Answer:
mixture
Explanation:
Kool-Aid is a mixture of sugar, water, dye, and flavoring.
The molar mass of gallium (Ga) is 69.72 g/mol.
Calculate the number of atoms in a 27.2 mg sample of Ga.
Write your answer in scientific notation using three significant figures.
atoms Ga
Answer:
2.35 x 10²⁰ atoms Ga
Explanation:
After converting from mg to g, use the molar mass as the unit converter to convert to moles. Then using Avogadro's number, 6.022 x 10²³ convert from moles to atoms of Ga.
[tex]27.2mgGa*\frac{1g}{1000mg} *\frac{1 mol Ga}{69.72gGa} *\frac{6.022*10^2^3 atoms Ga}{1 molGa} = 2.349 * 10^2^0 atoms Ga[/tex]
Then round to 3 significant figures = 2.35 x 10²⁰ atoms Ga.
The number of atoms in 27.2 mg sample of Ga is 2.35 × 10²⁰ atoms
StoichiometryFrom the question, we are to calculate the number of atoms in a 27.2 mg sample of Ga.
First, we will determine the number of moles of Ga present
Using the formula,
[tex]Number\ of\ moles = \frac{Mass}{Molar\ mass} [/tex]
Mass = 27.2 mg = 0.0272 g
Molar mass = 69.72 g/mol
Then,
[tex]Number\ of\ moles \ of\ Ga = \frac{0.0272}{69.72} [/tex]
[tex]Number\ of\ moles \ of\ Ga = [/tex] 0.000390132 moles
Now, for the number of atoms present
From the formula
Number of atoms = Number of moles × Avogadro's constant
Then,
Number of Ga atoms = 0.000390132 × 6.022×10²³
Number of Ga atoms = 2.35 × 10²⁰ atoms
Hence, the number of atoms in 27.2 mg sample of Ga is 2.35 × 10²⁰ atoms
Learn more on stoichiometry here: https://brainly.com/question/14464650
Help, 8th grade Science
A student measured the masses of four different-sized blocks. The student determined that each block had a mass of 50 grams.
(There is a small block, a little bit bigger block, a big block and the biggles block)
Which block has the least density?
Answer:..
Explanation:
2 2 6 2 6 2 10 3
1s 2s 2p 3s 3p 4s 3d 4p
=
Answer:
ARSENIC
Explanation:
It has an atomic number of 33
A certain chemical reaction releases of heat for each gram of reactant consumed. How can you calculate the heat produced by the consumption of of reactant? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols.
Complete Question
The complete question is shown in the first uploaded image
Answer:
So the math expression is
[tex]heat = \frac{ 35. 7 KJ * 1900 \ gram }{ 1 \ gram }[/tex]
Explanation:
From the question we are told that
The heat released for 1 gram of reactant consumed is [tex]H = 37.5 \ KJ/g [/tex]
The mass of reactant considered is [tex]m = 1.9 \ kg = 1900 \ g[/tex]
So if
[tex]37.5 \ KJ [/tex] is produced for 1 gram
Then
x kJ is produced for 1900 g
=> [tex]x = \frac{ 35. 7 KJ * 1900 \ gram }{ 1 \ gram }[/tex]
So the heat released is
[tex]heat = \frac{ 35. 7 KJ * 1900 \ gram }{ 1 \ gram }[/tex]
If the earth was a guava fruit, the space where the seeds are would be the core/mantle
If you collect 5.74 mL of O 2 at 298 K and 1.00 atm over 60.0 seconds from a reaction solution of 5.08 mL, what is the initial rate of the reaction
Answer:
7.71 × 10⁻⁴ M/s
Explanation:
The initial rate of the reaction can be expressed by using the formula:
[tex]\dfrac{\Delta [O_2]}{\Delta t}[/tex]
where the number of moles of O₂ = [tex]\dfrac{PV}{RT}[/tex]
where;
Pressue P = 1.00 atm
Volume V =5.74mL = (5.74 /1000) L
Rate R = 0.082 L atm/mol.K
Temperature = 298 K
[tex]= \dfrac{1.00 \ atm \times \dfrac{5.74 }{1000}L}{0.082 \ L \ atm/mol.K \times 298 K}[/tex]
= 2.35 × 10⁻⁴ mol
Δ[O₂] = [tex]\dfrac{moles \ produced - initial \ mole}{\dfrac{5.08 }{1000}L }[/tex]
Δ[O₂] = [tex]\dfrac{2.35 \times 10^{-4} M - 0 M}{\dfrac{5.08 }{1000}}[/tex]
Δ[O₂] = 0.04626 M
The initial rate = [tex]\dfrac{\Delta [O_2]}{\Delta t}[/tex]
= [tex]\dfrac{0.04626}{60}[/tex]
= 7.71 × 10⁻⁴ M/s
Carbonic acid, H2CO3, has two acidic hydrogens. A solution containing an unknown concentration of carbonic acid is titrated with potassium hydroxide. It requires 22.9 mL of 1.430 M KOH solution to titrate both acidic protons in 54.2 mL of the carbonic acid solution.
Required:
a. Write a balanced net ionic equation for the neutralization reaction. Include physical states.
b. Calculate the molarity of the carbonic acid solution.
Answer:
a. H₂CO₃(aq) + KOH(aq) ⇄ K₂CO₃(aq) + H₂O(l)
b. 0.603 M
Explanation:
Step 1: Write the neutralization reaction
H₂CO₃(aq) + KOH(aq) ⇄ K₂CO₃(aq) + H₂O(l)
Step 2: Calculate the reacting moles of KOH
22.9 mL of 1.430 M KOH react.
