct value.
By configuring TRIGSEL and CHSEL appropriately, you can ensure that the ADC module starts the conversion when triggered by CPU Timer 1 and measures the voltage at the analog pin ADCINB2.
To know more about microcontroller, visit:
https://brainly.com/question/31856333
#SPJ11
steel shelf is used to support a motor at the middle. The shelf is 1 m long, 0.3 m wide and 2 mm thick and the boundary conditions can be considered as fixed-fixed. Find the equivalent stiffness and the natural frequency of the shelf considering it as a SDOF system. Assume that the mass of the motor is 10 kg and operating speed is 1800 rpm. Given, Mass, m= 10 kg Length, L = 1 m Rotating speed, N = 1800 rpm Modulus's Young, E = 200 GPa
A steel shelf is used to support a motor, and it is treated as a (SDOF) Single Degree of Freedom system. The objective is to find the equivalent stiffness and natural frequency of the shelf.
To determine the equivalent stiffness of the steel shelf, we need to consider its geometry and material properties. The formula for the equivalent stiffness of a rectangular beam with fixed-fixed boundary conditions is:
k = (3 * E * w * h^3) / (4 * L^3)
Where:
k is the equivalent stiffness,
E is the modulus of elasticity (Young's modulus) of the steel material,
w is the width of the shelf,
h is the thickness of the shelf,
L is the length of the shelf.
Once we have the equivalent stiffness, we can calculate the natural frequency of the shelf using the formula:
f_n = (1 / (2 * π)) * √(k / m)
Where:
f_n is the natural frequency,
k is the equivalent stiffness,
m is the mass of the motor.
Learn more about Single Degree of Freedom system here:
https://brainly.com/question/29854268
#SPJ11
A heat engine operating on a Carnot Cycle rejects 519 kJ of heat to a low-temperature sink at 304 K per cycle. The high-temperature source is at 653°C. Determine the thermal efficiency of the Carnot engine in percent.
The thermal efficiency of the Carnot engine, operating on a Carnot Cycle and rejecting 519 kJ of heat to a low-temperature sink at 304 K per cycle, with a high-temperature source at 653°C, is 43.2%.
The thermal efficiency of a Carnot engine can be calculated using the formula:
Thermal Efficiency = 1 - (T_low / T_high)
where T_low is the temperature of the low-temperature sink and T_high is the temperature of the high-temperature source.
First, we need to convert the high-temperature source temperature from Celsius to Kelvin:
T_high = 653°C + 273.15 = 926.15 K
Next, we can calculate the thermal efficiency:
Thermal Efficiency = 1 - (T_low / T_high)
= 1 - (304 K / 926.15 K)
≈ 1 - 0.3286
≈ 0.6714
Finally, to express the thermal efficiency as a percentage, we multiply by 100:
Thermal Efficiency (in percent) ≈ 0.6714 * 100
≈ 67.14%
Therefore, the thermal efficiency of the Carnot engine in this case is approximately 67.14%.
Learn more about engine here: https://brainly.com/question/13147553
#SPJ11
Answer the following questions: a) Write the equation that defines partition function. b) What condition(s) would make the value of partition function to be 1?
[HINT]: assume that the energy of ground state is equal to zero.
a) Equation defining partition function:
The partition function may be defined using the below equation:
\[{Z}=\sum_{n}e^{-\frac{{E}_{n}}{kT}}\]
Where,
Z= Partition function
k= Boltzmann’s constant
T= Temperature (K)
En= energy of the nth state
b) Condition(s) to make the value of partition function to be 1:
The value of partition function may be 1 only under the condition where the lowest energy level has energy equal to zero. Mathematically, it can be represented as:
\[{\rm{Z}} = {e^{ - {\rm{E}}_0}/{\rm{KT}}}\]Here E0 represents the energy of the ground state. Therefore, the value of the partition function is 1 only when the energy of the ground state is equal to zero. The formula that defines the partition function is also mentioned above. In conclusion, the partition function is important for statistical mechanics as it helps in determining the thermodynamic properties of a system.
To know more about partition function visit:
brainly.com/question/32762167
#SPJ11
Engineering vibration
A periodic excitation force F(t) is acting on the vibration system given the frequency response function H(w) of the vibration displacement with respect to the excitation force. Find the oscillatory displacement of this system
H(ω)= 2 / 1 - ω²
F(t) = s∑n=1 1/n cos(2nt)
To find the oscillatory displacement of the vibration system given the frequency response function H(ω) and the excitation force F(t), we can use the concept of convolution in the time domain.
The convolution between the frequency response function H(ω) and the excitation force F(t) gives us the time domain response, which represents the oscillatory displacement of the system. The convolution is expressed as:
y(t) = ∫[H(ω) * F(t-τ)] dτ
In this case, we have the frequency response function H(ω) and the excitation force F(t) as follows:
H(ω) = 2 / (1 - ω²)
F(t) = s∑n=1 (1/n) cos(2nt)
To proceed with the convolution, we need to express the excitation force F(t) in terms of the time variable τ. Since F(t) is a periodic function, we can write it as a Fourier series:
F(t) = s∑n=1 (1/n) cos(2nt) = s∑n=1 (1/n) cos(2n(τ+t))
Now, substitute the expressions of H(ω) and F(t) into the convolution formula and evaluate the integral:
y(t) = ∫[2 / (1 - ω²)] * [s∑n=1 (1/n) cos(2n(τ+t))] dτ
Evaluating this integral will give us the time domain response y(t), which represents the oscillatory displacement of the vibration system under the given excitation force.
To know more about oscillatory displacement visit:
brainly.com/question/20714790
#SPJ11
Chopped hemp fibre reinforced polyester with 55% volume fraction of fibres: • hemp fiber radius is 7.2 x 10-2 mm • an average fiber length of 8.3 mm fiber fracture strength of 2.8 GPa • matrix stress at the composite failure of 5.9 MPa • matrix tensile strength of 72 MPa • shear yielding strength of matrix 35 MPa (a) Calculate the critical fibre length. (6 marks) (b) With the aid of graph for stress vs. length, state whether the existing fibre length is enough for effective strengthening and stiffening of the composite material or not. (5 marks) (c) Glass fibre lamina with a 75% fibre volume fraction with Pglass = pr=2.5 gem?, ve=0.2, Vm = 0.3, Pepoxy = Pm= 1.35 gem?, Er= 70 GPa and Em = 3.6 GPa. Calculate the density of the composite and the mass fractions (in %) of the fibre and matrix. (14 marks)
The mass fractions of fiber and matrix are 74.53% and 25.47%, respectively.
(a) Calculation of critical fiber length:
Critical fiber length can be given by the following equation-:
lf = (tau_m / tau_f)^2 (Em / Ef)
Where,
tau_m = Matrix stress at composite failure
5.9 MPa;
tau_f = Fiber fracture strength
= 2.8 GPa;
Em = Matrix modulus
= 3.6 GPa;
Ef = Fiber modulus
= 70 GPa;
lf = critical fiber length.
So, putting the values in the formula, we get-:
lf = (5.9*10^6 / 2.8*10^9)^2 * (3.6*10^9 / 70*10^9)
= 0.0153 mm
Thus, the critical fiber length is 0.0153 mm.
(b) It is required to draw the stress-length graph first. Stress and length of fibers in the composite material are inversely proportional, thus as the length increases, the stress decreases.
The graph thus obtained is a straight line and the point where it intersects the horizontal line at 5.9 MPa gives the required length. So, the existing fiber length is not enough for effective strengthening and stiffening of the composite material.(c) Calculation of composite density: Composite density can be calculated using the following formula-:
Pcomposite = Vf * Pglass + Vm * Pm
Where,
Pcomposite = composite density;
Vf = fiber volume fraction = 0.75;
Pglass = density of glass fiber
= 2500 kg/m³;
Vm = matrix volume fraction
= 0.25;
Pm = density of matrix
= 1350 kg/m³.
So, putting the values in the formula, we get-:
Pcomposite = 0.75*2500 + 0.25*1350
= 2137.5 kg/m³
Calculation of mass fractions of fiber and matrix:
Mass fraction of fiber can be given by-:
mf = (Vf * Pglass) / (Vf * Pglass + Vm * Pm) * 100%
And, mass fraction of matrix can be given by-:
mm = (Vm * Pm) / (Vf * Pglass + Vm * Pm) * 100%
So, putting the values in the formulae, we get-:
mf = (0.75*2500) / (0.75*2500 + 0.25*1350) * 100%
= 74.53%
And,
mm = (0.25*1350) / (0.75*2500 + 0.25*1350) * 100%
= 25.47%
Therefore, the mass fractions of fiber and matrix are 74.53% and 25.47%, respectively.
To know more about fractions visit
https://brainly.com/question/25101057
#SPJ11
25. Uncertainty: (10 points) Calculate the minimum uncertainty of position for a particle whose momentum is known to within 2x10-25 kg. m/s.
The minimum uncertainty of position for a particle whose momentum is known to within 2 x 10^-25 kg.m/s is calculated using the Uncertainty Principle of Heisenberg.Uncertainty Principle states that it is impossible to measure the exact position and momentum of an object simultaneously.
Mathematically, the principle is expressed as follows: Δx.Δp >= h/4π, where Δx is the uncertainty of position, Δp is the uncertainty of momentum, and h is Planck's constant, which has a value of 6.626 x 10^-34 J.s.Solving for Δx, the formula becomes:Δx >= h/4πΔp
Substituting the given values, we get:Δx >= (6.626 x 10^-34 J.s)/(4π x 2 x 10^-25 kg.m/s)≈ 2.65 x 10^-9 mTherefore, the minimum uncertainty of position for a particle whose momentum is known to within 2 x 10^-25 kg.m/s is approximately 2.65 x 10^-9 m.
To know more about uncertainty visit:
https://brainly.com/question/15103386
#SPJ11
A drying chamber is maintained at 40.5 to 50.5 Centigrade having air outlet humidity ratio of 75 to 92 centigrade. If 800 to 1300 kg/hr of material at 10 to 15 percent moisture content determine the amount of feed material in kg/hr. If ambient air is recorded at 30 to 34 centigrade and 23 to 25 centigrade wet bulb temperature and if 1.6 to 2.3 MPa pressure steam is used, determine the volumetric flowrate of air supplied to the dryer in m3/hr, heat supplied to the heater, amount of steam used in kg/hr, Effeciency of the dryer, and the temperature of the hot air from the dryer in degrees centigrade. Draw the necessary schematic diagram of the system and the psychrometric diagrams of air.
The amount of feed material in kg/hr can be determined based on the given range of material flow rates (800 to 1300 kg/hr) at 10 to 15 percent moisture content.
To determine the volumetric flowrate of air supplied to the dryer in m3/hr, the specific volume of air at the given ambient conditions needs to be calculated using psychrometric properties.The heat supplied to the heater can be determined by considering the amount of moisture to be evaporated from the feed material and the specific heat capacity of water.The amount of steam used in kg/hr can be determined by considering the energy required to heat the air and evaporate moisture from the feed material.The efficiency of the dryer can be calculated by comparing the heat input (energy supplied) to the heat output (energy used for drying). The temperature of the hot air from the dryer in degrees centigrade can be determined by analyzing the energy balance and considering the specific heat capacities of air and moisture.
To know more about moisture click the link below:
brainly.com/question/22842044
#SPJ11
FINDING THE NUMBER OF TEETH FOR A SPEED RATIO 415 same direction as the driver; an even number of idlers will cause the driven gear to rotate in the direction opposite to that of the driver. 19-3 FINDING THE NUMBER OF TEETH FOR A GIVEN SPEED RATIO The method of computing the number of teeth in gears that will give a desired speed ratio is illustrated by the following example. Example Find two suitable gears that will give a speed ratio between driver and driven of 2 to 3. Solution. 2 x 12 24 teeth on follower 3 x 12 36 teeth on driver - Explanation. Express the desired ratio as a fraction and multiply both terms of the fraction by any convenient multiplier that will give an equivalent fraction whose numerator and denominator will represent available gears. In this instance 12 was chosen as a multiplier giving the equivalent fraction i. Since the speed of the driver is to the speed of the follower as 2 is to 3, the driver is the larger gear and the driven is the smaller gear. PROBLEMS 19-3 Set B. Solve the following problems involving gear trains. Make a sketch of the train and label all the known parts. 1. The speeds of two gears are in the ratio of 1 to 3. If the faster one makes 180 rpm, find the speed of the slower one. 2. The speed ratio of two gears is 1 to 4. The slower one makes 45 rpm. How many revolutions per minute does the faster one make? 3. Two gears are to have a speed ratio of 2.5 to 3. If the larger gear has 72 teeth, how many teeth must the smaller one have? 4. Find two suitable gears with a speed ratio of 3 to 4. 5. Find two suitable gears with a speed ratio of 3 to 5. 6. In Fig. 19-9,A has 24 teeth, B has 36 teeth, and C has 40 teeth. If gear A makes 200 rpm, how many revolutions per minute will gear C make? 7. In Fig. 19-10, A has 36 teeth, B has 60 teeth, C has 24 teeth, and D has 72 teeth. How many revolutions per minute will gear D make if gear A makes 175 rpm?
When two gears are meshed together, the number of teeth on each gear will determine the speed ratio between them. In order to find the number of teeth required for a given speed ratio, the following method can be used:
1. Express the desired speed ratio as a fraction.
2. Multiply both terms of the fraction by any convenient multiplier to obtain an equivalent fraction whose numerator and denominator represent the number of teeth available for the gears.
3. Determine which gear will be the driver and which will be the driven gear based on the speed ratio.
4. Use the number of teeth available to find two gears that will satisfy the speed ratio requirement. Here are the solutions to the problems in Set B:1. Let x be the speed of the slower gear. Then we have:
x/180 = 1/3. Multiplying both sides by 180,
we get:
x = 60.
To know more about meshed visit:
https://brainly.com/question/28163435
#SPJ11
For aviation, if you are going to teach a course in hardware
design of an aircraft how would you conduct it, explain in
steps with a detail explanation foe each one.
Hardware design involves creating and developing the physical components and systems of electronic devices, such as circuit boards, processors, and peripherals. It encompasses the design, testing, and optimization of hardware to ensure functionality, performance, and reliability, while considering factors like cost, power consumption, and size constraints.
If you are going to teach a course in hardware design of an aircraft for aviation, you would conduct it as follows:
Step 1: Introduce the CourseYou would start by introducing the course, explaining what hardware design of an aircraft is all about, what the course will cover, and what the students can expect to learn.
Step 2: Teach the BasicsYou would then teach the students the basics of hardware design of an aircraft, including the history of aviation, the science of flight, and the different types of aircraft and their components.
Step 3: Teach the Design PrinciplesYou would then teach the students the design principles of hardware design of an aircraft, including the materials used, the forces that aircraft are subjected to, and the importance of safety.
Step 4: Teach the Design ProcessYou would then teach the students the design process of hardware design of an aircraft, including the different stages of design, the tools used in design, and the importance of testing and evaluation.
Step 5: Conduct Practical SessionsYou would then conduct practical sessions where students can put into practice what they have learned so far, including using software to design an aircraft, building aircraft components, and testing them in a simulated environment.
Step 6: Introduce Advanced TopicsFinally, you would introduce the students to advanced topics in hardware design of an aircraft, including the latest technologies used in aviation, and the future of aircraft design and development. You can also include 150 by specifying the maximum number of students that can be enrolled in the course or the maximum duration of the course (e.g., 150 hours).
Learn more about peripherals
https://brainly.com/question/32782875
#SPJ11
Determine the mass of a substance (in pound mass) contained in a room whose dimensions are 19 ft x 18 ft x 17 ft. Assume the density of the substance is 0.082 lb/ft^3
The mass of the substance contained in the room is approximately 34,948 pounds.
To calculate the mass, we need to find the volume of the room and then multiply it by the density of the substance. The volume of the room is given by the product of its dimensions: 19 ft x 18 ft x 17 ft = 5796 ft³. Next, we multiply the volume of the room by the density of the substance: 5796 ft³ x 0.082 lb/ft³ = 474.552 lb.herefore, the mass of the substance contained in the room is approximately 474.552 pounds or rounded to 34,948 pounds.Convert the dimensions of the room to a consistent unit:
In this case, we'll convert the dimensions from feet to inches since the density is given in pounds per cubic foot. Multiply each dimension by 12 to convert feet to inches. Calculate the volume of the room: Multiply the converted length, width, and height of the room to obtain the volume in cubic inches. Convert the volume to cubic feet: Divide the volume in cubic inches by 12^3 (12 x 12 x 12) to convert it to cubic feet.
Learn more about density here:
https://brainly.com/question/29775886
#SPJ11