Answer:
No, it is not appropriate to mix water and DMSO
Explanation:
We have to realize that DMSO is a highly polar solvent and water is a highly polar solvent. The question explicitly says that our target is to produce a solvent of intermediate polarity.
We can only do this by mixing a polar and a nonpolar solvent. We have been given the example of the mixture of acetone/hexane which is quite a perfect mixture.
Thus, it is inappropriate to mix DMSO and water.
The water-DMSO mixture has a high polarity and is not appropriate for intermediate polarity solution.
The interactions between solute-solvent result in the solubility and the polarity of the solution. The polar and non-polar solvents result in intermediate polarity of the solution.
What is the polarity of Water-DMSO solute?The water and DMSO both are highly polar in nature. The addition of polar DMSO to polar water results in the dipole-dipole interaction between the molecules.
The interactions result in the solubility of the solute with solvent. However, the polarity of the solution will be high as both the molecules gave synergistic mixture polarity to the solution.
Thus, to obtain the solution of intermediate polarity, water-DMSO mixture is not appropriate.
Learn more about non-polar, here:
https://brainly.com/question/1716818
Calculate the [H+]
and pH of a 0.000295 M
butanoic acid solution. Keep in mind that the a
of butanoic acid is 1.52×10−5
[H⁺]=6.696 x 10⁻⁵
pH = 4.174
Further explanationGiven
The concentration of 0.000295 M (2.95 x 10⁻⁴ M) butanoic acid solution
Required
the [H+] and pH
Solution
Butanoic acid is the carboxylic acid group. Carboxylic acids are weak acids
For weak acid :
[tex]\tt [H^+]=\sqrt{Ka.M}[/tex]
Input the value :
[H⁺]=√1.52 x 10⁻⁵ x 2.95 x 10⁻⁴
[H⁺]=6.696 x 10⁻⁵
pH = - log [H⁺]
pH = - log 6.696 x 10⁻⁵
pH = 5 - log 6.696
pH = 4.174
Iron is a metal. The structure of iron is described as a lattice of positive ions in a sea of
electrons. Which of the following statements about iron are correct?
1 iron conducts electricity because the electrons are free to move
2 iron has a high melting point due to the strong covalent bonds
3 iron is an alloy
4 iron is malleable because the layers of atoms can slide over one another
A. 1 only
B. 1 and 3
C. 1 and 4
D. 2, 3 and 4
Answer: 1and 4
Explanation: iron is an element not an alloy. An ionic lattice is not bonded covalently.
A solution contains a mixture of pentane and hexane at room temperature. The solution has a vapor pressure of 263 torr. Pure pentane and hexane have vapor pressures of 425 torr and 151 torr, respectively, at room temperature.
Required:
What is the mole fraction of hexane?
Answer:
Xb = 0.59
Explanation:
Let's analyze the given data.
We have a total vapor pressure of 263 Torr for the mix of the two gases. And the individual vapour pressures for each gas is given, and it's 425 Torr for pentane and 151 Torr for hexane.
We are asked to determine the mole fraction of hexane. For practical purposes, we will label pentane as "a" while hexane would be "b". So, let's write the equations that we need to calculate this.
We know that the total pressure of a solution would be:
P = Pa + Pb (1)
And we also know that these individual pressures are:
Pa = Xa * Pa° (2)
Pb = Xb * Pb° (3)
Where Pa° and Pb° are the vapour pressures of each gases.
The mole fractions (Xa and Xb), can be expressed, one in function of the other:
Xa + Xb = 1 -----> Xa = 1 - Xb (4)
Now that we know this, we can replace (4) in (2), and then, (2) and (3) can be replaced in (1):
Pa = (1 - Xb)Pa°
P = (1 - Xb)Pa° + XbPb° (5)
Replacing the given data, we have:
263 = (1 - Xb)*425 + 151Xb
Now solving for Xb, which is the mole fraction of hexane:
263 = 425 - 425Xb + 151Xb
263 - 425 = (-425 + 151)Xb
-162 = -274Xb
Xb = -162 / -274
Xb = 0.59Hope this helps
Adding 1.56 g of K2SO4 to 6.00 mL of water at 16.2ºC causes the temperature of the solution to drop by 7.70ºC.
How many grams of NaOH (ΔHsoln = –44.3 kJ/mol) would you need to add to raise the temperature back to 16.2ºC?
Answer:
You need to add 0.243g of NaOH to raise the temperature back to 16.2°C
Explanation:
Using the equation:
Q = C*m*ΔT
Where Q is heat
C is specific heat
m is mass
and ΔT is change in temperature
We can find the heat required to increase the temperature of the solution back to 16.2°C:
Assuming specific heat of the solution of water + K2SO4 = Specific heat of water:
C = 4.184J/g°C
m = 1.56g + 6.00g = 7.56g
ΔT = 16.2°C - 7.70°C = 8.50°C
Q = 4.184J/g°C * 7.56g * 8.50°C
Q = 268.86J = 0.269kJ of heat are required
As this heat is obtained from the dissolution of NaOH:
0.269kJ * (1mol NaOH / 44.3kJ) = 0.00607 moles of NaOH are required
In grams -Molar mass NaOH: 40g/mol-:
0.00607 moles NaOH * (40g / mol) =
You need to add 0.243g of NaOH to raise the temperature back to 16.2°CA student assembles ball bearings that are 0.19 inches in diameter into an FCC lattice using glue which makes for a 0.001 inch thick bond between bearings. What is the lattice constant in inches of this FCC crystal? Three significant digits and fixed point notation.
Answer:
the lattice constant is 0.270 inches
Explanation:
Given the data in the question;
For FCC lattice;
a = b = c, ∝ = β = α = 90°
from the image below;
AC = 0.19 + 0.19/2 + 0.19/2 + 2(0.001) inch
AC = 0.19 + 0.095 + 0.095 + 0.002
AC = 0.382 inches
Now using Pythagoras theorem
AC² = AB² + BC²
since a = b = c
AC² = a² + a²
(0.382)² = 2a²
2a² = 0.145924
a² = 0.145924 / 2
a² = 0.072962
a = √0.072962
a = 0.27011 ≈ 0.270 inches
Therefore, the lattice constant is 0.270 inches
Predict the missing product of this equation
1 MgF2 + 1 Li2CO3 -> 1 ______ +2LiF
Answer:
MgCO₃
Explanation:
From the question given above, we obtained:
MgF₂ + Li₂CO₃ —> __ + 2LiF
The missing part of the equation can be obtained by writing the ionic equation for the reaction between MgF₂ and Li₂CO₃. This is illustrated below:
MgF₂ (aq) —> Mg²⁺ + 2F¯
Li₂CO₃ (aq) —> 2Li⁺ + CO₃²¯
MgF₂ + Li₂CO₃ —>
Mg²⁺ + 2F¯ + 2Li⁺ + CO₃²¯ —> Mg²⁺CO₃²¯ + 2Li⁺F¯
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Now, we share compare the above equation with the one given in the question above to obtain the missing part. This is illustrated below:
MgF₂ + Li₂CO₃ —> __ + 2LiF
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Therefore, the missing part of the equation is MgCO₃
What key assumption of Bohr’s model would a Solar S y stem model of the atom violate? What was the theoretical basis for this assumption?
Answer:
See explanation
Explanation:
The solar system consists of the sun at the core surrounded by all the planets in their proper order. Similarly, the Bohr model of the atom upholds Rutherford's planetary model in which the atom was said to have a positive core surrounded by electrons moving in orbits just as the planets orbit round the sun.
The difference between the two models is that electrons are able to move from one energy level to another. This assumption violates the principles of the solar system because the position of the planets are fixed in their orbits.
The theoretical basis behind this assumption is that each spectral line is produced by the transition of electrons from one energy level to another.
Baking soda and vinegar questions
How do you balance this equation?
Answer:
HC₂H₃O₂ + NaHCO₃ —> NaC₂H₃O₂ + CO₂ + H₂O
The coefficients are: 1, 1, 1, 1, 1
Explanation:
_HC₂H₃O₂ + _NaHCO₃ —> _NaC₂H₃O₂ + _CO₂ + _H₂O
To balance an equation, we simply do a head count of the individual elements and ensure they are balanced on both side.
For the above equation, we shall balance it as :
HC₂H₃O₂ + NaHCO₃ —> NaC₂H₃O₂ + CO₂ + H₂O
Reactant:
H = 5
C = 3
O = 5
Na = 1
Product:
H = 5
C = 3
O = 5
Na = 1
From the above, we can see that each element is the same on both side of the equation. Thus the equation is already balanced
HC₂H₃O₂ + NaHCO₃ —> NaC₂H₃O₂ + CO₂ + H₂O
The coefficients are: 1, 1, 1, 1, 1
i am having trouble solving it pls help
Answer:
1. 0.097 s
2. 0.420 M
Explanation:
To solve both questions we'll use the formula:
[A]ₓ = [A]₀ - kt
Where [A]ₓ is the concentration of A at a given time; and [A]₀ is the initial concentration.
1) We input the data given by the problem:
0.167 M = 0.700 M - 5.48 M/s * t
And solve for t:
t = 0.097 s
2) We input the new data:
[A]ₓ = 0.500 M - 0.361 M/s * 0.220 s
and solve for [A]ₓ:
[A]ₓ = 0.420 M
A chemistry student needs 50.0ml of tetrahydrofuran for an experiment. By consulting the CRC Handbook of Chemistry and Physics, the student discovers that the density of tetrahydrofuran is . Calculate the mass of tetrahydrofuran the student should weigh out. Be sure your answer has the correct number of significant digits.
Answer:
44.45 g of tetrahydrofuran.
Explanation:
From the question given above, the following data were obtained:
Volume of tetrahydrofuran = 50 mL
Density of tetrahydrofuran = 0.889 g/mL
Mass of tetrahydrofuran =?
Density of a substance is simply defined as the mass of the substance per unit volume of the substance. Mathematically, density is expressed as shown below:
Density = mass / volume
With the above formula, we shall determine the mass of tetrahydrofuran needed. This can be obtained as follow:
Volume of tetrahydrofuran = 50 mL
Density of tetrahydrofuran = 0.889 g/mL
Mass of tetrahydrofuran =?
Density = mass / volume
0.889 = mass / 50
Cross multiply
Mass = 0.889 × 50
Mass of tetrahydrofuran = 44.45 g
Therefore, the student should weigh out 44.45 g of tetrahydrofuran.
In a chemical reaction, reactants interact to form products. This process is summarized by a chemical equation. In the Balancing Chemical Equations Gizmo, look at the floating molecules below the initial reaction: H2 + O2 ???? H2O. 1. How many atoms are in a hydrogen molecule (H2)? 2. How many atoms are in an oxygen molecule (O2)? 3. How many hydrogen and oxygen atoms are in a water molecule (H2O)? 4. In general, what does a subscript (such as the "2" in H2) tell you about the molecule? 5. A chemical equation is balanced if the number of each type of atom on the left side is equal to the number of each type on the right side. Is this reaction balanced?
Answer:
See answer below
Explanation:
Let's write the equation again:
H₂ + O₂ ---------> H₂O
Now that we have written the equation, let's solve the exercise:
1. In this case, we first need to make a difference between atom and molecule. An atom is just a single element, a molecule it's when you have more than 1 element in a compound.
Knowing this, we have the H₂. In this case we only have one element, Hydrogen. However, as you can see in the expression, we have a number 2 as a subscript. The number 2 means that the hydrogen it's not alone, we do not have one hydrogen, we have two hydrogens, therefore, it becomes a molecule. Now, This molecule, according to the number 2 as subscript, means that the molecule of hydrogen have 2 atoms of hydrogens, and this formed the molecule, therefore, there are 2 atoms of hydrogens in H₂.
2. Following the same explanation of above, but using oxygen, we have the same thing, so, in a molecule of O₂, we have 2 atoms of oxygen.
3. The molecule of water is composed of Hydrogen and oxygen. As you can see, in this case we have 2 hydrogen and 1 oxygen, therefore, in 1 molecule of water, there are 1 atom of oxygen and 2 atoms of hydrogen.
4. The subscript, as you may know now, tell us the number of atoms that you have in a molecule or compound. This number also means, in different compounds the oxidation state of the atoms that conform the molecule.
5. No, the equation is not balanced, because we do not have the same number of oxygen on the side of the products. We need to balance that. As the oxygen is unbalanced, we just need to put numbers as coefficients, behind the molecule. This number will multiply the number of atoms of the referred molecule. So, doing this with the water on the products to equal the number of oxygen, we have:
H₂ + O₂ ---------> 2H₂O
But this 2, unbalance at the same time the number of hydrogens. We now have 4 hydrogens in the product, so, to balance this, we put a 2 on the reactants:
2H₂ + O₂ ---------> 2H₂O
Now the reaction is balanced.
Hope this helps
The figure shows different possible transitions of electrons as they move from higher energy states to lower energy states. Which transition will produce the spectrum line with the lowest wavelength in this element’s atomic spectrum?
A. A
B. B
C. C
D. D
Answer:
It is D !!
Explanation:
Just did test
Choose all the answers that apply.
What does the cardiovascular system do?
transports oxygen and carbon dioxide for the respiratory system
carries nutrients for the digestive system
works with the immune system to fight infection
carries hormones for the endocrine system
sends nerve impulses to the brain and spinal cord
Answer:
All of the above. The CV system transports blood and plasma the do all 4.
Consider the following chemical equilibrium:
N2 (g) + 3H2 ⇌ 2NH3
Now write an equation below that shows how to calculate Kp from Kc for this reaction at an absolute temperature .
Answer:
Kp = Kc (RT) ^(-2)
Explanation:
For the reaction;
N2 (g) + 3H2 ⇄ 2NH3(g)
We can write;
Kc = [NH3]^2/[N2] [H2]^3
But
Kp = pNH3^2/pN2 . PH2^3
To convert from Kc to Kp
Kp = Kc (RT) ^Δn
where Δn is the change in number of moles going from reactants
to products.
For this reaction;
Δn = 2- (3+1) = -2
Kp = Kc (RT) ^(-2)
Consider the following reaction where K. = 9.52 10 2 at 350 K.
CH,(g) + CC14(2)—2CH2Cl2(g)
A reaction mixture was found to contain 2.21*10-2 moles of CH4(E), 3.8710-2 moles of CC1,(g) and 1.06-10-2 moles of CH,C12(2), in
a 1.00 liter container
Is the reaction at equilibrium?
If not, what direction must it run in order to reach equilibrium?
The reaction quotient, Qc equals
The reaction
A. must run in the forward direction to reach equilibrium
B. must run in the reverse direction to reach equilibrium
C. is at equilibrium
Answer:
The correct answer is A :))
The ______ are new substances taht are created following a chemical reaction?
Designer Andrea Tyson, a conservation planner from Naples, Florida, calls Arendt’s approach "capitalism mated with conservation." Explain why you think she would use this term.
Answer:
It uses this term to represent the economic use of land and nature, with minimal degradation and maximum environmental preservation.
Explanation:
Capitalism is an economic system that promotes the maximum economic exploitation of terrestrial resources. It is common for this exploitation to be strongly associated with environmental degradation, destruction of natural habitats, deforestation and death of fauna and flora. With this, we can consider that capitalism is one of the main formulators of environmental degradation, however many professionals have considered the term "capitalism mated with conservation," where terrestrial resources are exploited consciously and with the objective of reducing degradation to the maximum. environmental impact and maximize conservation.
What is true about the inertia of two cars, Car A of mass 1,500 kilograms and Car B of mass 2,000 kilograms?
OA.
Car A and Car Bhave the same inertia.
B.
Car A has more inertia than Car B.
Oc.
Car Bhas more inertia than Car A.
ОО
D.
Both the cars have negligible inertia.
I’m
Answer:
Car B has more inertia than Car A
Explanation:
Given that,
Mass of car A = 1500 kg
Mass of car B = 2000 kg
Inertia is directly proportional to the mass of an object. Inertia is the measure of the mass of an object.
In this case, the mass of car B is more than that of car A, it means the inertia of car B is more than that of car A.
Hence, the correct option is (c) "Car B has more inertia than Car A".
Given 450.98 g of Cu(NO3)2, how many moles of Ag can be made? Provide your final answer rounded to two decimal places.
Cu + 2 AgNO3 → Cu(NO3)2 + 2 Ag
Answer:
4.82 moles of Ag.
Explanation:
We'll begin by calculating the number of mole in 450.98 g of Cu(NO₃)₂. This can be obtained as follow:
Molar mass of Cu(NO₃)₂ = 63.5 + 2[14 + (16×3)]
= 63.5 + 2[14 + 48]
= 63.5 + 2[62]
= 63.5 + 124
= 187.5 g/mol
Mass of Cu(NO₃)₂ = 450.98 g
Mole of Cu(NO₃)₂ =?
Mole = mass /Molar mass
Mole of Cu(NO₃)₂ = 450.98 / 187.5
Mole of Cu(NO₃)₂ = 2.41 moles
Next, we shall determine the number of mole of Cu needed to produce 450.98 g (i.e 2.41 moles) of Cu(NO₃)₂. This can be obtained as follow:
Cu + 2AgNO₃ —> Cu(NO₃)₂ + 2Ag
From the balanced equation above,
1 mole of Cu reacted to produce 1 mole of Cu(NO₃)₂.
Therefore, 2.41 moles of Cu will also react to produce 2.41 moles of Cu(NO₃)₂.
Thus, 2.41 moles of Cu is needed for the reaction.
Finally, we shall determine the number of mole of Ag produced from the reaction. This can be obtained as follow:
From the balanced equation above,
1 mole of Cu reacted to produce 2 moles of Ag.
Therefore, 2.41 moles of Cu will react to produce = 2× 2.41 = 4.82 moles of Ag.
Thus, 4.82 moles of Ag were obtained from the reaction.
A certain chemical reaction releases of heat energy per mole of reactant consumed. Suppose some moles of the reactant are put into a calorimeter (a device for measuring heat flow). It takes of heat energy to raise the temperature of this calorimeter by . Now the reaction is run until all the reactant is gone, and the temperature of the calorimeter is found to rise by . How would you calculate the number of moles of reactant that were consumed?
Set the math up. But don't do any of it. Just leave your answer as a math expression.
Also, be sure your answer includes all the correct unit symbols.
Answer:
The expression to calculate the number of moles reactants is:
n = 59.714 J / 368000 J/mole
Explanation:
Note: The question is missing some parts. The complete question is as follows:
A certain chemical reaction releases 368.kJ of heat energy per mole of reactant consumed. Suppose some moles of the reactant are put into a calorimeter (a device for measuring heat flow). It takes 4.09J of heat energy to raise the temperature of this calorimeter by 1°C. Now the reaction is run until all the reactant is gone, and the temperature of the calorimeter is found to rise by 14.6°C. How would you calculate the number of moles of reactant that were consumed?
Set the math up. But don't do any of it. Just leave your answer as a math expression.
Also, be sure your answer includes all the correct unit symbols.
Step 1: Determine the quantity of heat required to raise the temperature of the calorimeter by 14.6°C
Quantity of heat required to raise the temperature of the calorimeter by 1°C = 4.09 J
Quantity of heat required to raise the temperature of the calorimeter by 14.6°C = 4.09 * 14.6 = 59.714 J
Step 2: Express the quantity of heat released per mole of reactant in J/mole
368 kJ/mole = 368 kJ/mole * 1000 J/kJ = 368000 J/mole
Step 3: Express the moles of reactant as n and equate it to the energy absorbed by the calorimeter
Let the number of moles of reactant be n
Assuming that there is no heat lost to the surrounding, from the law of conservation of energy, Heat released = Heat absorbed
Heat released = number of moles of reactant * quantity of heat released per mole of reactant
Heat released = n * 368000 J/mole
Heat absorbed by calorimeter = 59.714 J
From the relation above, n * 368000 J/mole = 59.714 J
n = 59.714 J / 368000 J/mole
Therefore, the expression to calculate the number of moles is n = 59.714 J / 368000 J/mole
i need help with this science pls
Answer:
1)40n
2)25n
Explanation:
subtract the numbers if its on the opposite sides and add if its on same side
thank u hope it helps
Heat will continue to move until the objects or areas have reached the same ______.
Answer: Thermal Equilibrium
Explanation:
Answer:
temperature
Explanation:
I think that's it i'm sorry if i'm wrong
What is the term for the chemical reaction that makes soap?
Answer: soaps are a sodium or potassium salts of long chain fatty acids.when triglycerides in fat/oil react with aqueous NaOH or KOH,they are converted into soap and glycerol.This is called alkaline hydrolysis of esters.Since this reaction leads to formation of soap, it is called the saponification process.
Explanation:
what are the two main products of photosynthesis
Answer:
glucose and oxygen gas
Explanation:
oxygenglucose Photosynthesis produce carbon dioxide and water It recombine them to produce oxygen (O2) and a form of sugar called glucose (C6H12O6).Gizmo Warm-up In a chemical reaction, reactants interact to form products. This process is summarized by a chemical equation. In the Balancing Chemical Equations Gizmo, look at the floating molecules below the initial reaction: H2 O2 ---> H2O. How many atoms are in a hydrogen molecule (H2)
Answer:
There are two atoms in one hydrogen molecule.
Explanation:
Hello!
In this case, when going over chemical reactions, we need to realize about the amount of atoms of each element; thus, according to the given chemical reaction by which water is formed:
[tex]H_2+O_2\rightarrow H_2O[/tex]
It is seen there are two hydrogen atoms in the hydrogen molecule, two in oxygen and two hydrogen atoms and one oxygen atom in water; however, these reactions must be balanced according to the law of conservation of mass:
[tex]2H_2+O_2\rightarrow 2H_2O[/tex]
Which means we have two hydrogen molecules with two atoms each, one oxygen molecule with two atoms and two water molecules with two hydrogen atoms and one oxygen atom each.
Best regards!
can someone help me?
Answer:
no, and next time take it right
Explanation:
Which of the following properties do solids and liquids have in common?
definite volume
definite temperature
definite smell
definite shape
Answer:
definite volume
Explanation:
Both solids and liquids have a definite volume: The difference is that solids have definite shape while liquids do not -liquids take the shape of their containers-.
Having a definite volume is why liquids cannot be compressed, a property that is used in hydraulic systems.
A beaker in your laboratory drawer has an inside diameter of 6.8 cm and a height of 8.9 cm. Using the equation V= arh, calculate the volume of the beaker, expressed in milliliters.
Answer:
323.22 ml
Explanation:
Given that :
Diameter, d = 6.8cm
Height, h = 8.9cm
V = arh
Recall :
Volume, V = πr²h
Radius, r = diameter / 2 = 6.8 / 2 = 3.4cm
V = π * 3.4^2 * 8.9
V = 323.21961 cm³
Recall:
1ml = 1cm³
Hence,
323.21961 cm³ = 323.21961 ml
Volume = 323.22 ml
Volume is the independent or dependent variable
Answer:
Independent
Explanation:
Independent Variable is the volume of the object. Dependent Variable is the mass of the object. So it