0.0229 L × (1.430 mol/L) = 0.0327 mol
Step 3: Calculate the reacting moles of H₂CO₃
The molar ratio of H₂CO₃ to KOH is 1:1. The reacting moles of H₂CO₃ are 1/1 × 0.0327 mol = 0.0327 mol.
Step 4: Calculate the molarity of H₂CO₃
0.0327 moles of H₂CO₃ are in a volume of 54.2 mL. The molarity of H₂CO₃ is:
M = 0.0327 mol/0.0542 L = 0.603 M
SOMEONE PLZ HELP!!!!
Answer:
4.22mL
Explanation:
V=m/d
v= 18.45g/4.37g/mL
PLEASE HELP! WILL DO BRAINLIEST! What do scientists call all of the compounds that contain carbon and are found in living things?
organic
inorganic
acidic
nonacidic
Answer:
acidic because of electrical issues and the body of electrical equipment
A balloon contains 1.1 L of gas at a pressure of 0.80 atm. How will the volume
change if the pressure is increased to 2.0 atm?
Answer:
Final volume = 0.44 L
Explanation:
Given data:
Initial volume of balloon = 1.1 L
Initial pressure = 0.80 atm
Final volume = ?
Final pressure = 2.0 atm
Solution:
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
0.80 atm × 1.1 L = 2.0 atm × V₂
V₂ = 0.88 atm. L/ 2.0 atm
V₂ = 0.44 L
What is the most highly populated rotational level of Cl2 (i) 25deg C and (ii) 100 deg C? Take B=0.244cm-1.This question should not be resubmitted, it is a textbook question from the Atkins physical chemistry txtbook. 10 e.
Answer:
i
[tex]J_{m} = 20 [/tex]
ii
[tex]J_{m} = 22.5 [/tex]
Explanation:
From the question we are told that
The first temperatures is [tex]T_1 = 25^oC = 25 +273 =298 \ K[/tex]
The second temperature is [tex]T_2 = 100^oC = 100 +273 = 373 \ K[/tex]
Generally the equation for the most highly populated rotational energy level is mathematically represented as
[tex]J_{m} = [ \frac{RT}{2B}] ^{\frac{1}{2} } - \frac{1}{2}[/tex]
Here R is the gas constant with value [tex]R =8.314 \ J\cdot K^{-1} \cdot mol^{-1}[/tex]
Also
B is given as [tex]B=\ 0.244 \ cm^{-1}[/tex]
Generally the energy require per mole to move 1 cm is 12 J /mole
So [tex]0.244 \ cm^{-1}[/tex] will require x J/mole
[tex]x = 0.244 * 12[/tex]
=> [tex]x = 2.928 \ J/mol [/tex]
So at the first temperature
[tex]J_{m} = [ \frac{8.314 * 298 }{2* 2.928 }] ^{\frac{1}{2} } - 0.5 [/tex]
=> [tex]J_{m} = 20 [/tex]
So at the second temperature
[tex]J_{m} = [ \frac{8.314 * 373 }{2* 2.928 }] ^{\frac{1}{2} } - 0.5 [/tex]
=> [tex]J_{m} = 22.5 [/tex]
Which is one way that minerals crystallize from materials dissolved in water?
from the air
from solutions that evaporate
from hot water solutions when water boils
from the soil
Answer:
the second answer its science behind it
Answer:
b
Explanation:
In the laboratory you dissolve 18.7 g of copper(II) bromide in a volumetric flask and add water to a total volume of 375mL.
Required:
a. What is the molarity of the solution?
b. What is the concentration of the copper(II) cation?
c. What is the concentration of the acetate anion?
Answer:
a) - 0.2 M
b) - 0.2 M
c)- 0
Explanation:
The chemical formula of copper (II) bromide is CuBr₂. Its molar mass (MM) is calculated as follows:
MM(CuBr₂)= MM(Cu) + (2 x MM(Br) = 63.5 g/mol + (2 x 80 g/mol)= 223.5 g/mol
a). Molarity = moles CuBr₂/1 L solution
moles CuBr₂ = mass/MM = 18.7 g x 1 mol/223.5 g = 0.084 mol
Volume in L = 375 mL x 1 L/1000 mL = 0.375 L
M = 0.084 mol/(0.375 L) = 0.223 M ≅ 0.2 M
b). When is added to water, CuBr₂ dissociates into ions as follows:
CuBr₂ ⇒ Cu²⁺ + 2 Br⁻
We have 1 mol Cu²⁺ (copper (II) cation) per mol of CuBr₂. Thus, the concentration of copper (II) cation is:
0.2 mol CuBr₂ x 1 mol Cu²⁺/mol CuBr₂ = 0.2 M
c). The concentration of acetate anion is 0. There is no acetate anion in the solution (the anion from CuBr₂ is bromide Br⁻).
Solid diarsenic trioxide reacts with fluorine gas (F2) to produce liquid arsenic pentafluoride and oxygen gas (O2). Write the Qc for this reaction.
Answer:
QC= [O2]^3/[F2]^10
Explanation:
1. What 2 subatomic particles have charges? List the particle name and its charge.
Answer: Proton - positive charge (+)
Neutron - neutral charge (0)
Electron - negative charge (-)
Explanation: